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SIMULATED ANNEALING ALGORITHM
FOR THE MINIMUM WEIGHTED

PERFECT EUCLIDEAN MATCHING PROBLEM (*)

par Jean-Luc LUTTON (*) et Ernesto BONOMI (2)

Abstract. — In this article, a randomized heuristic derivedfrom the Metropolis procedure is proposed
to solve the Minimum Weighted Matching Problem.

In the limit of large problems, the average behaviour of the minimum cost of the perfect matching in the
two dimensional Euclidean space is investigated for different probability distributions of points.

Keywords. — Metropolis algorithm ; statistical mechanics ; combinatorial optimization ; minimum
weighted matching problem; simulated annealing.

Résumé. — Dans cet article une méthode heuristique non-déterministe, dérivée de l'algorithme de
Metropolis, est développée pour résoudre le problème de couplage de points, dans l'espace euclidien, de
poids minimal.

Dans la limite de grands problèmes, le comportement asymptotique du coût de la solution optimale est
étudié pour différentes fonctions de distribution des points dans le plan.

Mots clés : Algorithme de Metropolis; mécanique statistique; optimisation combinatoire;
couplage de points de poids minimal; recuit simulé.

INTRODUCTION

Given a set G of N points (N even) inside a bounded domain A of Euclidean
space, an instance of the minimum weighted matching problem is specified by a
N x N distance matrix D = (du).
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178 LUTTON

A perfect matching of G is a set of N/2 edges such that each point of G is an
end-point of one and only one of the N/2 edges. Each possible perfect matching is
represented by an element TI of the set E^ of all admissible solutions. EN contains
exactly (N - 1)(JV - 3) . . . 3.1 éléments.

Let bn(ï) and en(i) dénote the end-points of the ith edge, then the total cost of
neEN, given D, is:

(1)

The minimum Euclidean matching problem consists in finding one element n*
such that the sum of the length of the N/2 edges is minimal:

h*,D < h,D for all neEN, n # TU*. (2)

Despite the typically non-polynomial character of many combinatorial
problems, the matching problem can be solved exactly in O(N3) time by the
Edmonds algorithm as implemented by Gabow and Lawler [2], [12], [15].

Obviously, when N increases (N > 1000), even this method requires a
prohibitive computational effort and, consequently, heuristic algorithms
running in O(N2) and O(N) have been developed [1], [9], [16], [17].

As a corresponding drawback, the solution obtained by methods as spiral rack
or serpentine algorithm [9] running in O(N) is usually 30% in 50% more costly
than the optimal solution (Table 1).

Algorithm

serpentine[g]

X-rectengle [17]

spiral-rack [9]

annealing

strip [1]

modified strip [))

exact [9]

Complexity

0(N)

0(N)

0(N)

0(N)*

O(NiogN)

O(NlogN)

0(N3)

Average \i

0.585

0.516

0 484

032 -034

0.474

< 0.401

032-033

* numerical estimete : for large N one arrives within
a few percent of 1,he optimal cost in linear time

TABLE 1. — (Measure of A) = 1, u = cost/^/N.
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In this article we present a randomized heuristic which seems to give solutions
within a few percent of the optimal solution in linear computational time. Of
course, our method goes slower than spiral rack and serpentine algorithm but
this does not prevent our method having a linear time behaviour.

We use the Metropolis procedure [13] to generate a séquence of admissible
solutions TteEjy.

It is well known that a lot of deterministic heuristics based on a local search
procedure only allow transitions to lower cost thus trapping, after a finite
number of itérations, the current solution in a local minimum. The introduction
of the Metropolis schedule permits transitions to higher cost, so that, it is
possible to escape out of local minima.

This ergodic process is controlled by a parameter T called "température". As
the température is lowered, this séquence approaches the solution of least cost.

The same method has already been applied by the authors to investigate the
asymptotic behaviour of the iV-city travelling salesman problem [4] and of the
quadratic sum assignment problems [5].

A large part of this article concerns the study of the average cost behaviour of
the optimal solution n* in the limit N -» oo. We numerically verify the result
shown by Papadimitriou [14]: the average minimum length of the perfect
Euclidean matching is, up to a multiplicative constant, ji ~ 0.321, precisely the
result rigorously proven by Beardwood et al. for the JV-city travelling salesman
problem [3].

