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OPTIMAL REPLACEMENT UNDER
AUDITIVE DAMAGE AND SELF-RESTORATION (*)

by Dror ZUCKERMAN (*).

Abstract. — In this article we examine a production System which is subject to random f allure. The
System accumulâtes damage through a "wear" process and thefailure time dépends on the accumulated
damage in the System. As long as the System is still operating the accumulated damage decreases with
time and the System recovers. Uponfailure the System is replaced by a new identical one and afailure
cost is incurred. If the System is replaced beforefailure a smaller cost is incurred. Our goal is to specify a
replacement rule that is optimal under the long run average cost criterion.

Résumé. — Nous examinons dans cet article un système de production sujet à des défaillances
aléatoires. Le système accumule les dommages à travers un processus d'usure et le temps de défaillance
dépend des dommages accumulés dans le système. Aussi longtemps que le système continue à être
opérationnel, les dommages accumulés décroissent avec le temps et le système se rétablit. A la
défaillance, le système est remplacé par un nouveau système identique et subit un coût de défaillance. Si
le système est remplacé avant défaillance, le coût est plus faible. Notre objet est de spécifier une règle de
remplacement qui soit optimale pour le critère du coût moyen à long terme.

1. INTRODUCTION AND SUMMARY

A production system is subject to a séquence of random shocks occurring in a
Poisson stream at rate X, Each shock causes a random amount of damage and
these damages accumulate additively. The successive shock magnitudes Ylt

Y2, . . . are positive, independent and identically distributed random variables,
having a known distribution function F (y). A failure can occur only at the
occurrence of a shock, and the probability of such a failure is a function of the
accumulated damage in the system. As long as the System is still operating, the
accumulated damage decreases with time and the system recovers. This
phenomena is représentative of certain physical Systems which after being
exposed to external interférences, reobtain their original properties after some
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116 D. ZUCKERMAN

time. The human body is an example öf such a self-restoring system.
Let X (t) be the accumulated damage at time t. There is an instantaneous self-

restoration rate depending on the accumulated damage in the system, such that
in the absence of shocks we have

where we assume e(0) = 0 and e(x) is positive and continuous on (0, oo).
If a shock of magnitude y occurs at time t, then the system fails with known

probability 1 - r (X (t — ) + y). Clearly, 0 ̂  r (z) ̂  1 for every position z. We refer
t o r ( - ) a s t h e survival function. It will be assumed that r(-) is a nonincreasing

function of the cumulative damage. Upon failure the system is replaced by a new
identical one and the replacement cycles are repeated indefinitely.

Each replacement costs C dollars and each failure adds a cost of K dollars.
Thus there is an incentive to attempt to replace the system before failure occurs.
A controller has the option to replace the system at any Markov time T^b,
where 8 is the failure time of the system. Throughout the paper, we will restrict our
attention to those policiesfor which a décision can be taken only at shock points of
time. We consider the problem of specifying a replacement rule under a long run
average cost criterion.

Assuming that the expected failure time is fini te, we show that an optimal
Markov time détermines a control limit policy. The term control limit.policy
refers to a policy in which we replace either upon failure, or when the
accumulated damage first exceeds a critical control level £*, whichever occurs
first. The main contribution of our article is the présentation of the deterministic
self-restoration of the system into the breakdown model.

A predecessor model in which the system accumulâtes damage through a
shock process without self-restoration, has been considered by a number of
researchers. Taylor [6] and Zuckerman [10] assume that the damage process is a
shock process and that failure may occur only at shock point of time.
In Taylor [6] the shock process is a compound Poisson process and in
Zuckerman [10] the shock process is a one-sided Lévy process. In a recent paper,
Zuckerman [9] derived the optimal replacement rule under a discounted cost
criterion for a breakdown model in which the shock rate is monotonically non-
decreasing over the state space of the damage process.

