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DIRECT CALCULATION OF SENSITIVITY
TO THE COEFFICIENTS OF THE BASIC SUBMATRIX

IN PARAMETRIC LINEAR PROGRAMMING (*)

by Claude DECHÂMPS (*) and Paul JADOT (*)

Abstract. — Thîs paper demonsîrates a meîhodfor direct catculation of sensitimties with respect to
coefficients in the constraints ofa linear program. Sensitivity coefficients are derivedfor both marginal
changes andfinite changes in one or a group ofconstraïnt coefficients corresponding to basîc variables.

An examplû of application is given in tkefieîd ofpower jlow anaïysis with changing aâmittance in a
meshed electric power transmission and génération System. Another application for paramétrée anaïysis
in the modeling of the eniîre energy sector is discussed,

Keywords; Ünear programming, sensitivity, constraint coefficients, direct method.

Résumé. — Au terme d'un bref développement mathématique, une formule simple est donnée pour le
calcul direct du changement de la valeur optimale de lafonction'Objectifd'un programme linéaire pour
un changement infinitésimal donné à un ou plusieurs coefficients des contraintes, lorsque ces coefficients
multiplient des variables appartenant à la base optimale du programme linéaire. Cette formule utilise
exclusivement les valeurs optimales des variables primates et duales du problème.

Une seconde formule est donnée pour le calcul direct du changement de la valeur optimale de ta
fonction-objectif lorsque les changements aux coefficients des contraintes ont une valeur non
infinitésimale mais finie.

Mots clés : programmation linéaire, sensibilité, coefficients des contraintes^ méthode directe.

1. INTRODUCTION

The purpose of this paper is to demonstratie a direct way of Computing
sensitivity coefficients in linear programs when a constraint coefficient
corresponding to a basic variable is meurring small changes. These results wïll
generalize the marginal information derived from the duality theory regarding
the sensitivity to changes in the cost coefficients and in the right-hand-side terms
of the constraints of a linear program.

(*) Received December 1979.
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262 C. DECHAMPS, P. JADOT

The dif&culty of computing these sensitivities is due to the intricate
interrelationships between all the variables within linear programs when the
basic submatrix is modified. Indeed, changing one term of that matrix changes
all the terms of its inverse.

Two types of sensitivity coefficients will be determined. The simplest one will
characterize the sensitivity of the objective function to infinitésimal change in the
modified constraint coëfficiënt (gradient). The second type of sensitivity
coefficient will be valid for finite change in the modified constraint coefficient
under the assumption that the current basis remains optimal. The problem of
determining the validity range of that assumption has already received a
satisfactory solution [1].

These results will then be generalized to the case of simultaneous changes of
se ver al coefficients in the basic submatrix.

2. BASIC CHARACTERISTICS OF LP PROBLEMS

The "canonical" formulation of linear minimization problems is as follows:

n

Minimize Z = ]T cjxj> (*•)

subject to equality and inequality constraints:

n

£ üijXj^di, (2)

X;èO, (3)

with i~ 1, 2 . . . m and; = l, 2 . . . n.

The dual of problem (1) is:

m

Maximize W= £ u^^ (4)

subject to:

tt£è0, (6)

with i = l , 2 . . . m and; = l, 2 . . . n.
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PARAMETRIC LINEAR PROGRAMMING 263

Using the following matrix notations:

C, row vector of cy X, column vector of xy Dy column vector of dt; U, row
vector of ut; A, matrix of coefficients atj

the primai problem (1) and the dual problem (4) can be written in a compact
form:

Primai:

M i n Z = C . X , (7)

subject to:

A.X^D, (8)

X^O. (9)

Dual:

MaxW=U.D, (10)

subject to:

(11)

(12)

The following relationships describe well known properties of the LP
solution [1, 2]:

Z = C.XB, (13)

XB = B~l.D, (14)

U = CB.B-\ (15)

where B is the non-singular submatrix of A which corresponds to the basic
variables XB as follows:

A = ( B | H ) , (16)
fw, n wi, m /n , n — m

I w is the set of out-of-base variables.

