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"PROBLEM SPECIALIZATION"
IN MECHANICAL DECISION PROCESSES (*)

by William V. GEHRLEIN C)

Abstract. — Management information Systems are developed to aid managers' décision making
capabilities. When a problem becomes highly structured and complex it isfrequently suggested that the
décision maker should resort to using mathematica! models and décision ruies to avoid the pitfalls that
often are built into management information Systems. This paper considers the notion that the pitfalls
which one tries to avoid by resorting to purely mechanical processes like mathematical models and
décision rules can also be present within the mechanical process itself

Résumé. — Les systèmes d'information en administration sont destinés à aider les administrateurs
dans leur capacité à prendre des décisions. Quand un problème se fait très complexe et structuré, il est
souvent suggéré que celui qui prend les décisions devrait arriver à se servir de modèles de mathématiques
et de lois en décision pour éviter les inconvénients qui sont compris dans les systèmes d'information en
administration. Ce rapport prend en considération le point de vue que les inconvénients qu'on essaie
d'éviter en arrivant à des procès purement mécaniques comme les modèles de mathématiques et les lois en
décision, peuvent être présents dans le procès mécanique lui-même.

1. INTRODUCTION

The use of management information Systems (MIS) has developed rapidly in
recent years and in establishing a working MIS it is important to remember the
pitfalls of designing such a System. Shore [15] summarizes the false assumptions
that often are used when designing a working MIS as:

Al. Managers suffer from a lack of information;
A 2. If a manager has all of the necessary information he needs, his décision

making will improve;
A 3. A working MIS should be based on the spécifie kinds of information that

management needs;
A4. A manager does not have to understand how a MIS works in order to

use it.

(*) Receveid April 1979.
l1) Department of Business Administration, University of Delaware, Newark, Delaware, United

States of America.

R.A.I.R.O. Recherche opérationnelle/Opérations Research, 0399-0842/1980/147/$ 5.00

© AFCET-Bordas-Dunod



148 W. V. GEHRLEIN

Theoretical and empirical studies have shown that these assumptions are
frequently violated when décision makers are performing décision processes
without depending entirely on mathematical models and décision rules [1 to 4,
12, 13, 14, 16].

Assumptions A 1 and A 2 are the primary concern of this paper so a closer look
at them is in order. The violation of A1 is the information overload
phenomenon. Ackoff [1] first suggested that managers may become overloaded
with information when attempting to make a décision and this excess
information might actually be detrimental to reaching a good final décision. In a
sense, the décision maker simply becomes confused by an overabundance of
marginal information. Chervany and Dickson [3] conducted an expérimental
investigation which supported the conclusion that the information overload
phenomenon can occur in practice.

A violation of A 2 is more counter intuitive than a violation of A 1 since A 2
limits the information given to the manager as being necessary information to
the décision process. A violation of A 2 indicates that whenever information is
provided to a manager it is necessary to evaluate the ability of the décision maker
to use the data. The violation of A 2 will be referred to as the problem
specialization phenomenon. This phenomenon partly results from the inability
of individuals to be good problem solvers for every type of problem that is given
to them. Another explanation for the violation of A 2 is that as problems become
increasingly more complex it becomes increasingly more difficult for the décision
maker to solve the problem without resorting to algorithms and purely
mechanical methods.

Shore [15] suggests that when the problem being considered is highly
structured and complex then the use of mathematical models and décision rules
should be evaluated to remove these pitfalls. However, the question must now be
asked, "Can A 1, A2, A3 and A4 also be violated for décision processes which
are made only on the basis of mathematical models and décision rules?"

Gehrlein and Fishburn [9] have shown that the information overload
phenomenon can be observed in mathematical models and in décision rules
based on purely mechanical processes. In this study it is seen that the same
mechanical process, namely the sequel construction method of inducing weak
orders from partial orders, also exhibits an extreme violation of A 2.

