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OPTIMAL SEQUENCING
OF CAPACITY EXPANSION PROJECTS

UNDER UNCERTAINTY (*) (**)

by Itzhak VENEZIA (*)

Abstract. — In this paper we present an optimal policy for sequencing a finite set of capacity
expansion projects when the demand is uncertain and growing with time. By a sequencing policy we
mean a rule for determining the order and timing in which the projects should be introduced.

We analyze the effects of greater uncertainty on the optimal policy and on the results obtained
using the optimal policy. These effects depend on the shapeofthe cost functions. It is shown that with
increased uncertainty, if the cost functions are linear one must wait for higher demands before the
maximal capacity is reached. It is also shown that increased dispersion of the demand tends to
decrease the minimal expected discounted costs. The same conclusions hold true when costs are linear
up to some large output and in the case where costs are concave. Contrary to what might be expected,
the above results are not necessarily reversed when costs are convex. Intuitive explanations are
provided for all these results.

Keywords: Capacity Expansion; sequencing; uncertainty.

Résumé. — Dans cette étude, nous présentons une politique optimale pour déterminer la séquence
d'un ensemble fini de projets d'expansion de capacité quand la demande est incertaine et croissante
en fonction du temps. Il s'agit d'établir une règle déterminant dans quel ordre et à quel moment les
projets devraient être introduits.

Nous analysons les effets d'une incertitude accrue sur la politique optimale et ses résultats. Ces
effets dépendent de la forme des fonctions coût. On montre que dans le cas d'une incertitude
croissante et de fonctions coût linéaires, on doit attendre que les demandes soient plus fortes avant
d'atteindre la capacité maximale. On montre également qu'une dispersion accrue de la demande tend
à diminuer la valeur de l'espérance du coût total amorti.

Les conclusions restent identiques quand les fonctions coût sont concaves, et dans le cas ou elles
sont linéaires jusqu'à une certaine limite supérieure. Contrairement à ce que l'on pourrait penser, les
résultats ci-dessus ne sont pas nécessairement inversés quand les fonctions coût sont convexes.

Des explications intuitives accompagnent tous ces résultats.

1. INTRODUCTION

In this paper we investigate the optimal strategy for sequencing capacity
expansion projects facing uncertain growing demand. We consider both the
optimal détermination of the order in which projects must be introduced and
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288 I. VENEZIA

the optimal timing of sufch introductions. The optimality criterion used here
is minimization of the expected discounted costs involved in satisfying the
demand.

Probiems of this type under certainty have been extensively discussed in the
literature (see, e.g., Butcher et al [1969], Erlenkotter [1973], Erlenkotter and
Trippi [1976], Manne [1972]). Less attention has been paid to the case where
uncertainty prevails (see, e.g., Manne [1961], Tapiero [1973], [1979], Giglio
[1970]). These publications have usually treated capacity as continuous and
assumed that capacity incréments of any size are possible. Most of them
considered regenerative or récurrent expansion projects and assumed that the
demand is described by a Wiener process (thus allowing for a négative
demand). Another feature common to papers concerning capacity expansion
is the treatment of capacity as a completely rigid notion.

Here we present a different framework, which may fit a large class of
capacity expansion projects. Our system services some uncertain growing
demand and is composed of several projects, introduced sequentially into the
system. Our analysis is applicable to the following kinds of Systems:

(a) A water system servicing some région, each project representing a dam;
(b) A transportation facility such as a highway or an airport, each project

representing additional lanes or runways;
(c) A power system generating electricity, each project representing a power

plant.
The demand for the services of the system (henceforth, the demand) is a

random variable, always depending on economie conditions and on time. At
any period, the economie conditions may be in one of a fmite number of states
(dépression, economie boom, and so on), which evolve over time following a
Markov chain process. Conditional on the state of the economy, the demand
is a random variable depending on a multitude of unpredicted factors such as
relative priées, changes in tastes, world events, weather conditions, etc. The
demand is growing, in the sense that, for any state of the economy, the
séquence of distribution functions of the demand shifts to the right.

We assume that the system can always satisfy the demand. However, the
costs involved in so doing depend on the available capacity relative to the
demand. We assume that, the larger the capacity, the higher the fixed costs and
the lower the marginal costs of supplying the demand. The costs include both
pecuniary and nonpecuniary costs incurred by the users of the system, the
latter category including poor quality of water, road congestion, low reliability
of the power system, etc. Thus, our model is applicable to public projects as
well as to profit motivated projects. Since there is no agreement in the
literature concerning the appropriate shape (linear, concave, or convex) of a
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CAPACITY EXPANSION UNDER UNCERTAINTY 289

représentative cost function (see Walters [1963], pp. 48-52) our model has the
advantage that it can accommodate any shape of cost function.

