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OPTIMUM ORDERING POLICIES
WITH LEAD TIME FOR AN OPERATING UNIT (*)

by T. NAKAGAWA (*) and S. OSAKI (2)

Abstract. — We consider two ordering policiesfor spare units, where each spare unit can be delivered
after a constant lead time. ïntroducing the cost structure, we discuss the optimum ordering policies
minimizing the expected costs per unit of time. We further consider the repair limit policies.

1. INTRODUCTION

Consider an operating single unit subject to failure. The failed unit is replaced
immediately by a spare one if it is available, otherwise the failed unit must wait
for replacement un til a spare one is delivered. If the spare unit is always available
for replacement immediately, i. e., the lead time for the spare units is negligible,
the so-called "replacement problems" arise [3]. Many contributions to such
replacement problems have been made by Barlow and Proschan [3],
Scheaffer [8], Cleroux and Hanscom [4], and so on. However, if we cannot
neglect the lead time for replacement, we should consider ordering policies for
spare units. In such problems, Allen and D'Esopo [1, 2] considered a model in
which some failed units are repaired and the others are scrapped with certain
probabilities. Wiggins [9] considered the ordering policy in which the spare unit
is ordered at t0 units of time after installation of the original unit or at failure of
the original unit, whichever occurs first. He obtained the optimum ordering time
t% minimizing the cost function given by the inventory and shortage costs.

In this paper, we consider two ordering policies for spare units; the first is a
case that all the failed units are nonrepairable (i. e., replaced) and the second is a
case that some of the failed units are repairable. In the first, we generalize
Wiggins' model. ïntroducing a shortage, an inventory and an ordering cost, we
dérive the expected cost per unit of time in equilibrium. An optimum ordering
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time t% minimizing the expected cost is given by a unique solution of the équation
under suitable conditions. We further discuss a model in which the original unit
can be replaced by a spare one as soon as it is delivered, even if the original one
can work.

In the second, we adopt two repair limit policies [5, 6] to décide whether we
should repair or scrap. If the failed unit is scrapped, the spare unit is ordered
immediately. We dérive the respective expected costs per unit of time in
equilibrium and discuss the respective optimum repair limit policies.

Numerical examples of the optimum ordering policies in this paper are fmally
presented for illustration.

2. NON-REPAIRABLE UNITS

The original unit has been operating. If the unit fails then it is scrapped and is
replaced immediately by a spare unit when it is available. We carry on hand at
most one spare unit to serve as a replacement. Then, the following two ordering
policies are considered.

(i) Wiggins' model

Wiggins considered the following spare unit policy: The original unit begins to
operate at time 0. If the unit has not failed up to a fîxed time t0 (0 g t0 ^ oo) then a
spare unit is ordered at time t0. After a constant lead time L, the spare unit is
delivered and begins to operate when the original unit has failed or is put into
inventory when the original unit has not failed. If the unit fails before the time tQ

then the expedited order is made immediately and the spare unit begins to
operate as soon as it is delivered, after a lead time L. We assume that the failure
time for each unit has an arbitrary distribution F (t) with finite mean lfk.

Introducé the following costs: If the unit fails when the spare unit is not
delivered, then it can not operate until the spare unit is delivered. This incurs a
constant cost k1 per unit of time for shortage. On the other hand, if the spare unit
is delivered before it is needed, then it is put into inventory. This incurs a constant
cost k2 per unit of time for inventory. Further, a cost ci is suffered for each
expedited order of the spare unit when the original unit fails before time t0.
A cost c2 is suffered for each ordinary order of the spare unit which is ordered at
time *0. We assume that the expedited ordering cost cx is greater than c2. The
assumption is plausible in practical fields.

In this paper, we consider an infinité planning horizon. Wiggins derived the
optimum policy minimizing the total expected cost of the shortage and the
inventory without considering the ordering cost, under the assumptions that the
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failure time is exponential and the inventory cost increases exponentially. For an
infinité planning horizon, it is appropriate to adopt an expected cost per unit of
time in equilibrium as an objective function.

