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CAPACITY EXPANSION OF A DETERIORATING
FACILITY UNDER UNCERTAINTY (*)

by Charles S. TAPIERO O

Abstract. — An optimum single capacity expansion of a deteriorating facility is determined when
future demandfor the facility is given by an évolution ofprobability distributions. Several probabilistic
détérioration processes are considered and the probability distribution ofafacility's extinction isfound.
For practical applications, it is suggested that simulation be used in determining the costs and benefits
of two or more expansion plans.

1. INTRODUCTION (2)

Capacity expansions are strategie décisions involving the highest levels of
management. They are designed to fulfill one or both of the following purposes:

(1) replace deteriorating facilities or improve the efficiency of production
processes by a newer technology;

(2) meet anticipated demand growth for production services.

Capacity expansion involves present outlays measurable only in probabilistic
terms with returns expected in the future. For this reason, problems of capacity
expansion require a careful évaluation of the risk implications of a particular
expansion.

Approaches to capacity expansion have ranged from non-linear programming
to heuristic methods. Foremost among these studies is the dynamic
programming approach (Manne [7], Manne and Veinott [9], Erlenkotter
[2, 3, 4], Sengupta and Fox [11], Tapiero [13]) which provides an optimum
séquence of capacity expansion when a future demand is known. These
approaches, however, assume a demand growth and non-depreciating facilities.
Over time, facilities have a deteriorating productive capacity while demand
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56 C.S. TÂPIERO

forecasts can at best be characterized by probability distributions. Manne [8],
for example, suggested a Brownian motion model for describing a random
évolution of demand for a product and obtained an optimum capacity expansion
for a facility of the non-depreciating type.

The purpose of this paper is to consider a problem of capacity expansion of
deteriorating facilities under uncertainty. The foliowing assumptions are made:

(1) the détérioration rate is described by a stochastic process;
(2) a demand forecast is given by an évolution of probability distributions.

Specifically, we assume as given the mean and variance évolutions of the
forecasts;

(3) only one plant is built at the initial planning time;
(4) the riskless discount rate r is given.
An optimum capacity expansion is obtained when the planning time T(used in

Computing the costs and benefits of the expansion) is given. The cost criterion is
assumed to consist of an expansion cost, an excess capacity and a capacity
shortage cost. When a facility is to be evaluated over its lifetime, we compute the
probability of facility's extinction and use it as a planning time. For simplicity,
we have assumed that under such circumstances, the cost criterion consists of the
expansion cost and a net return proportional to a facility's productive capacity at
time t. If the facility capacity expansion is K and it has a détérioration rate 8, we
find that its expected life is approximately (In K)/62. Using this expected life as a
planning time, an optimum capacity expansion is determined.

For practical purposes, when more realistic and complex assumptions lead to
analytically intractable solutions, simulation can be used to compare the
economie and risk implications to a firm of two or more expansions. In this case,
the problem is not to solve for an optimum capacity expansion but to compare
the economie and risk properties of two (or more) competing capacity expansion
alternatives. For démonstration purposes, a simulation comparing two such
expansions is included. Such a simulation approach can be used only after the
theoretical probability structures of capacity détérioration processes has been
found. In other words, simulation becomes an essential tool in comparing
capacity expansions when the underlying probability processes of capacity and
demand are established. The first part of the paper shows how such probability
processes can be found and how they can be manipulated to yield an optimum
capacity expansion when the cost function is a simple one.

2. THE CAPACITY OF A DETERIORATING FACILITY

Assume that at time f = 0 the present time, a capacity expansion K is
implemented whose cost is G(K). Let A- be the capacity at a future time t and
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CAPACITY EXPANSION 57

assume that the facility détériorâtes randomly where S is the détérioration rate.
If P(x, t) is the probability of a capacity x at time t, and if the détérioration
process is a stochastic process described by a random walk where
A t§x = probability of losing to détérioration one unit of capacity
in a small time interval At, then, a probabilistic évolutions for the capacity x at
time t is given by (3):

dt
-P(x, t)5(x),

P(x = K, to)=l.

(2.1)

When 8 is a constant, (2.1) describes a simple death process whose solution is a
binomial probability distribution

P(x,t) =
x

p(5, t) = e -et.