In Section II we assume that the order in which projects must be introduced
into the system is predetermined by engineering or location constraints. Under
this assumption, we concentrate on finding the optimal timing for the
introduction of new projects. It is shown that the optimal sequencing policy
is charactenzed by certain séquences of critical numbers and critical intervals
(nonoverlapping and exhaust the real line to the right of the critical values)
which are functions both of time and of the economie state and capacity at
that time. In each period one must compare the current demand with the
appropriate critical value. Then, if the demand exceeds the critical value,
capacity must be increased. Otherwise, the décision should be postponed to
the next period. Given that demand exceeds the appropriate critical value, one
can détermine according to the critical interval that covers the demand, which
project or projects should be added to the system.

In Section III we analyze the effects of increased uncertainty (dispersion,
risk) on the optimal policy and on the results obtained using the optimal
policy. In the literature only Manne [1961] investigated this problem. In his
model, treating the case where backlogs of demand are allowed (the case most
similar to ours, and most relevant for practical purposes), Manne (ibid.,
p. 648) has shown that when the costs of backlogged demand are linear,
increased variance has an undetermined effect on the minimum expected
discounted costs. No intuitive explanation has been provided for this result.
Here we shall analyze the effect of increased uncertainty using a broader (than
variance) définition of increased risk, and investigate this effect under various
assumptions about the shape of the cost functions. It is shown that with
increased uncertainty, if the cost functions are linear, one must wait for higher
demands before the maximal capacity is reached. Surprisingly, the expected
time that elapses until maximal capacity is reached may not increase with
greater uncertainty. The reason for this result is that greater uncertainty
implies a higher probability of obtaining high values for the demand and thus
of exceeding the critical values. This may offset the effect of the higher critical
numbers.

Another surprising result is that the expected discounted costs decrease with
increasing uncertainty. An intuitive reason for this result is that greater
uncertainty implies a higher probability of obtaining extreme values. An
increase in the probability of high values tends to increase the expected costs,
while an increase in the probability of low values tends to decrease these costs.
At first glance, it seems that these two effects should cancel out. The first effect,
however, is somewhat weaker than the second, because when a high demand
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290 I. VENEZIA

is observed its influence on the costs may be partially offset by expanding
capacity. This net effect on expected costs will be called in the sequel the
"sequential décision factor".

The same conclusions are reached also when costs are concave, or linear up
to some large output. Contrary to what might be expected, the above results
are not necessarily reversed when costs are convex.

In Section IV we drop the assumption that the order of introducing new
projects is predetermined, and present an optimal strategy for simultaneously
determining the order in which projects must be introduced and timing such
introductions.

2. THE MODEL

Suppose a system services the demand for some product (henceforth, the
demand). In order to satisfy this demand, the capacity of the system may be
increased by introducing projects 1,2, . . ., K The problem considered here is
to détermine the optimal timing fcr introducing the projects iiito the System.
It is assumed in this section that the order in which the projects are introduced
is predetermined, given by 1,2, . . ., K. Several projects however can be added
at the same time. The optimality criterion is minimization of the expected
discounted costs involved in servicing the demand, where the discount factor
is some known |3<1.

In any period the demand dépends on the economie state at that time. There
are I possible states of the economy, sus2, . . -, S/. These states evolve over
time, following a stationary Markov chain process, That is, the probability TT̂
that the economy is in state Sj at time t+ 1, given that it was in state s* at
time t, is the same for all t. Conditional on the state s* of the economy, the
demand JCt is a random variable with cumulative distribution function
(CDF) Fit (x) and expectation u .̂ The growth trend in the demand is
represented by the assumption:

F»(x)^Fitt + l(x) for all t. (2.1)

It is further assumed that for i = 1,2, . . ., /, the séquences {Fit (x) } converage
toF,(x) O .

