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R.A.I.R.O.
(9e année, octobre 1975, V-3, p. 75 à 91)

NON-LINEAR PROGRAMMING
AND THE MAXIMUM PRINCIPLE

FOR DISCRETE TIME OPTIMAL CONTROL PROBLEMS (*)

by T. L. MAGNANTI (l)

Abstract. — Results in non-linear programming are used to prove a generalized version
of the maximum principle for fixed-time discrete optimal control problems. Proofs are based
upon the implicit function theorem and a theorem of the alternative for Systems of linear ine-
quatities over a convex set: they do noty os in the past, require Brouwer*s fixed-point theorem.

INTRODUCTION

Tt is becoming apparent that optimal control theory and non-linear pro-
gramming are highly related. This point of view is illustrated by the recent
text of Canon, Cullum and Polak [1]. It seems yet to be fully exploited,
however.

Our purpose here is to utilize results from non-linear programming to
establish a generalized version of the maximum principle for fixed-time discrete
optimal control problems. These problems have been treated in various degrees
of generality by a number of researchers ([1], [3], [4], [5], [10], [11], [12]).
We shall consider an extension of a version originally discussed by Halkin [3]
and later generalized by Holtzman [4] and Canon, Cullum and Polak [1].
Thus, we will not require convexity of the set of admissible controls (though
a certain convexity condition will be imposed) nor do we require differentia-
bility with respect to the control variables. We also admit inequality constraints
on the state variables as well as equality constraints on the initial and terminal
state vectors.
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76 T. L. MAGNANTI

For motivation, we might note that linear optimal problems trivially fit
out framework. In addition, Halkin [3] fias shown that discrete approximations
to continuous problems satisfy the hypothesis that we shall impose.

The non-linear programming approach that we adopt should be contrasted
with previous approaches. We do not require intricate arguments based upon
Brouwer's fixed point theorem, nor do we rely upon canonical approxi-
mations [1]. Instead, we utilize two basic resuits from non-linear programming
stated as Lemma's 1 and 2 below. The first resuit is a direct conséquence
of the implicit function theorem and a well-known lemma (see [7]) due to
Motzkin. It was established by Mangasarian and Fromowitz ([7], [8]). A short
proof is given in [5]. Though the resuit is stated as a "maximum principle"
in [7], it has not been used previously in the present optimal control context,
but rather as a direct extension of the classical Fritz John theorem of non-
linear programming applied with differentiability requirements that we do
not impose.

The second resuit is essentially a special case of a theorem of Fan, Glicksburg
and Hoffman ([2], [7], p. 63). The version that we give can be established
easily via an elementary separating hyperplane argument.

Bef ore stating these results, let us set some notation. R dénotes the rea
numbers, R" w-dimensional real space (with the usual topology). Subscripting
dénotes distinct vectors and superscripting vector components. This same
convention will be applied to functions in the sensé that if g : Rn -* Rm

9

then g* dénotes the Z-th coordinate function, g* : Rn -• R.

V g(x) dénotes the matrix (h$J) = (dg1 (x)fdxJ)x=~. Similarly, iff:Rn->R
is a function, V ƒ (x) is the gradient vector evaluated at x = x, i. e.,

Finaliy, if ot, u e Rn and A is a real valued matrix, then a v dénotes inner
n

product as does a A and A v, i. e., (A v)1 = £ A{j VK Also, vector equalities
j - i

and inequalities hold componentwise.

Lemma 1 (first linearization lemma): Let Cçif" be a convex set with a
non-empty interior and let ƒ : Rn -> R, <p : Rn _• Rmi, £, : Rn -> Rm* be given
functions. Let x solve

max/(x),
subject to

xeC.
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NON-LINEAR PROGRAMM1NG AND DISCRETE TIME CONTROL 77

Assume that <p (x) is continuously differentiable in a neighborhood of x
and that ƒ (x) and Ç (x) are differentiable at x. Then, if the vectors

are linearly independent, the system

V/(x)(Ax)>0,

Vcp(x)(Ax) = 0,

VÇ'(x)(Ax)<0 for fe{l ^j^m2 : ^ (x ) = 0},

x + Axe{interior of C},

has no solution in the variables (Ax)k, k = 1,... , «.