1. STATISTICAL MECHANICS AND THE METROPOLIS PROCEDURE

The practical way to approach hard problems is to design approximate-
solution algorithms whose running-time is proportional to small powers of N. A
simple and natural heuristic method is based on a local search inside the set E of
all admissible solutions. Of course, the local search is related to the concept of
neighbourhood. This is defined, for each element n of E, as the set y(n) of
éléments of E close in some sensé to n. For example, let us consider a
transformation ® : E -» E, then we may defme ve(n) as the set of all éléments
which are accessible from n given 0 .

To illustrate this point, let us consider in the matching problem the 2-OPT
transformation rule [15]: "remove 2 edges from n and replace them with 2 other
edges" (fig. 1).

Given the set E of all possible réalisations of an optimization problem, given
the cost function l% and a transformation 0 , we call local minimum an admissible
solution oe which is not globally optimal, such that àl = ln — /a > 0 for ail
neve(a).

vol. 20, n° 3, août 1986



180 LUTTON

Figure 1. — Elementary transformation giving the trial solution from the current one. In the
current solution, points i1 and i2 (resp. jx and j2) are matched together. The trial solution is
obtained by matching i\ with y j (resp. i2 with j2). The cost différence between these two solutions is
A/ - L, + L2 - h - l2.

Obviously, the choice of 0 sélects the set of ail local minima of the problem.

The local search procedure is formally written as follows:

STEP 0: Select an initial solution teE, n:= t.
STEP 1: Select (in a deterministic way or at random) one element SGV0(TÏ).

STEP 2: Compute Al = ln - Zs, if Al ^ 0 then n : = s, goto 1.

In this approach, so long as an improved solution exists, we adopt it and
repeat the procedure from the new solution until the algorithm is trapped in one
local minimum a (or, by chance, in one globally optimal solution rc*). To release
the algorithm from these trapping situations, the idea suggested by Kirkpatrick
et al [10] [11] is to introducé fluctuations towards higher cost solutions.

By analogy with statistical mechanics, we modify the local search in the
following manner:

STEP la: Select at random one element sev@(rc), with a probability qns such
that qKtS = qSin.

STEP 2a: Compute A/, set n:= s with a probability p = min (1, e~Ai/T),goto la.

This procedure, called the Metropolis algorithm [13], générâtes an irreducible
Markov chain controlled by the "température" T > 0; hence eventually, the set
E is covered with probability one. The itération of this procedure leads to a
unique stationary distribution proportionnai to the Boltzman factor [8]:
P r(n)~exp(-ZB /T) .

The Metropolis algorithm allows us to sample the set E allocating to each
admissible solution n a visiting probability PT(n) < PT(n*)> From the expression

R.A.I.R.O. Recherche opérationnelle/Opérations Research



SIMULATED ANNEALING ALGORITHM 181

of the Boltzman factor, assuming the existence of n globally optimal solutions, we
find:

f l/n if 7i is globally optimal
hm PT(n) = < (3)
r-o (0 otherwise

This implies that decreasing T (i.e. exponentially), the random walk generated
by the Metropolis algorithm will converge to one globally optimal configuration
7t* bringing out a séquence of solutions corresponding to lower and lower
average values of the cost function < /„ > (T).

This séquence, and the time spent at each température T, is called an
"annealing schedule". Fig. 2 shows some typical configurations of the minimum
perfect matching problem resulting from an annealing schedule for given values
of T.

Obviously, if we look for the configuration which maximizes the cost
(maximum perfect matching), we must modify the annealing schedule by
inverting the sign of T in STEP 2a.

Let us consider the average cost function of the minimum matching problem
in the Boltzman formalism:

<k.D>{T)= I Un,D^P(-kDmVQ(T)D (4)

where 0(7%= £ exp (— lntD/T), the normalization constant, is called the
ne£

partition function.

It is clear that for T -> oo, expression (4) becomes the arithmetic average of lnD

over the set of all solutions n e EN. In this limit, an elementary calculation gives:

N-+O0
= <d>/2 (5)

where <d> is the average distance between two points belonging to the
domain A.