We dénote by ck (x) the costs of satisfying the demand given that the system
includes projects 1,2, . . ., k (in this case we say, elliptically, that capacity

(*) It has been shown in some empirical studies, for situations fitting our model, that the
demand indeed converges. See, e. g.3 Rausser [1976], p. 326.
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is k). The costs of installing projects k + 1, . . ., m, given that existing capacity
is k, are denoted by Mkm and we define Mkk = 0. The effect of increasing
capacity on costs is represented by assuming that for any demand, x, the
higher the fixed costs and the Iower the marginal costs of satisfying this
demand. That is:

ck(0)<ck + i(0), k = h
dck (x)jdx>dck+l (x)fdx, x ^ 0.

(2.2)

We also have to assume that E [cK (x)] is finite [where the expectation is taken
with respect to i\ (x)], since otherwise no meaningfui évaluations of expected
costs can be made. It is also assumed that for all k<m^K, there exists an
x** such that ck (x) > cm (x) whenever x ̂  x*fc and Fm (x*k) < 1 for some l This
assumption simply states that for some relevant demands, the costs when
capacity is m, are Iower than the costs when capacity is k. Unless this
assumption is made, there may be no justification for considering capacity m
in our analysis. The above two assumptions imply that two cost functions
corresponding to different capacities cross exactly once. A possible description
of these functions is provided in figure 1. The way cost functions of various

Fig. 1

projects can be aggregated dépends on the nature of the projects at hand.
When the projects are plants producing some product, the aggregation can be
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292 I- VENEZIA

achieved by optimally allocating output among plants. In service Systems
when the main advantage of increasing capacity is the réduction of delays to
customers and greater reliability of the System (e. g., transportation Systems,
computer facilities, etc), one must compute the delays and waiting times
under various capacities, and compute the costs accordingly.

The optimal expansion strategy is described in:

PROPOSITION 2 .1; For any state of the economy si9 any period ty and any
capacity k, there exist integers mh j = 1,2, . . ., S, satisfying (2);

k<mi<m2< . . .

and parameters tyit
kmj satisfying:

such that ifxSM? capacity should not be increased, if^fktkèx<y\fit
kmi capacity

skouïd bc increased to ml9 ifyikmi^x£^it
knt2 cupuciiy should be increased to

m2, etc.

Proof : Dénote by Vit (x) the expected discounted costs of operating the
system starting at time u given that the capacity is k, the economie state is s*,
the observed demand is x, and the optimal policy is always pursued. The
expected discounted costs of operating the system, evaluated before the
demand at t has been observed, are hence given by Wk

t = E[Vk
t(x)], where E

is the expectation operator with respect to the CDF Fit (x).

It then follows from Bellman's [1957] principle of optimality that:

fc{«^m(x)} (2.3)

where:

^T Z (2.4)

Since for any m>k, ck(x) intersects cm(x) at most once it follows
that also the ui(

km(x)'s intersect at most once ('see figure 1 for a typical
description of these functions). Denoting by \|/ït*

m; the point where uit
kmj and

uu1""*-1 intersect, and noting the properties (2. 2) of the cost functions, one can
verify that the K?t(x)'s can be written as:

(2) The indices mu - • - » ^s» and S may vary across different (i, t) combinations.
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UK*)=«?(*) if

(2.5)

= u\Fs (x) if \|/?t
ms < x < oo.

Our result follows from the définition ofF*,(x).
Q.E.D.

We next show how the minimal expected discounted costs Wk
it, and the

critical values \|/&m can be computed. If k = K, no further expansions of
capacity are possible, hence Wft dénotes the maximal expected discounted
costs assuming that capacity remains fixed at K, i.e.:

[ 00 I - . 00 I

I P* E nlcK(X{+x) = E P1 I nljE[cK{Xi+,)l (2.6)
where the 7iJ/s dénote the x-period lag transition probabilities (3). Convergence
of the infinité sum in (2. 6) is guaranteed since E[cK(x)] is finite.

When k <K, one observes from the définition of the Wir
fc 's that:

) Fü x j e.