Using équations (13) to (15) yields directly the following sensitivity
coefficients:

vol. 15, n°3, août 1981



264 C. DECHAMPS, P. JADOT

The foUowing sections will dérive similar formulas for small changes in the
coefficients a0- when the variable Xj belongs to the optimal basis.

3. MATRIX INVERSION LEMMA

3.1» General formulation

It is shown in [3] that, if a matrix B is modified into B by:

B = B + a . p r

m̂  m m, m m, X .1, TO

(20)

and if the inverse B"1 is known, then. the inverse B l can be computed as
follows:

S-l=B-i:-B-1. a .
m,m m.m m, m m, t 1, 1

(21)

The two vector s a and p are any two vectors. The proper sélection of a and |3
allow to perform a wide range of modifications to B. Equation (21 ) is referred to
as the Matrix Inversion Lemma for inversion of modified matrices»

3.2. Modification to one element of $

ïf B is to differ from B by only one element:

(22)

then, équation (20) can be advantageously rewritten as:

tf s*-ej, (23)

where B J is the row vector in which ail entries are zeroes but entry j which is equal
to one :

0 . 0 1 0 0

1 j m

so that S^B] is the nuîl-matrix but in entry ij:
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PARAMETRIC LINEAR PROGRAMMING 265

In this particular case, the matrix inversion lemma (21) takes the simple form:

Let us dénote by fer.1 the term (ij) of B" 1 .

Since €j.B~1 .€ i = 5^ 1
J équation (24) can be written:

B~i=B x —àbu
 l_. \ , » (25)

which is valid for the modification (22).

4. SENSITIVITY ANALYSIS IN LP PROBLEMS

4 . 1 . Modification of one constraint coefficient of a basic variable

Let X be the optimal solution of problem (7) before modification to matrix A,
Z be the corresponding value of the objective function, and U be the vector of
dual variables. Our goal is to détermine the change in the objective function Z for
a given change in the constraints coefficients corresponding to basic variables
i.e. in matrix B.

We assume that the change in one of the terms of B does not change the
composition of the optimal basis. The validity limits of this assumption are
stated in chapter 7 of [1] and will not be discussed here. The non singularity of B
is also a classical assumption that does not need further discussion. Under these
assumptions, and, after deletion of the superscript By the new solution is:

Z = C.X, (26)

= Z+AZ. (27)

But, équation (14) gives:

X = B-KD, (28)

so that;

C.B-1.D. (29)

Using the matrix inversion lemma (25) for B~l in (29) yields:

Z + *Z-C.B->..D-»u
C-lr

i£föu
l-D, (30,
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266 C. DECHAMPS, P. JADOT

so that:

AZ -U.Sj.zï.
Abu

Finally, for a finite change Abtj:

AZ (31)

While, for an infinitésimal change, by taking the limit for Abtj tending to zero:

(32)az_
ôbT = -Ui-Xi-

It is worth noticing that the sensitivity coefficients given by équations (31) and
(32) are valid even if the modification Ab^ apply to an element btj that was equal
to zero in the initiai basic submatrix B.

4 .2. General perturbation of several constraint coefficients

If the perturbation can be described by:

then the sensitivity of Z to a finite change magnitude h is given by:

AZ — U. ex. p

~Kh= = "

and, for an infinitésimal change:

(33)

(34)

(35)

5. APPLICATION

The above sensitivity analysis has been applied with success to various
problems of which two examples are outlined hereafter.

R.A.I.R.O. Recherche opérationnelle/Opérations Research



PARAMETRIC LINEAR PROGRAMMING 267

5.1 . Sensitivity of load curtailment to branch reinforcement in electric power
transmission System

The objective in this application was to fmd a method for evaluating, in an
overloaded network, the efficiency of branch reinforcements in reducing the load
curtailment.

The problem of satisfying real power demand Dk at node k in a limited capacity
transmission network and génération System is formulated as the following
linear program (a linear approximation of the real power flow équations is used):

£ (36)
k

Subject to:

— node balance:

(37)

— génération limits:

QSGSG; (38)

— transit limits;

¥¥ (39)

where R=(Rk)J is the vector of load curtailments necessary to satisfy the
constraints; G=(Gk), is the génération vector; D — (Dk), is the load vector;
® = (0fc), is the vector of voltage angles; S, is the network incidence matrix;
HP = (\|/fcm), is the vector of voltage angle différences across branches:
\jzkm = Qk — 0m; A = (akm), is the matrix of branch admittances (nodal admittance
matrix).