(2.2)

The probability generating function of (2.1) is well known and given by (4):

6(2, 0 = {! + (*- ! )«-*}* (2-3)

with

Therefore, if we expand a productive capacity by K units at time t = 0, and if the
détérioration rate ô is constant, the probability distribution of having a capacity
of x units at time t is given by the binomial distribution (2.2). When the
détérioration rate 5 is probabilistic, it is necessary to randomize the random
walk (2.1). However, since (2.1) has a solution given by (2.2), a randomized
détériorations process as in (2.1) has a probability given by the mixture
distributions of (2.2).

(3) This is in fact the welî known death-process in queueing theory, with initial condition given by
the K-the expansion, and a death rate equalling the capacity détérioration rate.

(4) The probability generating function is defined by

Q{z,t)= t P(x,t)zx

x = 0

and for the binomial probability distribution (2.2) is well known.
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58 C. S. TAPIERO

Specifically, \Gtf(e~~bt) be the probabüity distribution of exp( —
probabüity distribution of the capacity x at time t is given by

Wjo'

) , then the

(2.4)

A gênerai approximate solution for (2.4) is given by Hald [5], When we assume
that exp( —St) has a bèta probabüity distribution, we can show, that the
probabüity distribution of x at time t has a Polya — Eggenberger
distribution [1, 10]. That is, if

a(t)>Q, b{t)>0.

Then inserting (2.5) into (2.4) and solving for P(x, t) yields (6):

(2.5)

which has a mean given by:

E{x(t)}=Ka(t)/[a
and a variance given by:

(2.7)

(2.8)

Thus, the capacity on hand at time t has a probabüity distribution given by (2.6)
whose mean and variance is given by (2.7) and (2.8). When S is a constant, and
when K is large (K>30), a normal approximation to (2.2) is accurate, and the
probabüity distribution of a capacity x at time t is given by:

K(K-l)a(t)b(t)

(2.9)

This approximation is useful in Computing an optimum capacity expansion
when the demand for products is also normally distributed.

(5) That is, a probabüity distribution whose parameter is also given by a probabüity distribution.
(6) Such commutations are straightforward if we note that (2.5) and (2.4) yield a Beta intégral.

A solution to this problem is, however, pointed out in Johnson and Kotz [6].

R.AXR.O. Recherche opérationnelle/Opérations Research



CAPACITY EXPANSION 59

When a facility's détérioration rate is also function of its age, ô is a time variant
and (2.1) is a non-homogeneous stochastic process, whose probability
generating function can be shown to be

(2.10)

where

which corresponds to a binomial probability distribution whose probability
parameter is

J'miX (2.11)

TABLE I

Probability P.G.F. Mean \i(t) Variance a2 (t)

Assumption about détérioration: ö =

Ke~ht Ke~ht(l-e-hc)

r
Assumption about détérioration: f {e 5r)~Beta

Ka(t)b(t)

Ka(t)

a(t) + b(t)
K(K-l)a(t)b(t)

Assumption about détérioration: normal approximation (large K)

Ke~

Assumption about détérioration: Ô (x) = time variant

X e
S(T)rfT f - 8(T)dTJ
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when S(t) is time invariant, then (2.11) reduces to exp(-ôt) which is the case of
(2.2). Equations (2.2), (2.5), (2.9) and (2.11) provide four stochastic models for
capacity détérioration which may be used to compute the probability
distributions of a facility's productive life. These distributions will be used to
establish upper bounds on the economie planning time of a facility's expansion.
Furthermore, when the future demand for a product is probabilistically given,
probability distribution of excess and capacity shortage can be computed. To
simplify our présentations the probability results are summarized in table 1.

3. OPTIMUM CAPACITY EXPANSION OF A DETERIORATING FACILITY

We shall first assume that the planning time used to compute the economie value
of a capacity expansion is given by T (where Tis smaller than the facility's life).
The capacity expansion size is chosen to minimize the expected cost of

/ T \

T ' if x(t)-B(t)^o,
G(K) +

T

r = n
x(t)-D(t)<Q.

(3.1)

where: G (K), the capacity expansion cost; x(t), the capacity at time t — a random
variable; D {t)} the demand at time t — a random variable; r, the riskless discount
rate; T, the planning time; cx, cost per unit excess capacity; c2, cost per unit
capacity shortage.