2. THE BASIC PROBLEM

The mechanical process which violâtes assumptions A1 and A 2 is the sequel
construction method of inducing weak orders from partial orders. To describe
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the type of situation where this procedure would be used consider the following
problem. We have fragmentary information in the form of a partial order P on a
set of éléments X. A partial order is a binary relation that is irreflexive (xPx for
no xeX), asymmetrie {xP y =>not y P x , ¥ x, yeX) and transitive (xPy and
yPz=>xPz, ¥ x, y, zeX). No restrictions are made on the type of binary
relation that P might represent so that x P y might mean that pencil x is longer
than pencil y, beer brand x tastes better than beer brand y, or production plan x
is estimated to cost more than production plan y. So we have a basic
fragmentary information set about how some of the éléments are ranked
according to others under the P relation. Our information is fragmentary
because P is a partial order so there can be pairs in the symmetrie complement of
P such that xly (xïy=>not xPy and not yPx). If xly we then have no
information about the P relation between x and y.

Suppose that we know that there is some actual underlying linear ordering
relation, L 0 t o n l s o that Lo is a partial order that is complete (either xL ö y or
yLox for all x, yeX). The partial order P is taken from Lo so P^L0 and
therefore if x Lö y then it is not true that yPx. Given a pair x, y e X with xlyinP
we would like to détermine whether or not it is more likely that xLoy or y Lox
and we must base our décision only on the information contained in our
fragmentary information set P.

Methods which can be used to induce relations on pairs in the symmetrie
complement of P that are likely to agree with the ordering in Lo have been
developed in [5 to 10]. All of these methods start with a partial order P and induce
a weak order, W, that contains P f P g ^ . A weak order Wis a binary relation
on a set X that is asymmetrie and negatively transitive (not x Wy and not
y Wz => not x Wz, ¥ x, y, z e X). We restrict P g Usinée the orders on pairs in P
are in agreement with their orders in Lo so there would be no reason to change or
delete any of them in attempting to reconstruct Lo.

If Wis a weak order then X can be partitioned into k équivalence classes E t ,
E2, . . . , Ek with Ei W'E2 W' . . . W'Ek with all pairs in the same équivalence
class being in the symmetrie complement of W. We stop inducing relations with
W a weak order when L 0 is a linear order for there may be pairs in P which
cannot be compared and resultingly should not have a relation induced on them.
For example, consider an équivalence relation E defined by

xEy o \xPzoyPz, ¥ zeX] and [zPxozPy,¥ zeX]. (1)

If x £ y in P, (1) tells us that there is no basis of comparison between x and y that
uses only the information contained in P so there should be no attempt to induce
a relation on them. Hence, we are willing to stop inducing relations when we
have reached a weak order.
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150 W. V. GEHRLEIN

So the gênerai notion is to begin with P and induce relations on pairs in the
symmetrie complement of P and construct a weak order W. The ordering of a
pair in W\P is correct if it agrées with the ordering on the pair in Lo.
Otherwise, the ordering on the pair is not correct. One construction method of
inducing relations is better than another if it is expected to have a greater
proportion of pairs induced correctly. To be admissible a construction method
must induce significantly more than half of all pairs in the correct order or else it
is not better than a random construction method. The sequel construction
method has been shown to be a reliable method of inducing relations from P
[5, 6, 7].

3. THE SEQUEL CONSTRUCTION METHOD

To describe the procedure by which the sequel construction method goes
about inducing relations from P the following définitions are needed:

) = {y:yPxandyeX};

L(x) = {y : x P y and y e X},

ƒ (x) = { y : x I y and y e X},

S(x, y) = [I(x)nM(y)]u[L(x)nI(y)].