On the other hand, when T -» 0, according to (3), we obtain:

< l , D > ( T ^ 0 ) = / n M . (6)

Figure 3 illustrâtes the average behaviour of lnD for an instance of the
matching problem in which 400 points are uniformly distributed inside the unit-
square A, <d> — 0.521 [4], Crosses are numerical results obtained by a
simulated annealing. The solid line represents an approximation of (4)
developped in ref. [4]:

< / > = IN < d exp ( - d/T) >]/[2 < exp ( - d/T) >] (7)

vol. 20, n° 3, août 1986



182 LUTTON

T=0.59 T = 0.256

\

/

/s
E

S
immB
11
Éi
m

ini?«\

a )

T= 0.113

TsO.021

' \

f / V

iwM£M

mm

il
y

Ï

Y

ï
\>4i

I
b )

T=0.05

Ts0.004

* 'x "ï ' 7

Vxs\

e) n

Figure 2. — Typical result from the aplication of an annealing schedule to an instance of the minimum
weighted matching problem with N = 400. An initial configuration was chosen at random. Then the
Metropolis algorithm with T = 1.25 was allowed to run for a predetermined number of steps. This
process was repeated at lower températures using, as the new initial configuration, the final
configuration at the previous température. The configurations appearing are typical configurations
at six different températures:

a) / = 83.67; b) l = 62.25; c) l = 37.48; d) l = 17.80; e) l = 9.16;/) / = 6.85.
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0.0 10.0 15.0 20.0
Température T*VN

25.0

Figure 3. - Average matching cost < lK X T J / ^ / N , N = 400. The solid curve is given by équation (7).
The crosses are the results of a single annealing schedule applied to one instance chosen at random
(using a uniform distribution inside the unit square).

The right-hand side average in (7) covers the set of all possible values of the
distance variable à inside A.

Figure 3 shows the agreement between expressions (7) and (4) for a range of
température T ̂ /N > 1. At these températures, a lot of connections'involve
couples of remote points, giving rise to very long steps. On the contrary, at low
températures, T ̂ /N < 1, the connections are confined to sub-regions of the
domain A, giving rise to very short steps.

vol. 20, n° 3, août 1986
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This last property has been exploited to improve the Metropolis searching
procedure (section 2).

For the zero-temperature limit (6), a strong probabilistic resuit is stated in
ref. [14]: the Euclidean perfect matching problem qualitatively behaves as the
JV-city travelling salesman problem [3], In fact, it can be shown that, with
probability one,

lim ln*DN-lf2 = n f p(x)1/2 dx (8)
*-*°° ' JA

1/4 < n < 0.401,06

where p(x\ x e A, is the probability density function representing the distribution
of points inside the domain A. Here, ja is a universal constant. Equation (8)
becomes:

Hm Z ^ A T ^ ^ I A I 1 ' 2 (9)
N-"co

when p(x) = |A|-1; |A| is the area of the région.
Our estimation by means of the improved Metropolis procedure gives in

average ja ̂  0.321 (section 3) which is, according to ref. [9] (exact algorithm),
less than the value conjectured in ref. [14], \x ~ 0.35 (Table 1).

The value of the corresponding constant for the travelling salesman problem,
P, is unkown as well; we estimate (3 to be 0.75 [4] as it is conjectured in [3].

The extension of the above probabilistic result (8) to other Euclidean problems
is possible (minimum spanning tree problem, Steiner's problem, K-median
problem), provided that the cost function satisfies four conditions stated in
ref. [14].

These conditions assure, for sufficiently large problems, the optimal cost to be
extensive. Roughly speaking, this means that, if the optimal configuration inside
the union of two neighbouring domains Ax and A2 (fig. 4b) is compared with the
optimal configurations obtained by considering both the domains separately
(fig. 4a), then, when the number of points N belonging to the entire domain is
large enough, the "global" cost and the sum of each partial cost computed
independently differ by a factor which vanishes when N -> oo (fig. 4c).

A counter-example to this property is the maximum weigthed perfect
Euclidean matching problem [18] whose cost indeed dépends on the shape of the
domain in which points are distributed. The result of an application of an
annealing schedule to an instance of this problem is shown in figure 5.

Notice that for the maximum weighted matching problem, the crude version
of the algorithm is surprisingly fast.
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Figure 4. - Extensivity of the optimal cost. Uniform distribution.
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(simulated annealing).
b) The union of both the domain gives \i12 = 03405.
c) Empirical probability distribution of dliN):
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Figure 5. — Maximum weighted perfect Euclidean matching problem. Uniform distribution of points,
N = 400. Configuration obtained by simulated annealing: l/N = 0.3735.