Lemma 2: Let C ^ Rn be a convex set and let A and i? be m% by « and
m 2 by « real valued matrices. If the system

Ax = 0,

Bx<Oy

xeC,

has no solution, then there exist aeRmi, aeRm\ a g 0, (a, a) ^ 0 such
that

O(AX) + OL(BX)^Q for ail X e C. (*)

For convenience, let us record the following special case of this resuit
to be used later.

Remark 1 ; Let C £ Rm be a convex set; let Ax, A2, BY and B2 be respecti-
vely ml by N, mt by M, w3 by N, and m4 by M real valued matrices. Then,
by Lemma 2 if the system

Alv+A2w+p = 0,

Bj t; < 0,

B2 w < 0,

peC,

has no solution, then there exist ae/2m>, \J/ e /?m3. iieR™4, v|/ ^ 0, M = 0,
(tf, *|/, ̂ ) / 0 satisfying

1 =0 ,

2 =0 ,

a p ^ O for ail peC.

n° octobre 1975, V-3.



78 T. L. MAGNANTI

If there are no Bx and/or B2 constraints, we may eliminate v[/ and/or \x
above. To obtain the equality constraints above, simply take positive and
négative unit vectors for v and w in

1. PROBLEM STATEMENT

Let Qo, flj, ...jQ-r^i be given subsets of Rr. Assume that each of the
following functions is given:

ƒ, : R - x Q , - * * " 0 = 0, 1, . . . . T - l ) ,

h : R" ->* ' ,

g0 : Rn -* K,

g : #• ->*",

4, : R"-+Rmt 0 = 0, 1, . . . , T).

Problem: Détermine state vectors x0, j c t , . . . , JCT e Rn and control vectors
w0, ul9 . . . , M T ^ ! e/2 r to

subject to
/i(xo) = 0,

^ + i - ^ = X ( ^ W r ) 0 = 0, 1, . . . , T - l ) ,

, (P)
0 = 0,1, . . . , T ) , \
= 0, . . . . T- l ) .

Suppose that x0, .v1? . . . , xT and w0, MP . . . , uT_t solve(P). Some typical
hypotheses for the problem are:

Hl) For every ueQt the vector valued function ft (x, w) is continuously
differentiable (J) with respect to x in a neighborhood of x = *f

0 = 0, 1, . . . , r — 1).
H2) For every x e R'\ the set {ft (x, u) : u e Qt } is a convex subset of

R" o - o s i, . . . , r — i).
H3) The vector valued functions h{x) and #(JC) are each continuously

differentiable in neighborhoods of x = x0 and x = JCT respectively.
^ 0 (JC) and the vector valued functions qt(x) (t = 0, 1, . . . , J ) a r e
differentiable at respectively x = JCT, X = x0, . . . , x — JCT.

C) A referee has suggested that the results of this paper remain valid if we replace all
continuous differentiabiîity assumptions with weaker strong differentiability assumptions
which are discussed, for example, in [9].
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NON-LINEAR PROGRAMMING AND DISCRETE TIME CONTROL 7 9

H4) The vectors VW(Jc0)O'= 1, . . . , / ) are linearly independent as are
the vectors V gj (xT) (j= 1, . . . , m).

H 5) For each t = 0, 1, . . . , T with mt ^ 0, no nonzero vector \ e Rmt,
\ ^ 0 satisfies

>wVgr(x,) = 0,

\qAxt) =0.

(Note that if for each fixed /, the vectors ; Vq\ (xt) : q\ (xt) = 0 ;
are linearly independent, then condition H5 is valid.)