This criterion will be simplified further when we consider a probabilistic
planning time. The expected value of (3.1) is given by:

r)-' f"
J 0

G(X)+ £ C l( l+r)- ' f z{t)g(z{t))dz(t)
t = Q J

z{t)g{z{t))£{t)}

where z(t) = x(t)-D{t) and g(z(i)) is the probability distribution of z(t). If we
assume 8 constant and use the normal approximation to (2.2) and if the demand
is normally distributed with mean \i(t) and variance <J2(t), then z(t) has also a
normal probability distribution. Specifically, the time variant mean and variance
of this distribution is:
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Also, using the normal distribution equality:

,(0). (3-4)

where ƒ and F are the standard and cumulative standard normal distribution.
Since

where

2 f" 2
erf(tt)= — e"f dt.

s/n J o

But since erf( — u)^ — erf(w), we obtain, in équation (3.4):

r
az

2(0}. (3.5)

Equation (3.2) together with (3.5) can be written dropping the time subscript, as:

a , • T

+ X c2(l+r)-^z. (3.6)
t = o

A derivative of (3.6) with respect to K yields one équation in one unknown (3.7)
which may be solved numerically for K, or by trial and error.

+ ê?e-*n*\„ r^_J, nAl-e-^

>e-^0. (3.7)
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62 C. S. TAPIERO

For example, assume a normally distributed demand with time variant mean
and variance given by |a(0=1004-10t + 5$in(nt/3) and u2(t) = l0t, also
G(K)= 10KOHO, cx = 1.0 and c2 = 3.0, r = 0.06 and T-30. An optimum capacity
expansion is then given by K* (5 = 0.10):

K* = 300 units

From further numerical computations (see table II) we note that large
détérioration rates do not imply smaller expansions. The size of the expansion is
as indicated in (3.6) a function of knowledge of the demand forecast [i. e. the
magnitude of a2 (*)]. When the forecasted demand is not known, a2 (t) is very
large and a Taylor's series approximation to the exponentials in (3.6) is
acceptable and yields:

TABLE II

Optimum Capacity Expansions

r
ô

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15

0.00

370
430
480
520
590
" —
—
590
560
540
530
520
500
480
460

0.02

340
370
410
440
460
460
450
450
450
440
430
420
400
380
370

0.04

300
330
350
360
360
370
370
370
370
370
360
350
340
330
320

0.06

270
280
290
300
310
310
320
310
310
300
290
280
270
260
260

0.08

230
250
260
260
270
270
270
270
260
250
250
240
240
240
230

0.10

210
220
230
240
240
240
230
230
230
220
220
220
220
210
210

0.12

200
210
210
210
210
210
210
200
200
200
200
200
200
200
200

Also erf (e) « 0 for E very small. Thus (3.6) can be written as:

t=o 2%

Subtracting (3.8) from (3.6) we obtain:

. (3.8)

-^ 2 /a 2 ) - l ] 1, (3.9)
J
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which is the value (in an expected cost sense and given the détérioration rate) of a
demandas for ecast. Since exp(-u^/a^)< 1, the larger the variance the larger the
value of the demand forecast.

When the planning time T is not specifically given, we can compute the
capacity's expansion cost over the facilities' life time. That is, the planning
time T is a random variable expressing the probability that x, the capacity,
equals zero.

For the four cases considered in this paper [équations (2.2), (2.6) and (2.9)] the
probability that the capacity is equal to zero at time T is given below:

TABLE III

Probabilities of capacity extinction

ö-Const

/(e-5 7)-Bèta

Normal approximation. .

Ô (x)-time variant .

Probabilities

{l-e-*T}K

r(a(T))r(K + b(T))
r{K + a(T) + b(T)) B ( û ( n K l Ô ( r ) )

(KC~&T{1 C-8î))l/2eXD{-fl/2)K2
e-

2ôr/Ke-&ra-e-Sr)}

y/ÏÜ

l 1 - ° }

Consider for simplicity the case of a constant détérioration rate and compute
the Laplace transform of the probability of extinction. Then,

(3.10)

= (l/5)B(s/8, K+i),

where B(a, P) is the Bèta function

B(s/b,

vol. 13, n° 1, février 1979
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64 C. S. TAPIERO

The mean extinction time is clearly given by:

1) d

Ô2

The mean is therefore

(3.12)

(3.13)

For K large, an approximation to (3.13) is:

^ £ ( 1 / 0 - f (1/S2)^j= ^-lnK. (3.14)
0 i = l J 1 °

Using the mean extinction time as the facility's planning time, we consider a
cost criterion given by

(3.15)
t=Ö

where p is a net return per unit capacity x (t ) at time t. If we further approximate
the problem by considering the continuo us form of (3.15) we note that the
expected value of the facility is given by:

