
RAIRO. RECHERCHE OPÉRATIONNELLE

JERZY KAMBUROWSKI
Two-point approximations for activity
times in PERT networks
RAIRO. Recherche opérationnelle, tome 19, no 3 (1985),
p. 301-313
<http://www.numdam.org/item?id=RO_1985__19_3_301_0>

© AFCET, 1985, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Recherche opérationnelle »
implique l’accord avec les conditions générales d’utilisation (http://www.
numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RO_1985__19_3_301_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


R.A.I.R.O. Recherche opérationnelle/Opérations Research
(vol. 19, n° 3, août 1985, p. 301 à 313)

TWO-POINT APPROXIMATIONS
FOR ACTIVITY TIMES

IN PERT NETWORKS (*)

by Jerzy KAMBUROWSKIC1)

Abstract. - This paper deals with a problem of determining the expected completion time in
the PERT network. It is assumed that random activity durations are mutually independent and
their continuons probability distributions are only characterized by two parameters: an expected
value and a pessimistic time. It means that the exact farms of these distributions do not have to be
known. A simple analytical method of deriving the upper bounds for the mean event occurrence
times is presented. The errors of introduced approximations are analysed on some numerical
examples.

Keywords: PERT network; expected value; upper bound.

Résumé. — Cet article traite du problème de détermination du temps moyen d'achèvement dans
le réseau PERT. On suppose que les durées aléatoires d'activité sont mutuellement indépendantes
et que leurs lois de probabilité continues sont seulement caractérisées par deux paramètres : une
valeur moyenne et un temps pessimiste. Cela signifie que les formes exactes de ces lois n'ont pas à
être connues. Une méthode analytique simple pour calculer les bornes supérieures des temps moyens
d'occurence des événements est présentée. Les erreurs dues aux approximations introduites sont
analysées sur quelques exemples numériques.

Mots clés : Réseau PERT; valeur moyenne; bornes supérieures.

1. INTRODUCTION

Recently J.-P. Melin [6] has shown the analytical method of deriving the
mean of the greatest of several independent random variables with a special
case of beta distribution. The method has been suggested for using in the
PERT problem. In this paper we maintain the above suggestion presenting a
reccurence procedure of évaluation the expected completion time of PERT
network. It will be shown that the obtained results are the upper bounds for
the exact values. The proposed method is numerically simple and the calcula-
tions can be performed manually even for more involved networks.

(*) Received May 1984.
(*) Institute of Production Engineering and Management, Technical University of Wroclaw,
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302 J. KAMBUROWSKI

2. ON A CERTAIN STOCHASTIC PRECEDENCE RELATION

We begin by introducing the necessary définitions and theorems which will
be used extensively throughout the sequel.

DÉFINITION 1 [1, 2]: Let X and Y be nonnegative random variables with
the cumulative distribution functions (c. d. f.'s) F and G respectively. Zis said
to be stochastically smaller in mean than Y, written X^Y or F^G, if for all

If F and G have finite means, then substituting x —0 in (2.1), we obtain:

E(X)= pO-FC))** f°°(l-G(0)A = £(Y). (2.2)
Jo Jo

THEOREM 1 (1, p. 121 and 125]: Let X=(Xt) and Y=(Yt) be nonnegative
random n-vectors having independent coordinates. If X^Yt for i=l, 2, . . ., n
then:

(a) max(Xl5 X29 . . ., X,)<max(Yl9 725 . . ., Yn);
(b) (x 1 + x 2 + . . . +xn)<(y1 + y 2 +. . . +yn).

DÉFINITION 2 [1, 3, 7]: Two functions ƒ and g cross at a point w if for all
open sets W containing w there exist wly w2eW such that:

(/(>v1)-^(w1))./(w2)<0. (2.3)

THEOREM 2: Let X and Y be nonnegative random variables (r. v's) with
different c. d.f's F and G having the same finite mean.

(a) Criterion of Karlin-Novikoff [3]: ïf F crosses G exactly once and from
below then X< Y.

(b) Criterion of Taylor for continuous r. v.'s [7]: If the densities F and G'
cross exactly twice and F' is heavier than G' in both tails (it means that at first
F' crosses G' from below and next from above) then

Remark: Note that under the assumptions of theorem 2 F and G must
cross at least once (see e. g. [1, p. 120]) and F and G' must cross at least
twice (e. g. [7]).