The discrete maximum principle for (P) states that there exists
(adjoint) vectors p09 p i 9 .. .9pT e R-, (multiplier) vectors XteRm', Xt^0
(t = 0, 1, . . . , T— 1), vectors a e/?', p e Rm and a scalar p0 = ° satisfying :

0) Not all the quantities po,pv . . . , p T , a, P and Po are zero.
1) Hamiltonian maximization: for all u

P» + i/r(*i» wf) è Pt+Jt(Xt> w) (̂  = 0, U . . . , r - 1 ) .

2) Adjoint équations ( !):

Pi-Pi + i = Pi+i Vx/,(xf5 ttJ + ^ V f t ^ , ) ( f - 0 , 1 r-1).

3) Transversality conditions :

4) Complementary slackness:

W x , ) = 0 (r = 0, 1, . . . . T).

Our purpose will be to prove an extended version of the fact that H1-H5
imply this discrete maximum principle. We will use the first linearization
Lemma and Remark 1 as basic tools.

Towards this end, it will be convenient to consider a generalized version
of (P). Let U be a given subset of RL and suppose that each of the following
functions are given:

F : /*"->ƒ?,

H : RN x RM x U - Rr,

G : RN->Rm
9

Q : RN-*R*\

Q : RM-+ Rs\

O V, ft (xt, ut) dénotes the matrix V d(xt) where d{x) =~ft (x, ut). This same convention
applies to any function of two or more vectors.

n° octobre 1975, V-3.



8 0 T. L. MAGNANTI

The new problem is:

Détermine y e RN, z e RN and ue RL to

max F (y)

subject to

<?()>) = 0,

(P')
H(y9z,u) = 09 \

ueU.

Assume that y, z, u solve (?'). We shall impose the folîowing analogs of
hypothesis HÏ-H5.

Hl ) For every u e U the vector valued function H (y, z, w) is continuously
differentiable with respect to (y, z) in a neighborhood of (y9 z) = (y, z).

H2) For every y e RN, z e RM, the set ; H (y, z, u) :ue U [ is a convex
subset of Rr.

H3) G (y) is continuously differentiable in a neighborhood of j> = y. F (y)

and Q (y) are differentiable at y = y and Q (z) is differentiable at

z = z.

H4) The vectors V GJ (y) (j= 1, . . . , m) are linearly independent.

H5) Let

dénote indices of "active constraints" and let

( |. | is cardinality).

AIso, let QA : RN -> /îs» dénote the vector valued function defined
by restricting the Q1 (i = lf..,9sx) to ^ and similarly define QA (z).
Then A = 0 or there is no non-zero ji^ e Jts«f ^ ^ 0 with \iA WQA (y) — 0
and /* = 0 or there is no non-zero \iA e R*2

9 \i
A ^ 0 with jiA V g A (z) = 0.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle
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Note that problem (P) corresponds to the case where

81

h(x0)

/*o \

z = " =

/«o \

• = Q o x Q x x . . .

and

-xT

Note that

[V.Hfoz, ii), V,HG%z, ti)]

With these associations H1-H5 are direct conséquences of H1-H5.
Observe that the assumptions imposed upon problem (P') do not require

that y can be expressed as a function of z and u from H(y, z, u) = 0, although
this is true for problem (P) with the associations given above.

n° octobre 1975, V-3.



8 2 T. L. MAGNANTI

H. GENERALIZED DISCRETE MAXIMUM PRINCIPLE

The proof of the generalized discrete maximum principle becomes parti,
cularly transparent when U= [ut, . . . , uk, u }. Let us begin by briefly intro-
ducing the argument in this case. The idea is to use the convexity of
{ H (y, z, u) : u e U }, L e. assumption H2, to replace the condition u e U
in (P') so that Lemma 1 applies. Given any y and z and any 9 l5 0 2 , . . . , 8k

with

H2 implies the existence of a u = u(Qu ..., 9fc, x, y) e U such that

H(x, y, u) = (l- £ e.Wx, y, u)+ £ QjH(x, y, Uj).