••••ƒ; J x ) (2.7)

where the \|/'s satisfy:

/?,*) + p Wt t+1 - c m i (y\t%) + p W?.h i + Mkmi, (2. 8)

-x+Mk m s_ i=cms w i

In what follows we show how these recursion relations can be used to compute
the Wfr'sforall fc<K

(3) If 7C is the stationary (lx f) transition matrix, then ÏÏI/ is the (i,7')th element of TCT.
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Since the Wlt
ys represent the costs of supplying the demand and since the

demand is growing in time, the Wk
t's are nondecreasing in t. From the

assumption that E [cK (x)] is bounded and since Flt (x) ̂  F, (x) for all t, it
follows that the Wk

t's are bounded. Since these series of expected discounted
costs are monotone and bounded they converge and we dénote by Wk the limit
of Wk

u for all i and k. These limits satisfy recursion formulas similar to (2. 7)
and (2.8) except that one has to replace Wk

t and \J/lf*
m by Wk and \|/I

fcm,
respectively. We shall next show how the Wk*s can be computed, and that
based on the Wk\ the pyu

k's can easily be obtained.
The Wk's are computed recursively. First one computes the Wt

Kis as the
limit, as t approaches infinity, of (2.6). Then, in order to compute the
Wl

K~usi one notes that équations (2. 7) and (2. 8) become, af ter omitting the
subscnpts t, the following system of 21 équations in 21 unknowns

•J> i= l , . . . , ƒ , (2.9)

i= l , . . . , ƒ . (2.10)

This system of équations can be solved numerically (see lemma A. 1 in the
appendix for an existence proof). The W^s can then be similarly computed
successively for k = K—2, . . ., 1 using at each step (2.7), (2.8), and the
Wk + Us obtained in the previous stage.

Having computed the W?'s, one proceeds to compute the WktS. For this we
note that since the Wk

t's converge to Wk, by choosing a large enough T, Wk

can be made as close to Wk as one wishes. Substituting Wk for Wk
T, (2. 7) and

(2.8) can be used to compute the Wlr-tS, which in turn can be used to
compute the Wtf-2's, and similarly all Wk

t's9 <T— 1 can be computed.

We thus have an optimal strategy for timing the introduction of new
projects and a numerical method for Computing the critical values v|/ft

m. Below
we present some properties of the solution.
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3. EFFECT OF INCREASED UNCERTAINTY ON THE OPTIMAL TIMING POLICY

We now evaluate the effect of increased uncertainty on the critical values
\|/** and on the expected discounted costs W\t. We define increased uncertainty
(dispersion, risk) as an increase in the risk of each X\ for all i— 1,2, . . ., ƒ and
t = l , 2 , . . .,00 (4). We employ the Rothschild-Stiglitz [1970] définition of
increasing risk. We briefly review the définition. Let zx and z2 be two random
variables with cumulative distribution functions H1 (z) and H2 (z), respectively.
Then z1 is riskier than z2 if H

1 (z) is obtained from H2(z) by taking weight
from the center of the probability distribution and moving it to the tails, while
keeping the mean of the distribution constant. Rothschild and Stiglitz have
shown that this définition of increased risk is equivalent to two other définitions:
that an increase in risk is the addition of white noise to a random variable (5)
and that for all concave nondecreasing functions g(z), E1[g(z)]<^E2[g(z)],
where £,( . ) dénotes the expectation operator with respect to HJ(z), j = 1,2.
In the sequel we shall mainly make use of the latter définition.

The effect of increased uncertainty on the minimal expected discounted
costs and on the optimal strategy dépends, as will be shown, on the shape of
the cost functions ck(x). Walters [1963] reviewed the literature dealing with the
empirical measurement of cost functions. The main conclusion from his review
is that the shape of cost functions differ considerably from industry to
industry, and that it is hard to find agreement even about the shape of cost
functions within an industry. In public utilities, however, there is relatively
greater agreement. Walters (ibid.9 p. 50) finds about short run cost functions
in these industries that "... over the observed range of output, marginal cost
is constant". In profit motivated industries one tends to conjecture that U
shaped cost functions are the most prevalent ones. Surprisingly, constant
marginal costs have been found in a large number of industries. Some of these
findings however can be attributed to the fact that measured outputs were
below capacity (ibid., p. 51).

Consequently, we have decided to analyze the effect of increased uncertainty
under alternative assumptions concerning the shape of the cost functions. We
have chosen to start with the case where costs are linear at the relevant range
of demands. This is a convenient starting point since it élucidâtes the effect of
increased uncertainty, and the results of other cases can be obtained as simple
corollaries of this case.

(4) According to our définition the transition probabilités ntJ do not change with increased
uncertainty

(5) Increased risk thus implies an increased vanance, but not vice versa,
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296 I VENEZIA

In what follows we let r be a shift parameter dentoing risk, and introducé
this parameter explicitly in the CDF of X\ which will now be denoted by
Fit (x, r). We dénote by W^t (r0), \|#" (r0) the minimal expected discounted costs
and critical values when risk is r0, and by W^(rx), \|^/"(ri) the same variables
when risk is ri>r0.