R.AJ.R.O. Recherche opérationnelle/Opérations Research



FOR ACTIVITY TIMES IN PERT NETWORK 3 0 3

3. MODEL OF ACTIVITY TIME DISTRIBUTION

In the conventional PERT method it was assumed that all activity durations
are beta-distributed. Although such a choice seems to be rather arbitrary it
does have certain features that an actual activity time could be expected to
possess. Namely, it was generally postulated that this distribution should be
nonnegative, continuous, unimodal and have finite range. Taking it into
account suppose that an activity duration X is described by a certain c. d. f. F
with a density f~F\ which is unimodal on a range [a, b], 0^a<b<co and
E(X) = m. Furthermore it is assumed throughout the paper that only two
parameters are given:

m, the expected value, and

b, the pessimistic time.

In other words the exact form of the activity time distribution do not have
to be known.

Consider another r. v. Y with a c. d. f. G and a density g, where:

0 for

(t/by for te[0, b] and ot>O, (3.1)

1 for t^b,

and
Vba for te(0, b\

0 elsewhere.

Assuming, in addition, that E{Y) — m, the parameter a is expressed as
follows [6]:

a = m/(b-m) (3.3)

and conversely:

(3.4)

For convenience we dénote this two-parametric type of c. d. f. by G (oc, m, b\
remembering that a can be determined by (3. 3).

The above defined densities ƒ and g must cross at least twice. It is worth
noticing that for the "moderately regular" function ƒ these densities cross
exactly twice and according to the value of m, five possible cases are illustrated
in figure 1 (compare with figure 1 in [6]). For these examples the density ƒ is
heavier in both tails than g and in view of Taylor's criterion a relation
F<G(a, m, b) is satisfied.
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T
a

m=b/2

d 'b
b/2<m<2b/3 f/<oC<2)

a

m>2b/3
Figure 1. — The crossings of densities ƒ and g.

Dénote now by ^ (m, b) a class of all nonnegative distributions with the
mean m, the finite right abscissa b and which are dominated by G(a, m, b)
in the sense of the defined precedence relation, i. e.:

iff (3.5)

It seems that !F (m, b) comprises a very wide class of distributions which
could be applied for the activity durations modelling. For example it is easy
to show that the foUowing distributions, which have been commonly used in
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FOR ACTIVITY TIMES IN PERT NETWORKS 305

the PERT problem, belong to $F (m, b): triangular, truncated normal, uniform
and beta with a density:

/ rb
't—aY~1(b — t)q~1dt9 (3.6)

for te[a, b] and a^O, p>0, q^\. Note that for q=l and a = 0 the beta
distribution is equivalent to G (p, m, b).

We will assume in the sequel that the activity time distributions concerning
the PERT network belong to the class ^ (m , b). The author has not encounte-
red in the literature any distribution F having unimodal, continuous density
on a range [a, b], 0 ̂  a < b < oo for which Fe^(m, b) does not hold. However,
let us remain the arising problem of a strict définition of the SF (m, b) contents
as a open problem.

4. SOME PROPERTIES OF G (a, m, b) DISTRIBUTION

Let Xt be independent r. v.'s with c. d. f.'s Fi9 written Xt~Fi9 such that
FiE^im^ bt) for î = l , 2, . . ., n. In turn, assume that Y f~G(ap mh bt) and
Yt are also independent for i= l , 2, . . ., n. Thus, by virtue of theorem la
we have:

(4.1)

which yields:

£(max(Xl))^£:(max(yi.)). (4.2)

The formula for deriving £(max(7f)) was given in, [6] and is rewritten as
follows:

i=1( n *?)fi+£«i)fi+ i «
-3)

where yf are renumerated to satisfy bl^b2è • • • ^bn.