Consequently, xy y and Qj = 0 must solve problem (P') when / / (x, y, u)
is replaced by the right-hand-side in the last equality and conditions £ 9̂ . •£ 1
and 9; ^ 0 serve as the convex set C in Lemma 1. The maximum principle
now can be established essentiaily by applying Lemmas 1 and 2 to the new
problem. Details are presented below in the context of the gênerai case.

When the set U is not finite, a similar argument can be used by determining
"finite generators" for U. The following elementary fact concerning matrix
valued functions is useful. Let U be a given set and suppose that for each
u e U, \|f (u) is a real valued matrix. We will call \|/ linearly independent over U
if there is no n e Rdi, % # 0 such that n v|/ (u) = 0 for all u e U.

Remark 2 ; ^ is linearly independent over U if and only if there are
uï9 . . .9uDe U such that the matrix

has full row rank.

Proof: If 7i e R**, % ̂  0 and n i|/ (u) = 0 for all u e U9 then ir M = 0 foi
any choice of ui9 w2, . . . , uD e t/. Thus no M chosen as above can have full
row rank.

Conversely, suppose that vj/ is linearly independent over U and that M is
given. Let rows rXi .. .9rk, k < dt be linearly independent rows of Afspanning
its row space. Then any other row rk+1 of Af can be expressed uniquely
via K M = 0 with xcrfc+i = 1 and nt = 0 for / ^ rv r2, ..., rk. By the iinear
independence of v|/, there is a wö+1 such that nty (%+ i) ^ 0. Thus, rows

Revue Française d'* Automatique; Informatique et Recherche Opérationnelle



NON-UNEAR PROGRAMMING AND DISCRETE TIME CONTROL 83

ru...9rf9rk+1 of [ty (w^, . . . , x|/ (uD), \|/ (uD+J] are linearly independent. This
matrix either has full row rank or we may continue adding \|/ (w.) as above
until the resulting matrix does. •

Remark 3 ; Suppose that \|/ above is given by \|/ (w) = [ ) for fixedu) U *<«>
real matrices A and B where cp (u) is a real valued matrix. Then \|/ is linearly
independent if and only if there are uv . . . , uDe U such that

\B (pCuj), . . . , < P ( M D ) /

Proof: The row ranks of f . . . ]
\B <f(ux) B (p(M2) B <p(uD)J

' h

M'

has full row rank.
f A À À \

and
\B <p{ux) B (p(M2) B <p{uD)J

M' are the same.

Using these results, the first linearization Lemma and Remark 1, we now
show:

Theorem 1 (generalized discrete maximum principle): Let y = y, x — x and

u = û solve control problem (P'); assume H1-H3 and H5. Then there exist
a real number Po ^ 0 and vectors p e Rm, a e Rr, u e i£s>, JU e RS2, ô e RN

with n ^ 0, ï̂ S 0, (pOï p, a) # 0, satisfying

; 5, M),

(d) a [H (y, z, M) - H (y, zs «)] ̂  0 for ail uel / .

Proof: If the matrix valued function

9zyû) VzH(yy,z9û) H(y9ztu)J

is not linearly independent over U, then there are P e Rm, a e Rr, (P, <r) ̂  0
such that

and a / / (y , z, u) = 0 for ail ueU.

n° octobre 1975, V-3.



84 T. L. MAGNANT!

Taking po , \i, jï all zero and incorporating

H(y9z, w) = 0 in

the conclusions (a)-(d) are satisfied.

On the other hand, if i|/ is linearly independent over U, then by Remark 3,
there are ux, . ,.9uDeU such that

1
y,z,«)J_

VyH(y9z,u) V2 H (y, z, u) H(y,z,Ul) ... HO>,z,t/D) ff(y
has full row rank. This resuit will provide the hypothesis for an application
of Lemma 1.