2. EXTENSION OF THE PROCEDURE

As has already been mentioned in section 1, the Metropolis procedure
produces a séquence of current solutions neEN. The strategy is simple: by
decreasing the température T (annealing schedule), one gets a set of solutions
corresponding to lower and lower average values of the cost function (fig. 3).

However, computational expérience shows that at low température the
probability of accepting a trial configuration is small as opposed to the high
température situation in which the ratio of accepted configurations is large.

According to STEP 2a of the algorithm, we have, as is shown in figure 1,
that the change of the cost induced by the choice of the trial configuration is:
Al = (L± + L2) - (lx + Z2).

End-points of the edges with length Li and L2 are identical random variables
taking values inside the domain A (STEP la); their mean length, < d >, is as the
same order of magnitude as |A|1/2.

lt and l2 are lengths of edges which characterized a matching at a given
température T. Consequently, averaging A/s we obtain:

< Al > (T) = 2[< d > - 2 < lntD > (TO/AG (10)
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In the limit T -• oo, using (5), < A/> (T) vanishes:

<A/>(T -» oo) = 0. (11)

On the other hand, when T -> 0, using (6) and (8), expression (10) gives:

<A/>(r->0) = 2<<O-o(x/N). (12)

Expression (12) implies that at low température any trial solution, obtained by
transforming a current solution, will give on average a large value of Al/T, so
that, the probability of accepting a new configuration (STEP 2a) will be small
and, globally, the searching procedure will slow down considerably. In figure 6
(uniform distribution of points inside the unit square, < d > ~ 0.521), the right
hand side of (10) is compared with the measure of <A/> (T) obtained by
computer simulation. The agreement is good.

Figure 6. — Average < Al > (T). N = 1000. The domain is not partitioned. The crosses are given by (10)
where < lnD > (T) is the average matching cost experimentally measured at a given température. The
circles are the measured average values of A/(T).

To improve the procedure, especially for large N, we have to keep in mind that
at low température T ^/N < 1 (fig. 2) the connections between pairs of points
are confined to sub-regions whose size is small compared to the entire domain in
which points are distributed. For this reason, from the beginning of the
procedure, we must force the algorithm to work on trial configurations which
already exhibit this structural property.

The problem is to select trial configurations exchanging, according to
STEP la, couples of points belonging to the same neighbourhood.

vol. 20, n° 3, août 1986
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For Euclidean metric combinatorial problems, this is not a very difficult task.
The solution is to divide the domain A into a set {Rt }?= x of n disjoint sub-regions
whose size is of the same order of magniture, ( \A\/N)1/2, as the average step of the
optimal configuration n*eEN.

The initial configuration is executed as follows. The sub-regions are
considered in turn in the order given (for example) by the heavy line in figure 7.
The points in the first sub-region are matched randomly. If there are an odd
number of points in the first sub-region, the remaining point is matched with a
point chosen at random from those in the next sub-region.

Figure 7. — N = 400. Initial configuration with 64 sub-regions.

The points in the next sub-region are matched at random and so on. This
procedure is simply the serpentine algorithm [9],

The initial solution represents a low-temperature configuration and makes it
possible to choose the initial température at 0O = T ^/N < 1.

The improved Metropolis algorithm is formally written as follows:

STEP 0: Divide the domain A into a set of disjoint sub-regions [RJ and match
points together to obtain an initial low-temperature solution.

STEP 1: Select a point il inside a cell Rfe (k is randomly chosen). Let i2 be the
point matched with ix. Select at random a point7 j (ƒ 1 is matched with
7*2) inside Rk or inside one of its nearest neighbour sub-regions. Exécute
the transformation described in figure 1 and evaluate the change in the
cost function Al.
If Al < 0 goto STEP 3.

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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STEP 2: Select a random number pe[0,l].
If p ^ exp ( - A/^/jV/QJ reject the trial solution and go to STEP 4.

STEP 3: Accept the trial solution. Compute the value of the new cost function.
STEP 4: When statistical equilibrium is reached, then decrease the température

0M according to the annealing schedule. Go to STEP 1.

We remark that the effect to the parti tioning is to narrow the search space and
introducé a change of scale in Al This change of scale modifies substantially the
probability of accepting a trial solution in STEP 2. This effect may be seen in
figure 8.