In this way we have obtained the analytical method of determining the
upper bound for JE(max(XI))? where Fte&'(mh bt). On the other hand the
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f always hold, where:

l

f o r

for
(4.4)

Hence, a lower bound for £(max(JYi))) which was applied in the PERT-
calculated mean, can be given by:

max (nii) ̂  E (max (XJ). (4.5)

Table I shows some of the obtained results for the above mentioned
bounds. We have assumed that all Xt have the same distributions (on standar-
dized interval [0, 1]). It is intuitively obvious that in this case the percentage
errors of approximations should be the largest. The computations have been
performed on the triangular and bèta distributions for three arbitrary chosen
values of mean (m=l/3, m = 1/2, m = 2/3). Since the bèta distribution is
associated with two parameters/? and q [see (3.6)] we have considered the

TABLE I

The results of approximations

m = 1/3

m = 1/2

m = 2/3

Number of variables

Upper bound

Triangular...
Error for upper bound
Error for PERT bound

Beta D — 2 a —4
Error for upper bound
Error for PERT bound

Upper bound

Triangular
Error for upper bound
Error for PERT bound

Beta p — a — 3
Error for upper bound
Error for PERT bound

Upper bound

Triangular
Error for PERT bound

Beta p — 4 q ~ 1
Error for upper bound
Error for PERT bound

2

.5000

.4667
7.14

28.58

.4368
1447
22.70

.6667

.6167
8.11

18.92

.6105
9.21

18.10

.8000

16.66

.7688
3.90

13.28

3

.6000

.5429
10.52
38.61

.4918
22.00
32.23

.7500

.6750
11.11
25.93

.6591
13.79
24.14

.8571

22.21

.8149
5.18

18.19

4

.6667

.5936
12.31
43.85

.5283
26.20
36.91

.8000

.7121
12.34
29.79

.6969
14.79
28.25

.8889

25.00

.8396
5.87

20.60

5

.7143

.6306
13.27
47.15

.5538
28.98
39.82

.8333

.7386
12.82
32.30

.7230
15.26
30.84

.9091

26.87

.8592
5.81

22.40

6

.7500

.6559
14.35
49.18

.5769
30.01
42.23

.8571

.7588
12.95
34.11

.7382
16.11
32.27

.9231

27.78

.8730
5.74

23.63

7

.7778

.6788
14.58
50.90

.5952
30.68
44.00

.8750

.7749
12.92
35.48

.7530
16.20
33.60

.9333

28.57

.8833
5.66

24.52

8

.8000

.6977
14.66
52.23

.6118
30.76
45.52

.8888

.7882
12.76
36.56

.7664
15.97
34.76

.9412

29.16

.8929
5.41

25.33
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case for which p + q = 6. It means that the density fonction is then closed to
its expected value and the PERT bound should be more preferred. The results
for beta distribution have been estimated by simulation solution, using 10000
independent trials. Other results have been derived in a analytical way.
Table I shows only the results for n = 2, 3, . . ., 8 because the percentage
errors of the proposed upper bound begin to decrease for greater n in all
considered examples.

Although the mean of the maximum of G(ot, m, b) — distributed indepen-
dent r. v.'s could be derived analytically, many practical difficulties are encoun-
tered when we want to carry on the calculations on the PERT network.
These difficulties arise from the f act that G(a, m, b) distribution is not
preserved under sum and maximum of r. v.'s To overcome the above obstacles
we will propose to use the other approximations resulting from the two
following theorems:

THEOREM 3: Let Yt be independent r. v.'s, 7 i^G(a i , miy b() for
i=l, 2, . . ., n and Y~G(a, m, b), where bl=^b2=^. . . ^bn = b and m is given
by (4. 3). Then max{Yt)^Y, which is equivalent to:

THEOREM 4: Let Yu Y2 be independent r.v.'s such that Yt~G (ai5 mt, bt)
for i—\\29 and Y~ G (a, m, b), where m = m1+m2 and b = bx+b2- Then
Yx + Y2 ̂  Y, which can be rewritten as:

G(OL19 ml9 bi)*G(a2, m2, b2)<G((x, m, b),

where "*" indicates convolution.

In other words the distributions of max(Y1? Y2, . . ., Yn) and Y1 + Y2 can
be approximated by the adequate G (a, m, b) distributions, preserving the
same means. The proofs of these theorems are given in appendix.

5. THE USE OF G (a, m, b) DISTRIBUTION IN PERT NETWORK

Consider a directed, acyclic network <N, A}, where N= { 1, 2,. . ., m} is
the set of nodes (events), 1 —the single start node, m —the single terminal
node and AczNxN dénotes the set of arcs (activities). With each activity
(z, j) we connect a nonnegative r. v. Xtj, describing its duration, which is
characterized by a certain c. d. f. Fo with given parameters mlV and btj. Next
we assume that ail X(j are independent and F^etF (mip b^) for (i9j)eA.

vol. 19, n° 3, août 1985
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If the numération of nodes satisfies the condition:

(ij) e A => i<j, (5.1)

then the earliest occurence times Tj are expressed by the following reccurence
formulas:

2. T^max(T J + Jfy) = max(Zy), 7 = 2, 3, . . ., m,\ (5.2)
i e Nj ie Nj J

where Nj = { Ï; (Ï, 7) e >1} and Z^. = T{ + Zo- is the earliest completion time of
activity (i, 7).