We show in proposition 3.1 that if the costs are linear, then the minimal
expected discounted costs tend to decrease with increased uncertainty, and the
critical limits leading to maximal capacity (i. e., the \|/?*'s) tend to increase with
increased uncertainty. In the proof of this proposition we use the following
lemma.

LEMMA 3.1: If for some t=T, Wtrfri)^ Wfrfro) for al1 k^^ then

% (r i) g W% (r0) and \|£* (r±) ̂  \|/&* (r0) for ailt<T and for allk<K

Proof : By induction. Assuming that Wt, t+i(ri)^ W*tt+1 (r0) for some
+1 ^ T, it follows from the définition of the Ws and from (2. 3) that:

: V i / ï it \"7 • ls ** \"ï '

J 0

min {cm (x) -h P Wftt + i(rl)-\- Mkm }] dFit (x, i
o

o

= P[mi

f 00 _

^ [min { cm (x) + P »7, + x (r0) + Mfcm }] ̂ Fir (x, r 0

^ [min { cm (x) + p WT,t +1 (r0) + Mfcm }] dFft (x, r0)

= ^ ( ^ o ) . (3.1)

The first inequality stems from the induction assumption. The second inequality
follows from the définition of increased uncertainty since the minimum of
several linear functions is a concave function (see lemma A. 2). Thus it follows
that Wkit (r0)^ W%(r{) for ail t^T.

The linearity assumption and (2.2) imply that:

Ck(x)=pk + qkx, k = lt9...9K, (3.2)

where/>k</?fe+1 and qk>qk + u fc = l, . . . , £ - ! .

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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Since, from (2. 8), the critical values \|/** satisfy:

it follows that:

Wtt + 1)]. (3.3)

Since W£t + 1 is independent of risk and since Wk
tt+1 tends to decrease with

increased risk it follows that \|/^ tends to increase with increased risk, i. e.:

MtK (r0) S MtK (ri) for all t S T.
Q.E.D.

PROPOSITION 3.1: For all t, W%(r0)£ W%(rA) and \|/£*Oo)^^

Proo/ ; In lemma A.3 it is shown that the limits Wk(r0) and W*(ri) of
m ( r 0 ) } and {W£(rO} satisfy:

As explained above, the W&'s are obtained by recursion starting from some
very large period t=T. For W^tf+1(r0) and Wtr + i fri) we use the steady-state
limits Wki(r0) and Wffri), respectively. It then follows from lemma 3.1 that
Wü(ro)^Wu(ri) f° r a l i t^T. Since T may be chosen arbitrarily large, this
inequality holds for all t. The inequality v|/&K(r0)̂ v|/&* (ri) now follows
immediately from (3.3) since W» (r0) = W* (ri). This complètes the proof.

We should note that with greater uncertainty one must wait for higher
demands to come along before maximal capacity is reached. This, however,
does not necessarily imply that the expected time required to reach the
maximal capacity increases with increased uncertainty (see Section V for a
counter example; an intuitive explanation has been given above).

We now turn to examine how the above results change when the linearity
assumption is dropped. For this we note that the crucial part in the proof of
lemma 3.1 (and hence of proposition 3.1) is the part where the concavity of
Vk

t (x) has been used to establish the second inequality in (3.1). Thus, it is the
concavity of V% (x) rather than the linearity of the cost functions, which is the
more relevant source of the above results. The same conclusions therefore
hold whenever the functions Vk

t(x) are concave. Consider for example the case

vol. 16, n° 4, novembre 1982
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where there are only two projects (6)5 suppose that with probability 1 the
maximal capacity can satisfy the demand (7), and dénote by Ax the capacity
of Project 1. Suppose also that the cost functions are linear up to capacity and
then rise sharply. In this case the functions FÎt(x) will be concave if the
functions uft(x) and uft(x) intersect below Au i.e., if capacity is "large
enough". (See f\g, 2.) Such a situation is not uncommon. Walters [1963], p. 51

Fig. 2

mentions several time-series studies of cost functions where it has been shown
that for the firms in the sample, costs were linear and measured outputs were
well below capacity. This implies that over a long period of time, these firms
increased capacity before full capacity has been reached. Such a behavior is
consistent with the situation depicted in figure 2.