O Number of Sub-RegLons -1

A Nutnber of Sub-RegLons -16

+ Number of Sub-Reglons -64

O Number of Sub-RegLons -256

> O O 0 o o o

0.0 5.0 10.0 15.0 20.0 25.0

Figure 8. - Average < Al > (T). JV = 1000. Comparison of four partitioning schemes
(number of sub-regions).

Another problem is the quantification of the "cooling" in STEP 4. An
interesting result is given in ref. [6] and [7]: it is shown that the annealing
schedule converges to the globally optimal solution if the températures G) goes to
zero no faster than (C/log m) as the number of itération m -> oo. C is a constant
depending on the distribution of (/a D — ZpjjD), a and P are solutions belonging to
the set of ail local minima. Consequently, C is closely related to the
transformation rule (section 1). However, the weak convergence of 0 and the
difficulty to compute C make such a procedure impratical.

Our annealing schedule has been chosen in the following way:

0O = 0.8 (13)

7 = 0.925 n = 1, 2, . . . ,35.

the time spent at each température dépends on the problem size.
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Figure 9. — Minimum weight matching configuration given
by the improved simulated annealing.

a) N = 2,000, Uniform distribution inside the unit square, 1024 sub-regions, / = 0.3326iV1/2.
b) N = 10,000, Uniform distribution, 4096 sub-regions, / = 0.3345N1'2.
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The choice of (13) is merely empirical but it reflects an efficient compromise
between a too abrupt annealing (the searching procedure may be trapped far
from the global minimum) and a too slow one requiring a large computational
time.

The application of the improved algorithm is illustrated in figure 9 where
N = 2,000 and N = 10,000.

20
0

C

+ 256 Sub~Reglons

A 1024 Sub-RegLons

x 4096 Sub-RegLons

2000 4000 . 6000

Number of Points
8000 10000

Figure 10. — Average CPU time required for the extended simulated annealing
to obtain solutions a few percent of the optimal one.

In figure 10, we show the average CPU time (DPS8 Honeywell Buil computer)
necessary to obtain a solution which is not more than 5% above the optimal one,
as a function of the number of points N (problem size). For each problem size, the
annealing schedule is described in (13). Only the number of itérations at each
température step is different. It varies from 4,000 for N = 100 to 50,000 for
N = 10,000 (10,000 for N = 800).

How do we choose these numbers? It is mainly the result of a lot of
experiments. With these numbers of itérations per température step, we insure
the obtention of a solution which is not 5% more costly than the optimal one
(asymptotic limit). In the limit of great problems (N > 100), we observe that the
mean number of transformation attempts per point must be at least 5 when the
number of points per sub-region is about 2. If this number is greater, we have to
increase the number of itérations (about 10 itérations per point for a number of
points per sub-region close to 4).

We advise against taking more than 10 points per sub-region because the
number of itérations then become prohibitive. Empirically we détermine that the
algorithm is most efficient when the number of points per sub-region is close to 4.

vol. 20, n° 3, août 1986
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COMPUTATIONAL RESULTS

In this section, we use the improved procedure to exhibit a numerical
estimation of the constant n appearing in expression (8). We consider three
different kinds of matching problem. Points are randomly drawn: each
coordinate x and y is a random variable distributed according to a:

i) uniform law x, ye[0 ; 1]:

ii) Gaussian law x, yeU:

iii) triangular law x, ye[0 ; 1]:

lim /n*DJ/V~1/2 = u

lim /.
JV-»oo

lim
iV^oo

= uló/9.

Notice that in cases ii) and iii), another partitioning scheme is taken. We use
polar coordinates and we divide the domain as shown in figure 11. The
dimension of rings are chosen in such a way that the average number of points in
each cell is the same. The initial configuration is determined by the serpentine cell
order as described in figure 11.

Figure 11. — Domain partitioning with polar coordinates.
The heavy line gives the cell order which générâtes the initiai configuration.

In figure 12, we see two annealed configurations corresponding to situations
ii) and iii).