In the PERT-calculated mean, Ftj are replaced by the degenerated distribu-
tions 0mi7 [see formula (4.4)] and thus the method of estimating the mean
project completion time is equivalent to CPM, i. e.:

(5.3)

Moreover, it is commontly known that r}^E (Tj) for7= 1, 2, . . ., m.

In turn, a similar procedure can be shown to find the overestimates of
E(Tj). In this case we propose to replace Ftj by G(a0, mip btJ) for all (U j)eA.
By virtue of Theorems 1, 3 and 4 we suggest to apply the following algorithm:

1. Si=0, &1=0. (5.4)

2. rJ = max(r|. + my), 7 = 2, 3, . . ., m.
i e Nj

2. For the succesive eventsy = 2, 3, .

mij = si+mij

S0. = my/(5"0.-my;

Sj = *(««. l

b =ma

. ., m:

for

for

) f«

70.; iei

.x(Fr),

v7),

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

where the function /i is given by (4. 3).

The parameters introduced above have their interprétations in the adequate
distributions as follows:

G (a,, Sj, bj) — the approximation of a c. d. f. Fj of the earliest occurrence
time T7,7 = 2, 3, . . . , n.

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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G(âij, mip Bij) — the approximation of a distribution of the earliest
completion time Zip for (i, j ) e A.

The following theorem vérifies the method.
Let us present the formai proof that the propoSed method follows to

deriving the upper bounds for the mean earliest occurrens times of the
network events.

THEOREM 5: Under the assumptions of the method FJ<G(OLP sp bj\ which
yields E(Tj)£spforj=lt 2, . . ., n.

Proof (by induction):
àf

Taking j = 1 it is obvious that F1 = 0 O = G(0, 0, 0).
Assume now that for any fixedj, jV l , F^G^, s4, bt) for ail i^ j —1. We

have to prove that ir
J^CG(ai, s,-, bj).

At first for ail ieN} we replace F(j by G(aip mip btj) having:

Fij<G(aip mip b^, ieNr (5.10)

From theorems 1 b and 4 we infer that:

^•Fy^GCo,, s* bd + GioLtp mip b{j)<G(aip mip bh). (5.11)

It should be pointed out that in gênerai the équation:

is not correct because Ztj for ieNj can be dependent (see Z2 4 and Z3 4 in
figure 2). However as it was shown (e. g. [4]) the inequality:

*i•*•««) (5.13)

holds and in a conséquence we obtain:

W (5 14)
ieNj

Finally taking into account (5.11), (5.14), theorems 1 a and 3 we have:

FJ< FI (Ft*Fu)< El G(*ij> ™ij> £u)<G(ap sp bj). (5.15)
iN

Thus, we have shown that Sj appears to be the upper bound of E(T}) for
7=1, 2,..., m.
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6. NUMERICAL EXAMPLE

Let us consider the simple crossed network in figure 2 and analyse in detail
the proposed method. Assume that the duration Xtj of each activity (i, ƒ) has
the c. d. f. FijEjF (mip b^), where the values for parameters mip bi} are indica-
ted above the network arcs in a form (mip bij). For this network the PERT
lower bound for E(T4) is equal to 3 and the expected lengths of three possible
paths are the same. In such case we can expect that the errors concerning
the PERT bound and our upper bound as well, should be serious.

Figure 2. — Network for numerical example.

The use of the proposed algorithm gives:

7 = 1 :

s 1 = 0 , 2^

7 = 2:

7 = 3:

= 2, m23 = 2,

^23=4, â23 = l, s3=h (2, 3, 1, 4) =41/16,

7 = 4:

2 4 = 3, b24 = 5, â2 4 = 3/2, m34 = 57/16,

9, s4 = h (3/2, 5,57/39,6) = 4.1517.