D+l

Let ueUbe fixed. By H2, given any 9. ^0(j= 1, .. .9D+1\ £ 8, â 1,
J=i

y e RN, z e RM, there is a u (0 t , . . . , 9^+ x, y, z) e U such that

/ D+l \ D

H(y, z, u(Qu ..., e D + 1 , y , z)) = 1 - 1 *j)H(y, z, U)+ ^ 9 y H ( y , z, u , )

Consequently, y = y, z = z, dj = ë ; = 0 (y = 1 , . . . , D + 1) must solve
the problem (in the variables y, z, 8 j , . . . , 6 D + 1 ) :

max F (y)
subject to

G 00 = 0,

eoo = o,

°' (P)( D+l \ D

i - Z ey ) H (y, z, «)+ Z e,# o>, z, Uj)+e
i=l / 7=1

' = J 0 \ z, 01( ...,
D+l

where C = \(y, z, 01( . . . , 0D+1) : y e ^ , zeRM,

G;^ 1 ,6 ;^ 0 0 = 1 , . . . ,
y = l

Utilizing Hl and H3, we see that this problem satisfies the hypothesis
of the first linearization lemma with the association x = (y, z, 91S . . . , 9D+1)
and the obvious associations for (p and Ç. Note that V <p (x) = M' above

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



NON-LINEAR PROGRAMMING AND DISCRETE TIME CONTROL 85

which has fuU row rank. By that lemma, the following System has no solution :

VF(y)v>0, (1)

VG(y)» = 0, (2)

WQA(y)v<Oy (3)

VQx(z)w<Q9 (4)

VyH(y, z, u)v + V,H(y, z, w)">+ £ #G>» ^ U j ^ + tf (y, z, M ) ^ = 0, (5)

E e y < i , ey>o 0 = 1, . . . ,z)+i) . (6)

Observe that we have used H(y, z, u) = 0 here.
Note that by scaling, (l)-(6) has no solution if and only if (l)-(5) and

ê,.>0 0 = 1, . . . , D + l) (6')

has no solution. Also note that we may write (5) as

9 z, «)i> + Vrtf (]?, z, w)u;+ f H ö , *> uj)*j + P = 0, (5')

where

Consequently (l)-(4), (5') and (6') have no solution for any

peS = {H(y, z, u)QD+1 for some ueU, QD+i > 0}.

Observe that 5 is a convex set, since if p1; p2 e iS then

?,i, M)0D + 1

and
p2 = H(y> z> «')%+! for some M, M'GC/, 0 D + 1 > 0, ê^+1 > 0.

But then for any X e [0, 1],

H {y, z, u)

n° octobre 1975, V-3.



86 T. L. MAGNANTI

By H2, the bracketed term equals H {y, z, u) for some u e U; thus
Xp1+(l—X)p2e S.

Consequently we may apply Remark 1 to system (l)-(4)s (5') and (6') over 5,
i. e., there is a scalar Po è 0 and vectors P e Rm

y a e Rr, \iA e RSI, \iA e RS2

with \iA S 0, ^ ^ 0 and (p0, p, cr, \iA, \iA) ¥= 0 satisfying

:, M) = O,

for all 9 ;>0 (y = 1, . . . , D\

j;, z, u)QD+1 S 0 for ail 0D+1 > 0 and ueU.

Note that (p0, p, a) ̂  0, since otherwise either \iA ¥" 0 or u^ ̂  0 and
hypothesis H5 is violated. Also, the last inequality in this System implies
that a H (y, z, u) ̂  0 for ail u e U, Incorporating H (y9 z, u) = 0 in
this last statement, defining 5 = a Vy H (J\ z, u) and letting uf = 0 for
i$Âi\ï

i = 0 for i$Â, conclusions (a)-(d) of the theorem are satisfied. •

Remark 4 ; If the vectors V GJ (y) (j = 1,..., m) are not linearly independent,
then Theorem 1 holds by taking p V G (y) = 0, p # 0 and (p0, cr, u, \x9 8) = 0.
Thus H4 will ruie out this trivial case.