Feldman [4] derived an optimal replacement rule for the case in which the
cumulative damage process is a semi-Markov process, where only policies within
the class of control limit policies were considered. The above paper by Feldman
was generalized by Zuckerman [8]. An additional semi-Markovian breakdown
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ADDITIVE DAMAGE AND SELF-RESTORATION 117

model under a discounted cost criteria was examined by Feldman in [5]. Esary,
Marshall and Proschan [3] investigated the property of a breakdown model for
which the damage process is determined by a Poisson process. Buckland [1]
reviewed the case in which the system fails when the accumulated damage first
exceeds a fixed threshold. It is interesting to note that in the threshoîd situation,
our damage process appears to be identical with that of a content of a dam, where
the total input into the dam is assumed to be a compound Poisson process and
the instantaneous output rate is given by the function e (x).

In Section 2 we will consider the breakdown model under the long run average
cost criterion. Section 3 treats the problem of how to détermine the optimal
critical level Ç*. An example will be presented illustrating computational
procedures.

The following will be standard notation used through the paper:

and reserve E(P) without affixes for expectation (probability) conditional on
X (0) = 0. The notation E [ Y; A], where 7is a random variable and A is an event,
refers to the expectation E[IA Y] = E[Y\lA = l] P (A), where IA is the set
characteristic function of A.

2. OPTIMAL REPLACEMENT UNDER THE LONG RUN AVERAGE COST CRITERION

For t<5, X (t) represents the cumulative damage at tribu ted to shocks
occurring during [0, t]. Let A be a distinct point not in R + =[0, oo) and define

Throughout, we assume that E[8] isfinite. To obtain the long term expected
cost per unit time, we consider the renewal process formed by successive
replacements of identical Systems. By the law of large numbers, the average cost
associated with a Markov time T is given by

VT E [ T ]

We will restrict our attention to the following subset of Markov times

where tlf t2, t3, . . . are the shock points of time. Note that the time interval
between two successive shocks is exponentially distributed with parameter X.
Since the exponential distribution is memoryless it is intuitively clear that an
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118 D.ZUCKERMAN

optimal Markov time is in 3~. Let \J/* = inf \|/r be the optimal average cost. In

this section we show that an optimal Markov time is determined by a single
critical number Ç*. The optimal strategy is to replace either upon failure or when
the accumulated damage first exceeds £*, whichever occurs first.

Let G be the infinitésimal operator of the damage process {X(t);t^0}. For a
function cp in the domain of G, the infinitésimal operator is defmed as foliows

• <p ( x ) } . (2.2)

Of great importance to us is Dynkin's formula

\ (2.3)

valid for any cp in the domain of G and any Markov time T having finite
expectation (theorem 5.1 and its corollary in Dynkin [2]).

We proceed with the following result.

THEOREM 1: T is an optimal Markov time if and only ifit maximizes
r ÇT -|

E\ {y\f*-XK[l-R{X{s))]}ds I (2.4)
LJ o J

where

R(x)=[C°r(x + y)dF{y). (2.5)
J o

Proof: For every Markov time TG9~ the following inequality holds

^ , (2.6)

and a Markov time Te 3T minimizes the long run average cost, if and only if it
maximizes

eT = y\r*E[T]-C-KP{T=:S}=-C + E\ f ^*ds \-KP{ T=b } (2.7)

and the maximum value of 9 r is zero. Next note that

P x { r = S } = £x[/ (X(r )=A)]. (2.8)

Let ƒ (x) = / (x=A), f o r x / A we have

G , (x) = lim t - l { Ex t/(x(()=A) ] - ƒ (x)}
«iO

{ \ { } dF(y)
«io I J

+ o(t)\ = X[l-R{x)]. (2.9)
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AUDITIVE DAMAGE AND SELF-RESTORATION 119

In order to clarify équation (2.9) we note that if the initial damage is x and a
shock occurs at time a t for 0 < a < 1, then X (a t — ) tends to (x + o (1))+ as t tends
to zero, where Y+ =max (Y, 0). Further, the number of shocks in (0, t) equals
one with probability \t + o{t) and it exceeds one with probability o{t).