Consider one cycle from the beginning of the operating unit to its replacement.
Then, the expected cost of one cycle is given by the sum of the foliowing three
costs: (i) The expected shortage cost is

kA LdF{t)+\ (to+L-t)dF(t) = f c j F(t)dt, (1)
L J 0 J r0 J J t0

since the shortage cost is proportional to the shortage time. (ii) The expected
inventory cost is

F{t)dt, (2)
\-L

where F(t)=l—F(t). (iii) The expected ordering cost is

l 0 2 0 . (3)

Further, the mean time of one cycle is

(L + t)dF(t)+\ {to + L)dF(t)+\ tdF(t)

F(t)dt. (4)

Thus, the total expected cost per one cycle is

k2 P°
(t0) =

F(t)dt

The expected cost and the mean time at each cycle are the same, and hence,
Cx (t0) is equal to the expected cost per unit of time in equilibrium (see Ross [7],
P. 52).

Of our interest is to obtain the optimum ordering time tg minimizing the
expected cost C1 (t0) in (5) under the assumption that c1 >c2 . It is assumed that
there exists the density/(t) of the failure time distribution F (t). Let
R (to) = W (to + L)~F (to)]/F ( g a n d r (t0)=/(t0)/F(g.Then,bothK (to)and
vol. 12, n° 4, novembre 1978
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r (t0) are called by the failure rates and they have the same properties of the
failure rates, Le., R (t0) is increasing (decreasing) iff r (t0) is increasing
(decreasing), respectively (see Barlow and Proschan [3], p. 23). We restrict
ourselves to the case in which the failure rate has a monotone property and
continuous. Further, we assume that Cx (oo)<fc1, i. e., cx<kx/X, because the
expected cost of the System in which the order is made after failure of the original
unit would be less than that of the system which remains inoperative forever. Let

F {u)

(6)

for simplicity of équations. Then, we have the following theorem.

THEOREM 1: Assume that cx<kJX: 1° suppose that r (t) is monotonely
increasing, If qx (0)<0 and qx (oo)>0, then tg exists uniquely on (0, oo) as the
solution toqx (t0) = 0.Otherwise,t% = coor0accordingasqx (co)S0orqx (0)^:0,
respectively;

2° suppose that r (t) is non-increasing. Then, £g = co (0) if

(k2

Proof: Differentiating C1 (t0) with respect to t0 and setting it equal to zero, we
have qx (to) = 0. Further, from the assumption that cx <kJX, qx {t0} is
monotoneiy increasing (non-increasing) if r (t0) is monotonely increasing (non-
increasing), respectively.

i

First suppose that r (tQ) is monotonely increasing. lïqx (0)<0 and qx (oo)>0
then from the monotonicity and the continuity of qx (tQ), t$ exists uniquely on
(0, oo) as the solution to qx (to) = 0, which minimizes the expected cost Cx (t0),
Further, it is easily shown that if qx (oo)^0 then tg = oo and if qx (0)^0 then
t*=0 .

Next, suppose that r(t0) is non-increasing. Then, qt (t0) is also non-increasing.
Thus, it is easily seen that Cx (0) or Cx (oo) is not greater than Cx (t0) for any tQ.
Therefore, we have t$ = coiïC1 {^)^CX (0), i. e.,

and vice versa.

Q.E.D.
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In case of^ (0)<0and^1 (cx))>Oof 1 intheorem l,theexpectedcost.isgiven
by

C (f) k \k k2-^tt){c,-ci) (7)
^1{l0) — K'i^K'2 R(t*)

Further, the ordering policy when tg = oo represents that the order of the spare
unit is made immediately after failure of the original unit and the policy when
t* = 0 represents that the order of the spare unit is made at the same time of the
beginning of the original unit.

In the above theorem, we have assumed that cx < k1/X. Of course, we can also
prove that the above theorem under the weaker condition than cx <kJX} for
instance, cx<kx/X + k2L. However, in actual situations, any ordering policy
might be better than no order, in which the system has been remaining
inoperative forever. It would be waste to discuss an optimum policy under the
assumption that cx7zkx/X.

In case of'^ (0)<0 and qx (oo)>0 of 1 in theorem 1, we can obtain the
following upper limit of the optimum ordering time tg. This could be applied to
compute tg by the successive approximations (seë numerical examples below).

THEOREM 2: Suppose that cx<kJX, qx (0)<0, qx (co)>0 and r (t) is
monotonely increasing. Ifl0 is a solution to hx (to) = 0 thenl0 exists uniquely
(possibly infinité) and tg<ï:o> wnere

\ F(t)dtl2 l 2 0 2 F(t)dtl (8)

Proof: We can easily obtain

°I(r{to)>F(to)l\°I(t)dt, (9)

(10)

since the failure rate is monotonely increasing. Thus, we have qx (t0) > hx (t0) for
0<t0<oo. If To is a solution to h1(to) = 0 thenT0 is unique because hx (t0) is
monotonely increasing and tg<"ï0.