C o r o l l a r y 1 . 1 ( d i s c r e t e m a x i m u m p r i n c i p l e ) : L e t ut = üt,(t = 09...,T— 1)
and xt = xt (t == 0, '..., T) solve control problem (P); assume Hl through H5.
Then the discrete maximum principle holds.

Proof: We previously showed that (P) is a special case of (P') and that H1-H5
hold when we make this association. Let a, u, u and 8 from Theorem 1 be
given by:

a = ( — a, pu ..., Pr-iX

In these terms, conséquences (a)-(d) of Theorem 1 are translated into the
following terms for (P):

-Pr = —PT>

- a V h (x0) + p, [/ 4- Vx/o (xOs M0)] + %0 q0 (x0) = 0,

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



NON-LINEAR PROGRAMMING AND DISCRETE TIME CONTROL 87

( = 0

T - l T-l

00 X Pt+ift(xt,üt)£ X Pt+ift(x»ut)
t=0 t=0

for all
(w0 , . . -, MT-

Defining po = aV h (3c0), (a) and (Z>) become the adjoint équations and
transversality conditions. Since ^ (*,) ^ 0 and kt ^ 0, (c) implies the com-
plementary conditions Xt qt (xt) = 0 (f = O , . . . , r — 1). Successively taking
w, = w, 0* # t)fort=0, 1, . . . , T— 1, (d) implies Hamiltonian maximization
for each / = 0 , . . . , T— 1. Finally, /?0,/? ls . . .,pT, a, P and Po are not all
zero from Theorem 1 and the above associations.

Remark 5 ; (i) As in Remark 4, H4 rules out the trivial case where
P V g (y) = 0 and P is the only non-zero multiplier or adjoint variable.
Similarly H4 rules out the analogous case where otV/i(y) = O, a ^ 0.

(ii) In the case of no inequality constraints on state variables, non-
singularity of [I + Vxft (xt9 «,)] (t = 0 , . . . , T— 1) implies that pt # 0
(f = 0, l , . . . , r — 1 ) . If in addition the vectors Vg0 (jtr), Vgl (xT\ . . . ,
S/gm (xT) are linearly independent then pT ^ 0.

III. AN EXTENSION

Holtzman [4] extended the discrete maximum principle by allowing g0

to be a function of u as well as xt and introducing the concept of directional
convexity. We show hère that an analogous assumption permits our proof
of the generalized maximum principle to be extended easily. When only F
and H below are functions of u, assumption H2' is equivalent to Holtzman's
définition of directional convexity (see [1]).

Suppose that y = J>, z = z, u = ü solves the control problem :

max F(yt u)
subject to

ueU.

n° octobre 1975, V-3.
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88 T. L. MAGNANTI

Let Hl ' be the same as Hl and modify H2-H5 to:

H2') for every y e RN, z e RM
9 ueU,u' eU,\e [0, 1] there is a u e U

such that

F (y, u) ̂  XF(y, u) + (l-X)F(y, u')9

Q(z9 u)^X Q(z, u) +(1 -\)Q(zt M'),

G (y, u) = K G(y, u) +(1-X) G (y, M'),

/f (y, z, S) = Xff(y, z, «) + (l-X)7/(y, z, ti').

H3') For every u e U, G (y, u) is continuously differentiable in a neigh-
borhood of y = y, F (y, w) and Q(y9 u) are difFerentiable at y —y,
and g (z, u) is differentiable at z ̂ = z.

H4') The vectors VGJ (y, u) (j = 1 , . . ., m) are linearly independent.

H5') H5 with Qf (y) and g ' (z) replaced by Ql (y, w) and Q' (z, w) in the
définitions of À and 4̂.