The first sequel S1 (P) is defined by

(x, 3O6S1 (P) o # S(x, y)>0 and # S(y, x) = 0, (2)

where # A is the cardinality of a set A. So, from (2), a pair (x, y) with x I y has a
relation induced on it if there exists a z such that xPzIy or xlzPy and no
similar relation exists for y over x. S1 (P) is not necessarily a weak order but it
must be a partial order [5]. The second sequel of P, S2(P), is obtained by
substituting S1 (P) for P in (2) and we recursively define the i-th sequel Sl (P) in the
same fashion. Eventually a point is reached where Si + 1 (P) = Sl(P) and no
additional relations can be induced by the sequel construction method since
S*(P) is a weak order. The minimum i such that Si + 1 (P) = Sl(P) is the degree, p,
of P. For convenience define S(P) = SP(P).S (P) is a weak order and in gênerai let
it haver équivalence classes XlfX2, .. ,,Xr with S{P)/I* = X1 P* X 2 P* . . .
P* X r , where /* is the symmetrie complement of S (P) and X; P* Xfc means that
xS(P)y for all x e l j and for all yeXk.

To describe how the sequel construction method exhibits the information
overload phenomenon it is necessary to define the sequel reduced partial order,
R, of P.
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R: For a partial order P with p = l and r ^ 3 then R = P\{(xit xi+l):
Xi€Xi+1, xi + 1eXi+1,foi i=l,2, . . ., r — 1 }. Otherwise, R = P.

Therefore R is different than P only when p = 1 and r ̂  3 and in that case R is
formed from P by removing from P all relations on pairs in adjacent équivalence
classes of S (P).

Having defmed R we can now state the Sequel Réduction Theorem from [9]
which is the main point of the argument which shows that the sequel
construction method exhibits the information overload phenomenon:

THEOREM 1 (Sequel Réduction Theorem): IfP is a partial order on a set X with
p = l andr^3, then S{P)^S(R).

This theorem tells us that if we use the sequel construction method on R
instead of P then all ordered pairs in S(P) will be in S{R) and in addition S(R)
may contain extra relations that are not in S(P). As a resuit, the information
overload phenomenon is exhibited by the sequel construction method if the
ordered pairs in 5 CR)\S (P) are significantly better than a random procedure of
entering relations. This follows from the fact that we do better by giving the
sequel construction method less information (JR instead of P) to work with.
Simulation analysis over a variety of partial order types indicate that in gênerai
we can expect significantly more than half of the ordered pairs in S (R)\S (P) to
be entered in the correct order.

As a resuit of the Gehrlein and Fishburn [9] study we'might say that for partial
orders in gênerai the sequel construction method does exhibit the information
overload phenomenon (for partial orders with p = l and r^3) so use S{R) in
these cases instead of 5 (P). However, a more extensive analysis shows that using
S (R) instead of S (P) can be the wrong thing to do if P is a special type of partial
order, more specifically when P is an interval order. The case of what happens in
S(R)\S(P) for these special types of partial orders is considered in the next
section.

4. SPECIAL TYPES OF PARTIAL ORDERS

There are two special types of partial orders that we wish to consider, namely,
interval orders and semiorders. An interval order, P, is a partial order with the
additional restriction that

xPy and wPz => xPz or wPy, ¥x, y, z, weX. (3)

A semiorder is an interval order with the additional restriction that

xPyPz => xPw or wPz, ¥x , y, z, weX. (4)
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152 W. V. GEHRLEIN

We begin our study by observing that the sequel reduced partial order of an
interval order is an interval order when p = 1 and the sequel reduced partial order
of a semiorder is a semiorder.

LEMMA 1: IfP is an interval order with p = l then R is an interval order,

Proof: Three cases must be considered and all are proved by contradiction.
(Assume P is an interval order and R is not an interval order.)

a. Assume P is an interval order with a, b, ct d such that aPb,cPd,cPb and
not aPd, Then assume R is not an interval order since it violâtes (3) with aRb,
cRd, not aRd and not cRb. Therefore, cPb was removed in forming R but cPd
was not removed. By the définition of R this requires b S (P) d since only pairs in
neighboring équivalence classes are removed. However, this is clearly impossible
since ael {d)nM(b) so # S(d, b)>0 which precludes bS (P)d with p = l.

b. A symmetrie argument holds if a Pb, cPd, aPd and not cPb.
c. Assume P is an interval order with aPb,aP d,cPb and cPd. Then assume

R is not an interval order since it violâtes (3) with aRb,cRd, not aRd and not
cRb. By the définition of R, a and d must be in neighboring équivalence classes
of S(P) and the same is true of c and b. It is easily shown that this violâtes
P czS(P) unless a and c are in the same équivalence class and b and d are in the
same équivalence class which is impossible since aRb and cRd.