Q.E.D.

So far we have assumed that the expedited order has the same lead time L as
the ordinary order. In reality, it will be able to be smaller. So, we suppose that the
expedited order has a lead time Lx which might be not greater than L. Then, in a
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similar way, the expected cost is

(+\f —
F(t)dt+ClF(tQ) +lo+£

° + FWdt-lL-LJFitJ
(ut

(ii) Modifiée! Wiggins' model

In the Wiggins' model, it has been assumed that the delivered unit is put into
inventory if the original unit is operative. Hère, the model has the same
assumptions as the Wiggins' model except that the original unit is always
replaced as soon as the spare unit is delivered, even if it is operating. This model is
appropriate in cases such that an inventory task is very difficult or there is no
places to put a spare unit in inventory.

In the model, we do not need to consider the inventory cost because of the
assumption. The shortage cost is equal to (1) and hence, the total expected cost
per one cycle is

•f:
C2 (to)= - j ^ - (12)

L+ I °F{t)dt

Of our interest is to obtain the optimum f J minimizing the expected cost
C2 (t0) in (12) under the assumption that cx >c2. Let

{'+LF(u)du, (13)

where b1 = kx/(c1 — c2) and b2 = c2/(c1 — c2). Then, from the discussions similar to
the previous theorems, we obtain the following theorems without proving.

THEOREM 3: 1° suppose that r (t) is monotonely increasing. Ifq2 (0)<£>2
$2 ( 0 0 )> i>2' then t* exists uniquely on (0, oo) as the solution to q2 {to) = b2.

Otherwise, £Q=OO or 0 according as q2 (oo)Sb2 or q2 (0)^:b2, respectively;

2° suppose that r (t) is non-increasing. Then, £g = oo (0) if

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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THEOREM 4: Suppose that q2(0)<b2, q2 (oo)>b2 and r (t) is monotonely

increasing. Ift0 is a solution to h2 (t0) = 0 then t0 exists uniquely {possibly infinité)

and t*<t0, where

In case of q2 {0)<b2 and q2 (oo)>£>2 of 1 in theorem 3, the expected cost is

3. REPAIRABLE UNITS

Suppose that the failed unit can be repairable. However, it might be sometimes
better to scrap than to repair in actual situations. From this point of view, the so-
called "repair limit policies" have been considered by [5, 6]. In this section, we
consider the two repair limit policies which are given by a repair time limit and a
repair cost limit. If the failed unit is decided to scrap by a repair limit policy, then
the spare unit is ordered immediately and is delivered after a lead time L. In the
two models, we dérive the expected costs per unit of time in equilibrium and
discuss the optimum policies minimizing the expected costs.

(i) Repair time limit

When the original unit fails, the repair time is estimated. If the repair is
estimated to be completed up to time t0, then the failed unit undergoes repair
immediately. It is assumed that the estimation time is negligible. If the estimated
repair time is greater than t0, then the failed unit is scrapped without repair and
the spare unit is ordered immediately. The ordering policy dépends on the repair
time limit t0. It is assumed that the estimated repair time for each unit has an
arbitrary distribution G {t) with finite mean l/\x. The repair incurs a constant
cost fc0 per unit of time. The other notations are the same as the previous models.

Consider one cycle from the beginning of the operating unit to the next
opération. If the failed unit is repaired, then the ' expected cost is

(0 which is the sum of the repair cost and the shortage cost. If
o

the failed unit is scrapped, then the expected cost is (k1 L + cJG (t0) which is the
sum of the ordering cost and the shortage cost. Thus, the total expected cost per
one cycle is easily given by

(16)

vol. 12, n° 4, novembre 1978
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Of our interest is to obtain the optimum t* minimizing the expected cost
C, (ro)in (161. Let

- c 1 ) [t0

J o

(17)
J o

Then, we have the following:

THEOREM 5: The t* exists uniquely on (0, oo) as the solution to
q3 (to) = ( k 1 I + c1)A.

Proof: Differentiating C3 (t0) with respect to t0 and setting'it equal to zero, we
have q3 (to) — (kiL-\-c1)/X. It is evident that q3 (0) = 0 and q3 (oo) = oo.

