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OPTIMUM CLAIMS TRUNCATION OF AN INSURANCE FIRM
WITH A COMPOUND POISSON CLAIM PROCESS:

A DIFFUSION APPROXIMATION {*)

by Charles S. TAPIERO and Dror ZUCKERMAN (*)

Abstract. — This paper considers the problem of an insurance firm facing a compound Poisson claims
restricted process where policies are defined by an investment barrier strategy as weil as the choice of a
loading factor. Lower truncation of the claim process, expressing insured persons participation in case
of claims, is defined as afirm's décision variable and solved optimally. To obtain analytïcal results
diffusion approximations of the process are made.

Résumé. — Cet article considère le problème d'une compagnie d'assurance face à une suite de
dédommagement de fonds suivant un processus de Poisson composé avec une restriction. La politique de
lafirme consiste à déterminer une barrière au dessus de laquelle, toute accumulation de fonds est investie
et unfacteur déterminant les taux de paiements à lafirme. La restriction du processus exprime un niveau
au dessous duquel Vassuré assume la responsabilité des dommages. Cette variable est aussi considérée
comme variable de décision et trouvée par la solution optimale d'un problème. Pour faciliter les calculs,
une approximation de diffusion du processus a été faite.

1. INTRODUCTION

In a previous paper (Tapiero-Zuckerman [3]) we have considered the optimum
policies of an insurance firm facing a compound Poisson claim process where
policies are defined by an investment barrier strategy as well as the choice of a
loading factor. An essential premise was that claims were unrestricted. Yet, in
practice, insurance firms tend to insure excessive claims by using re-insurance
schemes (e. g. Borch [1] and Buhlmann [2]). In addition, firms may establish
lower limits, beîow which claims are not honored. This is a common practice in
the car insurance business where the first £ dollars are déductible. The exact
déductible amount Ç is often called the clients participation and it will be
considered by us as a décision variable. Further, persons attitudes towards risk
confirm the tendency of clients to be responsible for small damages and insured
against larger ones. A considération of such attitudes, appropriately defmed, can
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130 CH. S. TAPIERO, D. ZUCKERMAN

be used by insurance firms in selecting "optimum" truncation policy of the claim
distribution as well as in assessing the substitution effects with the premium
loading factor, the investment policy, and the computable effects on a firm's long
run average profit. The purpose of this paper is to study such effects by using a
diffusion approximation of the firm's cash level process. In addition an example
is resolved and discussed.

2. THE INSURANCE STOCHASTIC MODEL

We assume an insurance firm facing two processes; a premium and a claim
process. The claim process is defmed by a claim stream arriving according to a
Poisson process with rate X. Successive claim magnitudes Y1,Y2, - . . , Yn,
are assumed to be positive, independent and identically distributed random
variables having a known distribution function F (. ). The claim process (without
truncation) is therefore a Compound Poisson process with mean \i where:

" O

udF(u).

The participation quantity, E,, is considered by us as a décision variable.

The arrivai claim rate X is supposed to be a function of the truncation policy E,
and the loading factor n. It is reasonable to assume that X = X(nt £,) has the
following properties:

dX/dn^O and dX/d^O. (2)

Using well known properties of the Poisson process it can be seen that under a
"£" truncation policy the actual claim process is also a compound Poisson
process with a Poisson parameter X (n, Q — X (rc, Q [1 —F(Ç)].

Further the actual claim magnitude is distributed according to a distribution
function F^(.)f where

0 if w<0,

(3)

Define the moments <xn(Q as follows:

X)

WdF^u). (4)

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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Premium rates when a "Ç" truncation policy is employed are assumed to be
constant and given by

P(K.g = X(n,Ç)«l(lj)(l+*)- (5)

The investment policy used by the firm is a barrier strategy. That is, management
has in mind some target "Q" such that all incoming premiums above this level
are invested in long term projects at a known rate of return r. The target Q
defines therefore an investment barrier strategy. The purpose of the firm is to
maximize long run average profits by selecting the appropriate policies;
truncation £,, loading factor n and investment barrier Q. In this paper we
concentrate our attention on the truncation policy £.

The firm's profit is defmed by its expected funds converted from liquid assets
into investments less its costs.

Three types of cost can be distinguished:
(i) Claims processing costs; each claim has a fixed processing cost r|.
(ii) An opportunity cost; holding cash at level x (0<x<Q) incurs an

opportunity cost of rx.
(iii) Borrowing cost; when the cash level x falls below zero (x < 0), a borrowing

cost of C(x), which may be nonlinear, is incurred.
Let Z^(t) be the cash level on hand (a stochastic process) at time t, when a "Ç"

truncation policy is used. For given n and Q, the long run average profit can be
expressed as follows:

- f(Z%(u))du
^ $ (6)

where I(t) are the amount of liquid funds converted into investments in the time
interval [0, t] and the function f (u) is defined by:

f ru if u£0,
\ if „<0.

Without limitation of generality state that at the initial time, cash reserves are on
the boundary Q:

Z4(0) = Q. (8)

Let T be the time spent on the boundary until a claim occurs, i. e.
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132 CH. S. TAPIERO, D. ZUCKERMAN

Since claims arrive following a Poisson distribution, using a well known
property of the Poisson process, it follows that;

EKfQ{T)=l/%{n,1Q. (10)

Let S be the time at which we return to the boundary Q. That is,

S = I n f { ^ r , Z ç ( t ) = Q}. (11)

The strong Markov property implies

(u). (12)

We will refer to the time period (0, S) as a cycle. It can easily be seen that at time 5
the process Z^ régénérâtes itself.