It is easily seen that we could estimate the upper bound for the expected
completion time by the use of Monte Carlo procedure performed immediately
on G(ocij9 mip fc0) distributions. A total of 10000 independent simulated trials
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has produced a value 3.6854. The increase from 3.6854 to 4.1517 is very
significant hère. It results from the additional approximations connected
with theorem 3 and 4 and particularly with formula (5.13). However these
approximations have to be introduced to make the method simple in analytical
and manual calculations. The percentage errors for some arbitrary chosen
activity distributions are shown in table II. Ail results have been estimated
by simulation with 10000 trials. We see that except the last case the percentage
errors for the analytical upper bound are less than for the PERT bound.
Considering the bound 3.6854 obtained through the use of simulation, the
analogous errors would be much smaller.

TABLE II

Results of computations

Type of activity
time distribution

G(oc, m, b)
Uniform on (2 m — b, b)
Beta on (0, b) with/> + g = 3
Triangular on (0, b)
Beta on (0, b) with^ + ^ = 6

Mean
duration

3.6854
3.6467
3.6291
3.5839
3.4901

Percentage errors

PERT
bound

18.60
17.73
17,33
16.29
14.04

Upper
bound

12.65
13.85
14.40
15.84
18.96

At the end it should be stressed that the above example was purposefully
chosen to emphasize that the proposed upper bound can be characterized by
the considérable bias. However for other examples analysed by us, the errors
have not been so significant. For example we have used our method to
evaluate the expected completion time of networks considered in [4, 5]. For
the first network we have obtained 12.35 while the simulation resuit given
by Kleindorfer is equal to 11.21. In turn for Martin's example the proposed
bound is 21.193 and simulation solution equals 20.524.

APPENDIX

A. THE PROOF OF THEOREM 3

LEMMA 1: Suppose that Yx and Y2 are independent and Y^G (ah mh b),
i — 1, 2. Then a c. d.f. of max (Yv Y2) is given by G (ax +ot2, m, b), where:

(A.l)
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Proof: obvious.

In view of lemma 1 we can further assume that in theorem 3:

0 = bo<bx<b2. . . <bn = b. (A.2)

LEMMA 2: oc>ocM.

Proof: Since m>max(m 1 , m2, . . ., mn) so in particular m>mni which
yields:

a = m/(b-m)>mj(b-m„) = mj(bn-mn) = a„. (A. 3)

Dénote now the a d.f.'s of max {Yu Y2, . . ., Yn) and Y by F and G
respectively, i. e.:

n

F= f ] G(ah mh b() and G = G(oc, m, b). (AA)
i = i

Therefore

for tE^fo], (A.5)

and

(0 V n ^ for

where:
n

P * = Z a j f o r ï - l , 2 , . . . , n .

Note that the séquence { p;} is decreasing, which means:

Py>pfc for l ^ j < k ^ n . (A.7)

It is easily seen [(A. 5) and (A. 6)] that F and G can cross on each interval
(è,*_i, fej at most once and these continuous functions can not cover themsel-
ves on any interval contained in their support (0, b). On the other hand F
and G have the same mean and therefore they must cross at least once on
(0, b) The use of lemma 2 implies:

F(t)>G(t) for te(bn_ubnl (.4.8)

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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which means that for the last crossing point, say y, F must cross G from
below. Hence assuming that ye(bk^u bk] we obtain:

Pk>a and l^fc<n. (,4.9)

In view of Karlin-Novikoffs criterion it suffices to show now that y is the
single crossing point on (0, b).

Suppose that there exists another point x e (&,-_!, bjl such that F(x) = G(x),
0<x<y and t^j<k. Since F crosses G at y from below, we can assume
that F crosses G at x from above. It follows that:

pj<a and l^j<k<n. (A. 10)

In a conséquence (A, 9) and (A. 10) are contrary to (A. 7).

B. THE PROOF OF THEOREM 4

Dénote the c.d.f.'s of Yt + Y2 and Y by F and G respectively, Le.
F=G(a1? m1} 6i)*G(oc2, m29 b2) and G = G(a, m, b). The density F' is conti-
nuous at point b and F'(fe) = 0. It follows that F(t)>G(t) for all t sufficiently
closed to b (t<b). Thus, for the greatest crossing point, F must cross G from
below. Moreover, it can be shown that if F(x) = G(x) for xe(0, b) then
F(x)>G /(x). It implies that if F crosses G at any point xe(0, b) then F
must cross G from below. Therefore we infer that there exists only one
crossing point of F and G and Karlin-Novikoffs criterion is applicable.
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