Q.E.D.

Since all semiorders are interval orders the proof that P is a semiorder means R
is a semiorder must only show that R must meet the second semiorder
condition (4). Fishburn [5] has shown that when P is a semiorder then p = 1 so no
further considération of the degree of a semiorder is necessary.

LEMMA 2: If P is a semiorder then R is a semiorder,

Proof: Three cases must be considered and all are proved by contradictions
[Assume P is a semiorder and R violâtes (4)].

a. Assume P is a semiorder with a, b} c, d such that aPbPc, aPd and not
dPc. Then assume R violâtes (4) with aRbRc, not a R d and not d R c. By the
définition of R this requires that dS(P)b since ail relations in neighboring
équivalence classes are removed and aRb. However, ceL{b)nI(d) so
#S(b,d)>0 which precludes dS{P)b with p = l .

b. A symmetrie argument holds if aPbPc, dPc and not aPd.
c. Assume P is a semiorder with aPbPc and aPdPc. Then assume R is not a

semiorder since it violâtes (4) with aRbRc, not aRd and not dRc. By the
définition of R, a and d must be in neighboring équivalence classes of 5(P) and
the same is true of d and c. However, this is clearly impossible since aRbRc.

Q.E.D.
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When P is a semiorder Gehrlein [8] has shown that S (P/E) is a linear order so
that a relation is induced on every pair in the symmetrie complement of P for
which not xEy. This is stated without proof as :

LEMMA 3: For P a semiorder S (P/E) is a linear order,

It then follows that for P a semiorder that S{P) = S (R) so nothing is gained by
using the sequel réduction method of inducing relations from P beyond those
given in S(P).

COROLLARY 1: For P a semiorder S (P) = S (R).

Proof: By theorem 1 S (P) £ S (R) and by lemma 3 S (R) g S (P) so S(P) = S (R).
Q.E.D.

When P is an interval order it is not necessarily true that S(P) = S (R) but we do
fmd an unexpected result which shows that the sequel construction method
violâtes A 2 and exhibits problem specialization.

5. THE VIOLATION OF A 2

The way in which the sequel construction method violâtes A 2 and thereby
exhibits problem specialization is observed by examining the relations induced
on pairs in S (R)\S (P) when P is an interval order. When P is a partial order in
gênerai we expect the proportion of pairs in S(R)\S(P) that are in agreement
with their order in Lo to be better than random. When P is a semiorder the set
S (R)\S(P) is empty. The surprising result is that when P is an interval order we
expect the proportion of pairs in S(R)\S(P) that are in agreement with LQ to be
worse than random.

The fact that the pairs in S (R)\S(P) are generally induced incorrectly when P
is an interval order does not preclude the use of sequel réduction method when P
is an interval order. All that is necessary is to take the pairs in S(R)\S(P) and
turn them upside down to form the weak order S'(R) where

S'(R) = S(P)KJ[S(R)\S(P)]*, (5)

where A* is the dual of a set A.
So for partial orders in gênerai we can use the sequel construction method to

induce pairs that are expected to be correct in S(R)\S(P). As we expect from
A 2, the sequel construction method cannot be expected to perform well on all
problems. This is true to the extreme that when the initial partial order is an
interval order then we expect the sequel construction method to be admissible
only if the pairs in S(R)\S(P) are turned upside down before we use them.