The average profit, using a renewal argument, is then simply expressed as the
average cycle profit and is expressed as follows;

-rOE (T) A \
QEniQ(T) _ LJ T i-TtJKicQ (13)

Here, p (n, Ç) EnQ (T) is the cycle premium stream converted into investments in
[0, T], r QEnQ (T) is the opportunity cost over the time interval (0, T) while the
following term in équation (13) is the opportunity and borrowing cost in the
subséquent time interval (T, S) (where no funds are converted into investments).
Finally, i}\(n, Ç) is the expected processing cost per unit time.

An évaluation of xj/̂  Q (Ç) and its maximization with respect to Ç will provide an
optimum truncation policy. Of course, by maximizing with respect to n, Q and ^
simultaneously, the optimum insurance firm's policies are determined.

3. DIFFUSION APPROXIMATION

A simplification of the problem above can be reached by using a diffusion
approximation. To obtain our approximation we replace the cash level
process Z^ by a suitable diffusion process, say, X$, defined over the set ( — oo, Q).
Such an approximation is reached as follows: Let Ah(Z^(t)) be an incrément in
the Zç process accrued over the time interval (t, t + h). Thus,

Z t(t), (14)
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OPTIMUM CLAIMS TRUNCATION 133

and defme the limits;

Q \ t ) l (15)
ft|0 n

and

\ \ % ( t ) ] . (16)

Using well known properties of the Compound Poisson process we have instead
of (15) and (16);

(17)
and

X (18)

The diffusion process Z^ has a drift parameter p,(Ç), diffusion parameter a 2 (Ç)
and a reflecting barrier at Q— the investment barrier. This process is used to
approximate the expected cycle time and the cycle cost over the time
interval (Tt S). Let Txy be the expected transition time bet ween x and y, or

X k ( t ) = y \ X ^ ( 0 ) = x } , (19)

Under a ^-truncation policy, the expected cycle time can be expressed as follows,

ul (20)
J o

The theory of diffusion processes implies that

f o r x<y<Q'

provided that

Using équations (10), (20) and (21) it follows that

f
J

- (22)

To obtain an approximate expected cost per cycle, we define

(23)

where

S=Inf{t^O;Xc(t) = Ö}. (24)
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134 CH. S. TAPIERO, D. ZUCKERMAN

It can be seen that w(x) satisfies the following partial differential équation;

dx 2 w dx2

whose solution can be verified to be

(25)

W(x)=feP e-toWW-tfWdydv. (26)= f \
J x J

Now, define

u). (27)

Using this expression, an approximate (long run) average profit, \J/n ö (Ç) is
given by:

*.. O - a

Using (17), équation (28) can be written as foliows:

Since rj is a single claim processing cost, the term:

— '

is the revenue per claim (excluding the processing cost).

After some elementary manipulations we obtain that the optimal
participation quantity £, * satisfies the following équation

Clearly <p (Ç *) — r| ̂  0 (otherwise, the firm would find it bénéficiai to détermine an
infinité participation quantity, i. e., not to operate at all). Recalling that d% (n,
£)/££ ̂  0 and using (31) we obtain that the revenue per claim cp (Q is an increasing
function of ^ for values sufficiently close to ^*. An optimization of (29) with
respect to Q and K lead to the following conditions (ôvj//<3g = 0 and dty/dn = O);

(32)
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and
%%fQ{Z)d\ln%{n,Qydn + %{n, £>)dq>/diz = O. (33)

More explidt results can be found by solving an example as will be done in the
next section.

4. AN EXAMPLE

We consider a (piecewise) linear cost function

ru if w>0,

Further, we let the claim distribution be exponential with parameter 6, so that

F(u) = [ l - exp( -8u) ] for w^O.

Thus

% M*, k)e-*. 05)

Because of the lack of memory property of the exponential distribution we have

F^(u) = F(u) for every Ç^O and w^O. Therefore a i © =

Using équations (17) and (18) we obtain:

and

and therefore

After some elementary manipulations, équations (26) and (34) become

i ^ ( ^ [ T ] (36)

and

WQ(Ç) = (r/m2)[nQ-n/Q-im -n/{l + n)[{c + r)e-***/(nB)3]. (37)

It is important to note that WQ (Q is independent of E, (because of the memoryless
property). Let us abbreviate WQ = WQ (^).

Using équation (29), the long run average profit can be expressed as foliows:

ftcQ^HM*, Qe-K {n/B-nWQ/(l+n)-T\}-rQn/{l+n). (38)
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136 CH. S. TAPIERO, D. ZUCKERMAN

Clearly, X(n, £>)e~Q*> is monotonically decreasing in £. Therefore the optimal

truncation policy is given by

fO if

\ oo, otherwise.

In words, under the assumption that the claim magnitude is exponentially

distributed, the optimal truncation policy is of bang bang type.

Finally using équation (32) and (33), the optimal investment barrier and the

optimal loading factor can be obtained.
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