It is evident that the same results (as in proposition 3. 1) hold also when the
cost functions are concave. Surprisingly however, these results are not
necessarily reversed when the cost functions are convex. This is due to the fact
that K£(x), the minimum of several (in this case) convex functions, is neither
necessarily convex nor concave. It thus follows that when costs are convex, the

(6) This can easily be extended to the case of more than two projects.

(7) If costs of exceeding capacity are infinité (i. e., if capacity is considered as a completely rigjd
notion), then the assumption that £[cK(x)] is f mite implies the present assumption.

R.AXR.O. Recherche opérationnelle/Opérations Research
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minimal expected discounted costs can either increase or decrease depending
on the parameters of the problem. A heuristic explanation runs as follows:
when costs are convex, increased uncertainty has two effects on the minimal
expected discounted costs. On the one hand the expected value of any convex
function tends to increase with increased uncertainty. However, the "sequential
décision factor" tends to decrease the expected costs since the effect of higher
demands can be somewhat mitigated by increasing capacity.

4. THE CASE WHERE THE ORDER OF INSTALLING PROJECTS IS NOT PREDETER-
MINED

There are no conceptual différences between this case and the former one.
Notation however should be somewhat modified and more computations are
usually required to arrive at the optimal solution. For this case we need the
following définitions and notations:

N9 { 1 , 2 , . . . , X } ;
Â, set of all subsets of N;
A, element of Â;
OL(A), number of éléments in A\

A9 N—A, i. e., set of éléments of N which are not in A;
cp, empty set;
AB, the set {AVB};
M^B, costs of increasing capacity from A to AB.

Suppose the costs of supplying the demand are given by cA (x) if the projects
whose subscripts are in A have already been installed (we call these projects,
elliptically, the projects in A), Then, in accordance with (2. 3), we assume that
A => B implies cA (0) > cB (0), cA (x) < cB (x). Suppose at time t the projects in A
are in opération, and the state of the economy is st. Then the minimal expected
discounted costs of supplying the current and future demand, V?t(x),
conditional on the current demand x, may be obtained as follows. Under the
above conditions one has 2 a U ) possible actions available at time t Namely,

either install no project, or increase capacity to AB, where BGA. In the latter
case one should choose the action which minimizes the expected discounted
costs. It thus turns out that in this case the number of computations in each

stage is 2aU), compared with OL(A) in the former case. In the type of projects
that we consider, engineering and location considération will usually eliminate
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many expansion possibilities. Thus the amount of computations involved will
usually be tolerable even if X is large.

Let:
Î

and Wft=^ *o W%
J = I

Then, if capacity is increased to AB (B — q> means that no project is
installed), the expected discounted costs of supplying the current and future
demand are:

« f W = c,BW + P ^ f + i + M ^ (4. 1)

that is, UuB (x) is the sum of the costs MAB of increasing capacity from A to
AB, the costs of supplying the current demand, and the discounted expected

costs P Wft
B of future opérations. Hence:

utB(x)}. (4.2)
BeA

The same techniques used in section II can also be applied hère to détermine
the W$'s. Also the optimal expansion policy is of a similar structure as in the
case where the order of installing the projects is predetermined. For any i, t
and A there is a critical limit v|/̂  such that if x < \(/̂  capacity is not increased.
If x>\|/^> some critical intervals détermine which projects should be installed.
In the context of a simple example, figure 3 illustrâtes the structure of the
optimal policy. In our example JV = { 1,2,3,4}, A = {1,2} and the possible AB
sets are: A, Au A2y A3, where Ax = { 1, 2, 3 }, A2 = { 1, 2,4 }, A3 = { 1, 2, 3, 4 }. If
0gxg\|/^ capacity is not increased, if ^fn<^^^Ûl capacity should be
increased to Au and so on.

5. AN EXAMPLE

In our example we consider a situation in which there are two projects to
séquence and we assume that there are only two states of the economy. The
notation in this section corresponds to that used in section IIL The parameters
of the problem are given below.

Transition probabilities:

= r .75 .25"|
[.25 .75_|*
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Fig. 3

Means \i\.
Let:

, = 100 (1.07)',

The (ij's are given by:

t=l ,2 , . . .,co;

t= l ,2 , . . .,00.

parameters.
The costs of servicing the demand x when project k is the only one in

opération are given by:
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where:

The costs of servicing the demand x when both projects 1 and 2 are in
opération are given by:

The costs of installing project k are Mk> k = 1,2, where:

Mt = 20 000,

M2 = 70000.

The discount factor p is assumed to be 0.9.