Using Dynkin's formula we obtain:

{ } (2.10)

Using équation (2.10), dT can be expressed as follows

r f \ (2.11)r f {ty*-XK{l-R{X{s))}}ds \.

This concludes the proof.

In what follows we shall dénote by S the state space of the stochastic process
^t<8}. Let

s\,
J

g(X(s))ds\, (2.12)
J

where
(2.13)

Note that g(-) is bounded and nonincreasing over S. Let

5 1 = { x e S ; ^ x > 0 } , (2.14)

52 = {xeS;Ax^0}. (2.15)

Now let us consider the following Markov time

T* = mm{inîti;X(ti)eS2},5}, (2.16)

where tlft2> - • • a r e t n e shock points of time. If S 2 is empty then T * = 5. We will
show that r * is an optimal replacement time. Furthermore, as will be proved,
!T* is a control limit policy. We proceed with the following proposition.

PROPOSITION 1: Sx is nonernpty, and for every point x in S, :

Proof: As we know, sup6 r = 0. Therefore there exists a Markov time
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120 D. ZUCKERMAN

such that

r r
LJo

Hence

>|>O. (2.18)

Therefore 0eSx. For a given point x in Slt let

" | | (2.19)

Let Tx be an element in ST {%). Consider the following Markov time

Ti=min{Tx,T*}.

First we show that Txe^(x).

If S 2 is empty then 71* = 5, and from the définition of 71 * it follows that TX = TX

a. s. Hence Txe^(x) (see 2.19). We proceed to examine the case when S2 is
nonempty. Observe that

{{:
=: £ ,

'{ri<r,}
£ J g{X(s))ds . (2.20)

where P{x r i ) is the probability on sample paths -X* (t) (0 ̂  t ̂  Tx ), given X (0) = x.
Clearly X(Tx) = X{T*)eS2 on the set {TX<TX}. According to the

définition of S2 and by the strong Markov property we have

£ x g(X(s))ds
\n<Tx}

Using (2.20) and (2.21) we obtain:
• T:

S0. (2.21)

Ex{ (^ g(X(s))ds~\>0.
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AUDITIVE DAMAGE AND SELF-RESTORATION 121

Hence Txe $~{x). Now, let us define a new Markov time Tl as follows;

2Jwm{Tl + Tx{n)9T*} if TX<T\
x \ T* if TX = T*,

where

r c i
Obviously T2

X^TX and Ex\ g{X(s))ds

LJ o J
Generally, we will define an increasing séquence of Markov times { Tx } n ^ i ,

such that
I Ex\ \ g(X(s))ds\>0 for every n^ 1,

LJ o J
II Tn

x<.T* for every n^ 1,

in the following way

f m in ( Tn~l A-T , 7 " * ) if T " " 1 < T *

where T^-^e^ {XiT*^1)).

The séquence { Tx } converges to a limit, say V. Clearly, V ̂  T*; we show that
V=T* a. s. We do so by contradiction. Let us suppose that
P { F < r * } = E > 0 . Recalling that action may be taken only at shock points of
time and that the time interval bet ween two successive shocks is a rand o m
variable exponentially distributed with parameter X, it follows that for
every n ̂  1:

r //p_prr • Tn < T*1
X /y yrt ̂  i\ Lt J. JL/ |_J ty yn > 1\ ) -* x ^~~* J

'T"X<T*

This contradicts the assumption that Tn
x converges to V. Hence P { V < T* } = 0.

Thus Tx converges to 71* a.s. Since g(-) is a bounded function and

E

it follows that

vol. 14, n° 2, mai 1980
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122 D. ZUCKERMAN

This complètes the proof of proposition 1.

We are now in a position to prove the main resuit.

THEOREM 2: 7"* minimizes the long run average cost.

Proof: It suffices to show that for every Markov time Te3T\

6r* — 0 r ̂  0.