G{K)~r [^ [ px(t)e~rtdtf(x(t))f{T)dx(t)dT. (3.16)
Jo Jo Jo

Replacing the expected value of capacity, Ke~dt, and integrating yields:

roo \e-(r + à)T_^i

G(K)+\ pKl- }f(T)dT.
Jo (r + o)

Since E { e~{r+b)T} is the Laplace transform of T, we obtain an expected value
given by:

The optimum capacity expansion is thus found by solving for K in

3G p r g(r + 6 /§ ,K+l)" | t pK 8 g
1 ] +

An analytical solution to this équation is very difficult, numerical results are
however, fairly easy to obtain. Simplification can also be used in obtaining less
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précise but analytically tractable results. Namely, using the mean extinction time
as the planning horizon, we obtain an optimum capacity expansion given by a
solution of:

— f - ! - _ L W - ( 5 + r ) / ô 2 - - ^ - (3 19)

If the détérioration rate is small, (3.19) reduces to

^ , / r . (3.20)

The analytical problems encountered in solving the optimum capacity
expansion problem are, as we note, difficult ones. For this reason, simplifying
assumptions were made yielding an approximate capacity expansion. For
practical application, however, the capacity probability distributions defmed
earlier allow the simulation of complex capacity expansion problems. Instead of
solving a numerical problem to détermine the optimum size of an expansion, we
may instead be able to compare the returns and risks of two capacity expansion
plans.

5. CONCLUSION

This paper has provided an approach to determining an optimum capacity
expansion under uncertainty. We have considered, as in Smith [12], a single
plant expansion but with a deteriorating capacity and a probabilistic future
demand. Thus, the paper can be viewed as an extension of past studies on
capacity expansion. Capacity expansions require a large commitment of
resources by a firm in the expectation of future returns. The costs of such an
expansion, the risks of expansion (or of not expanding) are very important in
determining the size of capacity expansion. To reach a judicious décision
concerning capacity expansion, it is necessary to quantify this risk and include it
as a part of managerial décision criteria.

This paper has reduced the mathematical problem of determining an
optimum capacity expansion to an analytically tractable form. When analytical
solutions cannot be obtained, the capacity probability distributions can be used
to compare through simulation alternative expansion plans.

REFERENCES

1. F. EGGENBERGER and G. POLYA, Uber die Statistik Verketteter Vorgange, Zeitschrift
fur Angewandte Mathematik und Mechanik, Vol. 1, 1923, pp. 179-289.

2. D. ERLENKOTTER, Preinvestment Planning for Capacity Expansion: A Multi-Location
Dynamic Model, Agency for International Development, New Delhi, India, 1970.

vol. 13, n° 1, février 197S



66 C.S. TAPIERO

3. D. ERLENKOTTER, Sequencing Expansion Projects, Opérations Research, Vol. 21,
Mardi-April, 1973.

4. D. ERLENKOTTER, Dynamic Muiti-Location Models for Capacity Expansion,
Proceedings of the 1973 Joint Automatic Control Conference, The Ohio State
University, Columbus, Ohio, June 20-22, 1973.

5. A. HALD, The Mixed Binomial Distribution and the Posterior Distribution, J. Roy.
Statist. Soc, Series B, Vol. 30, 1968, pp. 359-367.

6. N. L. JOHNSON and S. KOTZ, Discrete Distributions, New York, Houghton Mifflin
Company, 1969.

7. A. S. MANNE (Ed.), Investments for Capacity Expansion — Size, Location and Time
Phasing, Cambridge, Mass. M.I.T. Press, 1967.

8. A. S. MANNE, Capacity Expansion and Probabilistic Growth, Econometrica, Vol. 29,
1961, pp. 632-649.

9. A. S. MANNE and A. F. VEINOTT, Jr., Optimal Plant Size with Arbitrary Increasing
Time Paths of Demand, in [7], 1967, pp. 178-192.

10. G. POLYA, Sur Quelques Points de la Théorie des Probabilités, Ann. Inst. H.-Poincaré,
Vol. 1, 1930, pp. 117-161.

11. J. K. SENGUPTA and K. A. Fox, Optimization Techniques in Quantitative Economie
Models, Chicago, North-Holland Publishing Company, 1969.

12. V. L. SMITH, Investment and Production, Harvard, Harvard University Press, 1961.
13. C. S. TAPÏERO, Optimal Capacity Expansion with Storable Output, Cahiers du Centre

d'Études de Recherche Opérationnelle, 1972, pp. 159-168.

R.A.LR.O. Recherche opérationnelle/Opérations Research