If (kQ + k1)/X^c1—kQLt then <?3 (t0) is monotonely increasing, otherwise
q3 (t0) is a convex fonction. In either case, t* exists uniquely on (0, co) as the
solution to q3 (to) = (k1L + c1)/X.

Q.E.D

In this case, the expected cost is

if u r - , (18)

It is further shown that t%^

(il) Repair cost limit

When the original unit fails, we estimate the repair cost of the failed unit. If the
estimated repair cost is less than a ûxed cost c0, then the failed unit begins to
repair. It is assumed that the estimated repair cost of the failed unit has an
arbitrary distribution H {x). On the other hand, if the estimated repair cost is not
less than the cost c0, the failed unit is scrapped and the spare unit is ordered
immediately.

In a similar way of obtaining (16), the expected cost per unit of time in
equilibrium is

xdH (x) + (kjii) H (c0) + (k,L + cx) H (c0)

Let

q4 (c) - (1A + 1/n) (c - c j + (L - l/u) f f H(x) dx - kjx\. (20)
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Then, we have the following theorem without proving:

THEOREM 6: 1° suppose that L ̂  l/|i. Ifq4 (0) < 0 then c% exists uniquely on (0,
oo) as the solution to q4 (co) = O, otherwise cJ=O.

2° suppose that L=l/\i. Then, c^^cl.
In case of 1 in theorem 6, the expected cost is

In the above two models, we have assumed that the order of the spare unit is
made after the failed unit is decided to scrap by the repair limit policy. Ho we ver,
it would be reasonable to consider an advanced ordering policy in which the
order might be made before failure, taking account of the length of service of an
operating unit. The problem of such a policy will be able to be solved by
connection with the ordering policy discussed in section 2 and the repair limit
policy. However, it might be too difficult to do so analytically.

4. NUMERICAL EXAMPLES

We have discussed the optimum ordering policies, where we have adopted, as
the criteria of optimality, the expected costs per unit of time in equilibrium. In
this section, we show numerical examples.of the optimum ordering time t$ and
their associated values.

We assume that dF(t) = a(aLt)exp(-at)dt(a>Q). Then,

It is noted that the failure time distribution is a gamma distribution with a shape
parameter 2, which has a monotone increasing failure rate with r (0) = 0 and
r(co) = a.

As an example, we consider the modified Wiggins' model. From theorem 3, if

and

then tg exists uniquely on (0, oo) as the solution to

A(l+at) + Be-at = C, (22)
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where

In this case, the expected cost is

C2(fS) = fcI(l-e-a£') + [(c1-c2)a
2t*-fc1aLe-aLV(l+atS). (23)

Moreover, from the inequality that t*<l0 in theorem 4, we have

0

if the right-hand side is positive.
TABLE I

Dependence of the mean failure time i/X in the optimum ordermg time t
and its associated expected cost C2 {t*)for modified Wiggins' model

1 = 3, c2 = l, ^ = 0 . 0 1 , L = 5

i A

15
16
17
18
19
20
2 1
22
2 3
2U
25

*

7.01
7-89
8.80
9.7^

10.71
11.70
12.72
13.75
lU.80
15.87
16.95

TABLE

Dependence of the lead time L in
and its

(1A-2/

L

1
2
3
1*
5
6
7
8
9

10

associated expected cost C2

*0

21.03
29-1*2
1*3.09
68.75

132.81
552.70

es
OO

00

0 0

0 0

5 II

w
0.1319
0.1271
0.1225
0.1182
0.111*2
O.llOU
0.1068
0.1033
0.1001
0.0971
0.09^2

the optimum ordermg time t$
(t%)for modified

foc = 2O, dF (t) = ot(ou)exp(-ou) dt, c1 = 3,

*

23.21*
19.15
16.05
13.63
11.70
10.15
8.88
7781*

6.97
6.25

00

00

09

00

552.70
1*U.'36
23.03
15.52
11.68
9.35

Wiggins' model

c2 = l,k1=0.0l)

*
C 2 C t 0 }

0.11*05
0.1326
0.121*9
0.1175
O.llOU
0.1036
0.0973
0.0911*
0.0859
0.0809
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Therefore, the optimum ordering time t* can be obtained from (22) by
estimating the initial value from (24) (or the mean failure time 1/X) and adopting
the successive approximations. Table I and II show the numerical examples of
the modified Wiggins' model of the dependence of the mean failure time 1/X and
the lead time L, respectively in the optimum ordering times tg and their
associated quantities.
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