For a given Markov time Te$~ we have

g(X(s))ds

= EÏ f g(X(s))ds;T<T*\

-fil" r g(X(s))ds;T*£T\. (2.22)

First note that

g(X(s))ds;T*ST
T*

g(X(s))ds- T* ̂= EÏ r

+E|" r ö(x(s))ds;r*gr, r*=sl (2.23)

Given that T* ==S, it follows that T* = r = S on the set { T* S T}, therefore

g(X(s))ds; T* S T, T*=5 =0. (2.24)

On the other hand, given that J1* < 5, it follows from the définition of T* that
X (71*) e 5 2 - By the strong Markov property we find that for every Markov time

Teer-,

Ï r g{X(s))ds;T*^T, T*<b\

= f \E\ [T

J{T*^T, T*<b] l L J T*

\ \ g(X(s))ds
b] l L J

^ 0 , (2.25)
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AUDITIVE DAMAGE AND SELF-RESTORATION 123

where P{x>Tn is the probability on sample paths X(t) (0 ^ t <; 71*), given
X(0) = x.

Using (2.23), (2.24) and (2.25) we obtain:

ïï T g(X(s))ds;T*^T\èO.

In order to establish the optimality of T* it suffïces to show that

E\ g(X(s))ds; T<T*\^0 for every Te3~. (2.26)
L J r J

According to the définition of T*, T < T* implies that X (T) e S x. By the strong
Markov property and by proposition 1, the non-negativity of (2.26) follows
immediately.

Whence 0r* - BT ^ 0 for every Te 2T and this establishes the optimality of T*,
as desired.

Finally, we show that 2"* is a control limit policy.

THEOREM 3: T* is a control limit policy.
Proof: Let y e Si and x be an arbitrary state such that 0 ^ x < y. It suffices to

show that xeSx. We will construct a Markov time T(x) such that

EJ r W 0(X(s))dsl £ £ J [̂  ff(^(5))dsl > 0. (2.27)

Let {flj, $Fj> Pj}lj ^ 1, be the probability space associated with the random
vector (tj, Yj), where tj is exponentially distributed with parameter X and Yj is
distributed according to the distribution function F(y); for; ^ 1, the random
variables tj and Yj are independent. Furthermore the random vectors (tjf Yj) for
; ' ^ 1 are also independent. Let (Q, <F, P) be the probability space defined by the

/ 00 00 00 \

infinité product ( f| Qjt Yl^j' Yi ^j )• Every sample point œeQ describes a

séquence
_ i _

{t;, F f } ^ ! where tt= J] tj and 7£,

are the time of the /t/z stock and the magnitude of damage associated with the ith
shock respectively.

Let c • r( ^ r

For a given sample point oo let 5z(ot)) be the failure time associated with the
sample point ©, conditional on X(Q) = z. Let X(t\z, co), te[O, ôz(oo)), be the
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124 D. ZUCKERMAN

accumulated damage at time t associated with the sample point co, when the
initial damage at time zero is z. Note that the triple (z, co, öz(co)) détermines
completely the damage process along the time interval [0, 8).

Let X (t | z, co) t ^ 0 be the accumulated damage at time t associated with the
sample point co, when the initial damage at time zero is z, under the assumption
that the survival function is identically one on [0, co). Clearly

~X(t\z,<Q) = X{t\z, co)

for every t < öz(co). For every sample point co we define a séquence of Markov
times { Ti{<ù)}i^i as follows

r(X{tlX,(o))
and

with the convention that 0/0=1 above.
For every sample point co e Q the probability laws of the random variables

Ti (co) are known explicity for i ^ 1. Furthermore, for every given i, the random
variables 7\:(co) and ôx(co) are stochastically independent.

Now consider the following Markov times:

f1(x)(©)=.inf{ f !(©)},
i > 1

f2(x)(a)=mi{t;;X(ti\y, co)eS2},

f^i)((D) = 6x(Q)).
The représentation of the above Markov times is just a mathematical tooi in
order to construct a Markov time T(x) which will satisfy (2.27).