For each case i), ii), iii) and for different values of N (100 ̂  N ^ 2,000), we
applied the simulated annealing algorithm to 50 different problems. The
annealing schedule is given by (13).
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Figure 12. — Minimum weight configurations (simulated annealing).
a) N = 1,000, Gaussian distribution inside the plane,

/ = 0.3248(2iV1/2).

b) N = 2,000, Trianglular distribution inside the unit-square,

ƒ = 0.3341(16N1/2/9).
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For thèse three families of problems, figure 13 illustrâtes the empirical
probability distribution of \i. We see that almost always the algorithm gives an
"optimal" solution such that 0.32 < n < 0.35. Notice that these results classify
the simulated annealing procedure, applied to the Euciidean matching problem,
as one of the best heuristics.

Uniform Distribution

Number of Points -400

0.26 0.28 0.30 0.32 0.34 0.3E

Minimal Matchlng Cast

Uniform Distribution

Nurober of Points -2000

0.26 0.28 0.30 0.32 0.34 0.36

Minimal Matching Cost

lausslan Distribution

Number of Points -400

m, mm
0.26 0.28 0.30 0.32 0.34 0.36

Minimal Motchlng Cost

Gousslan Distribution

Number of Points -2000

0.26 0.2a 0.30 0.32 0.34 0.36
Minimal Matching Cost

TrlonguLan Olstrlbutlon

Number of Points -400

0.26 0.28 D.30 0.32 0.34

Minimal Matching Cost

Trlangulor Distribution

Number of Points -1000

0.26 0.28 0.30 0.32 0.34 0.36

Mlnlmol Motchlng Cost

Figure 13. — Empirical probability distribution of \x for différent values of N
and different point distributions (simulated annealing).

R.A.I.R.O. Recherche opérationnelle/Opérations Research



SIMULATED ANNEALING ALGORITHM 195

Moreover, we observe that increasing the number of points AT, corresponds to
sharpening the empirical probability distribution of \x around a mean value u*.
This is a conséquence of the limit exhibited in expression (8). Assuming that, for
large N9 the procedure comes within a few percent (5%) of the optimal solution,
we can estimate that the range of u* is [0.32; 0.33] which is in full agreement with
the prédiction given in [1] (exact algorithm).

In order to obtain a better accuracy in the détermination of u*, we consider
expression (10). For small values of the température T^/ÏV (0.06, 0.04, 0.03), we
numerically compute < A/ > (T) running the procedure without partitioning from
a sub-optimal solution (5 104 steps).

From this result, we deduce < inD > (T) and u (uniform distribution of points),
N = 1000;

2» = l(dy-(Aiy(T)/2-]Nil2 (14)

we average over 40 different instances and we estimate the value of u*.

For each température, we run 10 Metropolis computer simulations and we
détermine the 95% confidence interval. We obtain:

= 0.03 u* = 0.321 ± 0.006

= 0.04 u* = 0.321 ± 0.006

/ = 0.06 u* = 0.322 ± 0.006

so, we deduce u* = 0.321 ± 0.006.

CONCLUSION

On the base of this work, as in [4], we feel the simulated annealing procedure
to be a powerful numerical tooi for solving combinatorial problems which call
for the construction of some kind of shortest possible network of given a set of
points (minimum spanning tree problem, Steiner's problem, X-médian problem).

The température must be regarded as an external parameter which controls
fluctuations of the random walk generated inside the set of all admissible
solutions: it prevents the local search algorithm from being trapped by local
minima. Decreasing the température corresponds to freezing the random
searching process in a neighbourhood of the optimal solution.

Despite the optimism of some authors [19], we have noticed that choosing
trial configurations inside the set of all possible solutions leads to excessive
running time. Consequently, we have combined the "pure" Metropolis
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algorithm with a "neighbouring" trial state selecting procedure, which favours
the choice of "important" configurations in such a way that the change of cost Al
is reasonably smalL

The efficiency of the algorithm is intimately related to the choice of the
annealing schedule. The optimal choice is determined by the compétition
between the following two effects:

— if the température is lowered too abruptly then the searching procedure
may end up in a local minimum quite far from the optimal state (more than 5%
above),

— if, on the other hand, the température is lowered too slowly then the
procedure will indeed converge to the ground state, but will do so extremely
slowly.

However, we have seen how to reduce the importance of the choice of the
annealing schedule by introducing a partitioning of the problem which narrows
the search space. In this way, it has clearly appeared that a large improvement to
the simple version of the Metropolis algorithm has been possible: for large N, the
improved version gives a solution within a few percent of the optimal one in a
linear time.
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