To understand why this phenomenon takes place we must consider what must
happen for a pair to be in S (R)\S(P) for P an interval order with p = 1. Consider
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154 W. V. GEHRLEIN

a pair (x, y) e [S (R)\S (P)]. For {x, y) in the symmetrie complement of S (P) for
P an interval order with p = 1 either L (x) a L (y) and M(x)^M (y) or vice versa
when not xEy. This fact follows directly from the interval order condition (3)
and x I y in P. Suppose (x, y) e S (R) so that by removing some relations from P
(x, y) is no longer in the symmetrie complement of the sequel. This can happen in
a number of ways. Assume, without loss of generality, that it occurs as follows.
We have (x, y)e[S (R)\S (P)] because L{x)czL(y) and M(x)^M (y) in P with
L'(x) = L' (y) and M'(x)a M'(y)inR. By the définition of R it must be true that
there exist a and b in M ( y ) \ M (x) with aPbPy where a E M ' (y) and è e ƒ ' (y)
in .R. Therefore, if there are r équivalence classes in S (P), x and y must be in one of
the équivalence classes 3,4, . . . , r. For small ..# X it is therefore likely that x and
y are below the central équivalence class of 5(P). That is, they are likely to be in
an équivalence class Et where i>r/2.

For small # X the pairs in S (R)\S (P) are expected to act like the following
rule, defmed as the AV Rule when P is an interval order with p = 1:

AVRule: For (x, y) with not xEyin the symmetrie complement of S (P) in
équivalence class Et induce a relation for x over y if # A (x) > # A (y) for i^r/2
or if # A(x)<# A (y) for i>r/2.

Otherwise induce the relation y over x.
In this définition A(z) = L (z) u M (z). For P an interval order we induce the

relation for x over y in S (K) \S (P) with A (x) cz A{y) when x and y are expected
to be below the central équivalence class as in the AV Rule. By symmetry the
same argument holds for pairs in the équivalence classes of S{P) above the
central équivalence class. As a resuit for P an interval order with p = 1 we expect
the pairs in S(K) \S (P) to be very similar to the pairs induced by ther,4 F Rule
when # X is small. However, previous studies [10] have shown that the A VRule
is inadmissible for interval orders. Since the pairs in S (R)\S (P) are similar to
pairs entered by the A V Rule on interval orders of degree one we should expect
the proportion of pairs in S {R)\S (P) that are in the correct order to be
significantly worse than a random process. Resultingly the use of [S {R)\S (P)] *
should be admissible when P is an interval order.

To get an idea of the reliability of pairs entered in [S (R)\S (P)]* simulation
analysis was used.

6. SIMULATION RESULTS

The actual underlying linear ordering relation is assumed to be given by
L0 = x1x2 . . . x „. During the simulation we wish to generate interval orders at
random with P^LÖ. This was done as follows:
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On the interval [0, m] generate n random numbers and assign them in
increasing order to n points 2 j , X 2, . . . , £„ . Then for each E £ generate a number
at random a number, tt, from the interval [0, t] and form the intervals S t ± tt. To
form P, enter the relation xt PXJ for i<j if the interval E ; ± t; does not overlap
with the interval 1Lj±tj.

As described in [6] and [7] the orders that result from this procedure must be
interval orders. It certainly is possible to generate interval orders in other ways
and the results presented here are related to the génération procedure used.

The results obtained are not a function of the spécifie m and t used but is only
dependent on the ratio (3 = t/m. The simulation generated interval orders as
described and for each order determined if p = 1. If p was greater than one the
interval order was discarded and another was generated. Interval orders of
degree one were generated un til there were 300 ordered pairs induced in
S' (KI M/M

The results in the table show the proportion of pairs in Sf(R) \ S (P) that were
entered in the correct order. For each sample the hypothesis was tested that the
proportion of pairs entered correctly was significantly different from .500.
Samples were run for n= 10 for each pe { . 1, .2, .3, .4} .

TABLE

Proportion of Pairs in S' (R)\S (P) That Were Correct

p

.10

.20

.30

.40

Proportion Correct

.5640(*)
.5380
.5600(*)
.5809(*)

{*) Indicates that the proportion cor-
rect is significantlv different (at .99) than
.5000 * j

The simulation results support the fmding that the use of pairs in S ' (K)\S (P)
is admissible and as a result the sequel construction method does exhibit a
violation of A 2. These findings indicate that the sequel construction method
exhibits the problem specialization phenomenon in an extreme form.
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