The modification of the admittance of branch km entails a modification of 4 terms
of matrix A described as foliows:

.a.aT, (40)

where Â, is the modified admittance matrix; aT, is the row:

0 1 0 - 1 0 .

k m

vol. 15, n° 3, août 1981



268 C. DECHAMPS, P. JADOT

Applying the formula (35) for infinitésimal change of the admit tance akm yïelds
the foliowing sensitivity coefficient;

8Z (ttm-ttfc).(8fc-8J, (41)
öufcm

where uk is the dual variable associated with constraint (37) at node k. Note that
this particular result (41) was already derived in a different way in [4].

The above sensitivity coefficient was used to rank the reinforcement
candidates for an East-European transmission network, and has proved to be a
very effective investment sélection criterion [5].

5. 2* Sensitivity analysis in LF energy models

Many of the energy models developed during the seventies [6}s formulate the
energy System optimisation probïem as a linear program. Some approaches use
the information contained in the duaî variables of the Hnear program but as f<*r a$
we know, no successful attempt was made to evaluate the sensitivity with respect
to changes in the coefficients of the constraints describing the interactions within
the energy System.

However, some coefficients appearing in the matrix of constraints are of prime
importance:

— efficiency of the conversion processes;
— availability rates;
— equipment lifetime.

Sometimes, especially for new technologies, these coefficients are not well known
or subject to sudden changes in case of a technological breakthrough,

Preliminary investigations have been conducted on the large multiyear,
multinational energy model (EFOM-12C) developed for the European
Community [7]. Even in such a large LP (6,000 variables, 5,000 constraints) with
some degeneracy, the sensitivity analysis using the concepts developed in this
paper has shown promising results. À simplified formulation is shown hereafter
to illustrate these results.

Let Ct, be the present worth of the operating cost of a process at year t; xt, be
the operating îevel of the process at year t; / t , be the present worth of the
investment charge at year î for increasing the capacity of the same process; zt, be
the capacity invested in year t; Dt, be the demand for the output of this process at
year t; t|, be the conversion efficiency of the process; r — 1 /À YR5 be the reciprocal
of the availability rate to indicate the needed capacity reserve for facing forced

R.A.I.R.O, Recherche opérationneiîe/Operatïcms Research



PARAMETRÏC LINEAR PROGRAMMING 269

outages of the equipment; Rti be the time évolution of the existing capacity at
year 0 given the retirement schedule; L, be the lifetime of the equipment; T, be the
horizon of the study.

With the above notations, the cost minimization problem is formulated as
folio ws:

subject to:

T

minimize Z= £ (
r = l

Constraints

t

k=t-L

:,x,+j,.z„

Dua/ Variable

ut

wt

(42)

(43)

(44)

Applying formula (35) to the above problem, yields three interesting results:

— Sensitivity to process efficiency.

If the efficiency r| is marginally increased from year 0 on, the cost will be
changed as follows:

which quantifies the cost réduction in case of efficiency increase.

— Sensitivity to equipment lifetime,

If all equipment installed at year Ö and to be ïiormally retired at year 0 + L is
prolonged by one year, then the cost will be changed as follows:

^ - = - w 0 + £ + 1 . 2 0 (46)

(âssuming that the investment charges are not modified by-this increased
lifetime).

If the lifetime of all new equipment is prolonged, the sensitivity of the objective
fonction is given by:

— Sensitivity to availability.

vol. 15, n°3, août 1981



270 C. DECHAMFS, P. JADOT

ïf the coefficient r reflecting the availability of the process is changed
marginally starting from year 9, the change in the cost is as follows:

?7 T

r'lM,. (48)

Note that an increase of r corresponds to a decrease of the availability rate.
Indeed, since r — l/AVR, one has:

dZ dZ dr - 1 dZ , . m

(49)3AVR dr 3AVR AVR2 dr *

this formula provides for quantification of the cost réduction in case of
avaiiability increase.
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