The random variables X\.

For each economie state i= 1,2, and each t= 1,2, . . ., the random variable

Xi may assume one of the seven values \iit~-vovit, M* —ÜO*W\/2,

Vit-VoVit/^fs, \iit, \iit + vovitl^/59 Htt + ü0Vir/\A ^r + ^0%, with respective
probabilities: 1/32, 2/32, 5/32, 16/32, 5/32, 2/32, 1/32. v0 is a risk parameter
which will be assigned several values in the sequel, and the parameter vit is
given by vit = (\iit)

lj2. It may easily be verified that for i = l , 2 and
t—\y 2, . . ., QO, JQ has a Gaussian-like shape, with mean \kit and variance
(6/32) vl \iit.

From this form of the variance it follows that, the larger t?o, the larger is the
dispersion of Z}. Thus the effect on the analysis of changes in risk will be
examined by inspecting the effect on the analysis of changes in vö.

RESULTS

The main results are summarized in tables I and II below. Table I lists the
\|/lt*s for Î;0 = 0 . 75. The optimal policy may be read from this table as follows.
Suppose the state of the economy in period 5 is 1, and project 2 is in
opération. Then, if the demand exceeds 113, project 1 must be introduced.
Otherwise no expansion should take place.

An interesting result revealed in table I is that xHr^^r- In other words, the
critical values corresponding to improved economie conditions (when the
demand is on the average higher) are lower than those corresponding to less
favorable economie conditions. The reason for this is the following. When
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TABLE I (*)

Critical Values tftfor Ko = 4.242

303

t

1
2
3
4
5
6 . . .
7
8
9

Vu

132.6
125.9
122.2
120.3
118.9
118.3
118.0
117.8
117.8

128.9
123.7
121.1
119.4
118.4
118.1
117.9
117.8
117.8

Vu

121.8
117.3
115.4
113.7
113.0
112.6
112.4
112.4
112.4

Vit

119.1
116.2
114.3
113.3
112.7
112.5
112.4
112.4
112.4

(*) Since the Vu converge, Vu = \|rf9 for t^ 10.

economie conditions are favorable, it follows from the Markov process
generating the economie conditions that favorable economie conditions are
expected to prevail in the near future. Hence it is advantageous to increase
capacity in order to meet these high future demands, even if current demand
is low.

In table II we present the expected costs, W\x^ k = 1,2, i= 1,2, for t= 1 and
four values of t;0. We also present the following statistics:

E(T?k): the expected time elapsing from the origin until full capacity is
reached, if the project introduced at the origin is k and the state of the
economy at that time is s;;

E(Tf): the expected time elapsing from the origin until full capacity is
reached, if the first project introduced is determined optimally and the state of
the economy at the origin is s(;

£,-: the probability that project 1 is the first one introduced, given that the
economie state at the origin is st.

It follows from table II that E (Tfk) is not a monotone function of v0. This
confirms our statement in section I that the expected time elapsing until the
maximal capacity is reached does not necessarily increase with greater
uncertainty. In our example it turns out, owing to the bounded range of the
XJ's, that it is always optimal to introducé project 1 first, and to introducé
project 2 a few years later. The reason for this is that the installation costs of
project 2 are high. Thus the benefits derived from postponing the introduction
of project 2 are large relative to (Wh-Wfi)-the benefits derived by
introducing it first.
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TABLE II

Parameters Wîly E (77*), E (7?), ^ for Selected Values ofv0

w\tl
whtl
wU
Wï.i
Ein1)
Em1)
E(Tf2)
E{T%2)
E(T\)
Em)
ti

1.414

15 341
15474
10471
10538
3.14
2.41
2.68
2.06
3.14
2.41

1
1

2.828

15 316
15444
10464
10530
3.18
2.94
2.60
2.08
3.18
2.94

1
1

4.242

15285
15409
10456
10522
3.08
2.63
2.36
2.12
3.08
2.63

1
1

5.656

15250
15372
10446
10513
3.09
2.64
2.56
2.19
3.09
2.64

1
1

REFERENCES

R. BELLMAN, Dynamic Programming, Princeton, Princeton University Press, 1957.
R. BELLMAN, Introduction to Matrix Analysis, New York, McGraw Hill and Co., 2nd

édition, 1970.
W. BUTCHER et al, Dynamic Programming for the Optimal Sequencing of Water Supply