Using the définition of the random séquence { Ti((o)}i^l it can be seen that

f
tj\xt co))

on the other hand the probability measure of the failure time associated with
a sample point co and initial dajnage x can be expressed as follows

P{5,(©)>t t}= Ylr(X{tj\x,<*)). (2.29)

Using (2.28) and (2.29) we obtain:

{ { t i } n { S x ( a ) ) > £ i } } = p
y { 8 y ( ö > ) > t f } - (2.30)

Let r(x) = min{f1(x), f2(x), f3(x)}.

R.A.I.R.O. Recherche opérationnelle/Opérations Research



AUDITIVE DAMAGE AND SELF-RESTORATION 125

Recalling the définition of T* and using (2.30), it can be seen that for every
given CÛGQ, T(X) given X(0) = x and 71* given X(0) = y are identically
distributed. As a resuit of the monotonicity of g(-) we obtain (recall that x < y):

Eyï f ô(X(s|^<o))dslg£xr rWg(X(s|x,(o))dsl. (2.31)

applying the law of total probability and using (2.27) and (2.31) it follows that

E J rW^(X(s))isl= [EJ r* g(X(s\x,<*))ds]dP(<ö)

j T ~U 0.j f
Therefore, x e S ^ which implies that 2°* is a control limit policy.

3. REMARKS ON THE DETERMINATION OF ^* UNDER THE LONG RUN AVERAGE
COST CRITERION

We now investigate the problem of Computing the optimal control level £*.
Let 7\ be a control limit policy with critical control level £. In order to minimize
\|/T analytically, one has to express E [7\] and F { 7\ = 5 } as functions of Ç. Next
we examine the special case where e{x) = I{x>0). Let us consider the sub-
stochastic kernel

= P{N > 1 a n d X ( t 1 - ) + F 1 ^

where N is the index of shock at which failure occurs. Also, let K° be the identity
kernel, namely

K o ( x « f i if * £ ü .

For a given point x in S we have

X(x, Q = e-XxK(0, Ç) +

where
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126 D. ZUCKERMAN

Finally define

K"(x, Ç) = P{ N > n and X(tt-)+ Yt^ Ç

for z=l , 2, . . . . n\X{0) = x}= K(x, dz)Kn"x (z, Q,
J o

and

Clearly Q(x, Ç) gives the mean number of n's satisfying n< N and
)+ Ff ^ Ç ( Ï = 1 , 2, . . . , n), conditional on ^(0) = x. Let us abbreviate

Recalling that the intershock times are exponentially distributed, each having
mean X ~1 it follows that

Now we compute the probability for a planned replacement when a Markov
time T^ is employed.

X
I I 1

o

= E o

f °° -Xt \ - 1 . f "
' ? - ( - ' ) " z y J + e J î'

Thus E[T(\ and P { Tk < 5} are expressible as functions of Ç.
The cumulative damage failure model that has received the most attention in

the literature is the threshold model in which r(x) is 1 or 0 according as x < L
or x ^ L.

In the threshold situation the accumulated damage process appears to be
identical with that of the content of a dam with finite capacity, where the total
input to the dam is assumed to be a compound Poisson process. Consequently,
many results of storage theory can be used to simplify computational
procedures, as will be demonstrated in the foliowing example.

Example: Let us consider the following model

1 for O g z < X ,
0 for z^L.
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ADDITIVE DAMAGE AND SELF-RESTORATION 127

In words, System failure occurs when the cumulative damage first exceeds a fixed
threshold L. The self-restoration has a constant rate of one. That is e (x) = 1 for
every xeS, x > 0. It will be assumed that the damage distribution F is
exponentially distributed with parameter jx. Obviously it suffices to consider
control levels Ç such that 0 < Ç ̂  L. By using the memoryless property of the
exponential distribution it follows that

On the other hand

The above can be obtained as a special case from Yeo [7]. Now in order to find
the optimal control level £* we have simply to minimize

as a function of Ç for 0 < £, ̂  L.
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