Projects, Water Resources Research, Vol. 5, 1969, pp. 1196-1204.
D. ERLENKOTTER, Sequencing Expansion Projects, Opérations Research, Vol. 21, 1973,

pp. 542-553.
D. ERLENKOTTER and R. TRIPPI, Optimal Investment Scheduling with Price-Sensuive

Demand, Management Science, Vol. 23, 1976, pp. 1-11.
R. GIGLIO, Stochastic Capacity Models, Management Science, Vol. 17, 1970, pp. 174-

184.
A. MANNE, Capacity, Expansion and Probabilistic Growth, Econometrica, Vol. 29, 1961,

pp. 632-649.
A. MANNE (éd.), Investments for Capacity Expansion: Size, Location, and Time Phasing,

Cambridge, Massachusetts, The MIT Press, 1967.
G. RAUSSER and C. WILLIS, Investment Sequencing, Allocation, and Learning in the

Design of Water Resources Systems: An Empirical Application, Water Resources
Research, Vol. 12, 1976, pp. 317-330.

S. Ross, Applied Probability Models with Optimization Applications, San Francisco,
Holden-Day, 197L

M. ROTHSCHILD and J. STIGLTTZ, Increasing Risk I, A Définition, Journal of Economie
Theory, Vol. 2, 1970, pp. 225-243.

C. TAPIERO, Capacity Expansion of a Séquence of Deteriorating Facilities Under
Uncertainty-Optimality and Simulation, Working Paper, Columbia University, 1973.

C. TAPIERO, Capacity Expansion of a Deteriorating Facility Under Uncertainty,
RAIRO/Operations Research, Vol. 13, 1979, pp. 55-60.

A. WALTERS, Production and Cost Functions: An Econometrie Survey, Econometrica,
Vol. 31, 1963, pp. 1-66.

R.A.LR.O. Recherche opérationnelle/Opérations Research



CAPACITY EXPANSION UNDER UNCERTAINTY 305

APPENDIX

LEMMA A . 1: The functions W*, i = l , . . . ,n, exist and are unique for all
k<K

Proof : Here we assume that k — K— 1. A similar proof applies also for all

Consider the transformation h : R*+ -• R*+ (where R*+ = the nonnegative
part of the I dimensional Euclidean space) defined by:

fci 00=£[#(*)], *"=i /, (A.l)

where:

= min{G(x),g(x)},
I

(A.2)

We show that h(.) is a contraction mapping, hence from Ross [1970], it
follows that there exists a unique function v* satisfying:

r f ^ J~I . i i /A «
vf = E\ min< c*(x) + P /_, t y ff, g (x ) > I, i = 1, . . . , / . (A . 3)

L l 7=i JJ

This unique function v* is by définition, W*. Ross has also shown that:

i = l /, (A.4)

where v0 is an arbitrary element of R+.

In order to show that h is a contraction mapping we need to demonstrate
that:

m a x | hi(v1) — ht(v
2) \ S P m a x | vf — vf\,

i i

vol. 16, n° 4, novembre 1982



306 I- VENEZIA

where p < 1 is some parameter. For this we note that:

(x) + p £ nijvj9g(x)l

[** (x)+ptf]iF,(x) + f ™ gWdFi
o J +i

- r\
J 0

J n

- g(x)dF,(x)

^ p | IJ? — o? | ^ P max | »? — üf U Ï = 1 ,

where:

The f ïrst inequality follows f rom the fact that \|/? is chosen so as to minimize
hi(v2). The second inequality is obvious.

Likewise, one can show that:

h (v2) — hi (v1) ̂  P m a x | vf — v}\.
i

Hence max | ht (v
2) - ht (v

1) \ g p max 117? - vf |.
i

Q.E.D.
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LEMMA A. 2: Let g1 (x), . . ., gn (x) be n concave or linear fonctions, then
g (x) = min { g1 (x), . . . , gn (x)} is concave.

Proof : Let xa = a x i +(1— a )x 2 for some O ^ a g l :

g (xa) = min { g! (xa), . . ., gn (xa) }

Q.E.D.

LEMMA A . 3: 77te Kmits W\ satisfy W\ (rx) ^ W\ (r0) /or a

Proof : As shown in lemma A. 1:

where the function ht is defined in A. 1. As shown in lemma A . 2, the function
H (x) is concave. Hence it follows from the définition of increased uncertainty
that for any v e R*+ ht (v \ rt) ^ ht (v \ r0) and thus:

Q.E.D.
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