With these modifications Theorem 1 becomes:

Theorem 1 A: Let y ~ y, x = 3c, u = ü solve contro) problem (P"); assume
HT-H3' and H5'. Then there exist a real number Po = ^ anc* vectors
p G Rm, a e Rr, \i e Rs\ p e R**9 G G Rr with \i S 0, jï ̂  0, (Po, p, a) ̂  0
satisfying

Q(y, û);(a')

(b')

(e')

(d')

where

- 5 = p0 V,f (y,u)-

Hfi(p,«) = 0,

[jr(5)-jr(u;

fpV,G(j;,

?Ô(i'»«) =
) ]^0 for

e(i,«);
= 0;

all ueü

H) S Pof (y, u) + p G(j7, M) + H 6(y. u)+\îQ(z, u) + oH(y, ï, u).

Proof: The proof is analogous to that of Theorem 1 and will be omitted.
We simply note that v|/ (M) is now defined as

/ V v G ( y , « ) GCy,«)\

\V,H0,z,u) V2tf(y,z,u) H(y,z,u)J

Revue Française a"'Automatique, Informatique et Recherche Opérationnelle



NON-UNEAR PROGRAMMING AND DISCRETE TIME CONTROL 89

Also, in problem(P), functions F, G, QA and QA are each replaced by analogs
of the form for H in that problem. For example, F (y) is replaced by

/

\

D + l

Remark 6 : H4' admits a statement analogous to Remark 4. In addition,
the statement of Theorem 1 A can be specialized to an extended version
of problem (P), giving an extension of the discrete maximum principle. Details
are omitted.

IV. A SEPARATION PROPERTY

Let us consider the following linearized version of (P') about (y, z, u):

max V F (y) v
subject to

V G(y)v = 0 [v = (y-y), w = (x-x)],

VQA(y)v<0,

vëJ(S)to<0,
VyH(y, z, u)v + VzH(y, z9 U)w + H(y9 zf u) = 0s ueU.

This is a standard first order strict inequality approximation except for
the linearized H équation. Hère we have omitted G (y) = 0,
QA (j) = o, QÀ(z) = 0, H (y, z, u) = 0 and the constant term F (y).

Let

St = {veRn : VF(y)v >0 , V G(y)v = 0, V QA(y)v < 0}
and

S2 = {veRN :VQÀ(z)w<09

VyH(y, z, û)v + VsH(y, i, u)w + H(y, F, u) = 0

for some ueU, weRM}.

Sx and S2 each reflect half of the above linearized problem.

Halkin's [3] approach to the discrete maximum principle was to first prove
that there is a hyperplane separating St and S2, He considered the case with
no state constraints Q or Q and with H having the associations for the control
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problem (P) that were given in section I. Since this séparation property may
be of independent interest, let us see how it results from the arguments of
Theorem 1.

Lemma 3 (second linearization lemma): Let y — yy x = x and u = ït solve
control problem (P'); assume H1-H5 and that the matrix [Vy H(yy z, Ü),
Vz H (y, z, «)] has full row rank. Then St and 52 are separated by a hyperplane.

Proof: For the most part, the proof is the same as the proof of Theorem 1.
Consequently, we adopt the notation used there and only sketch modifications
to that proof.

If \|/ (u) is not linearly independent over u, then let (p, à) ¥" 0 and 8 be
defined as before, that is

a H (y, z, M) = 0 for ail ueU.

Then consider the hyperpîane { x : 8x = 0 }. Note that 8 ^ 0 since the
rows of VG(y) are linearly independent as are those of [Vy H (y, z, û)t

V2 H (y, z, u)l For veSv 8v = — p VG (y) v = 0. For v e S2, there are
w e JR"? and u e U so that

Sv = vVyH(y, ~zy u)v = a[Vy//(y, z, ü)v + VzH& z, ïï)w+H(y9 z, u)] - 0.

Thus { x : Sx = 0} séparâtes 5 t and 52.

If v|/ (M) is linearly independent over w, then let

: V Q\z)w < 0,

H(y, z, ü)v + VzH(y, is M)W

+ Z #(y, 5, Uj)dj+H(y, z, «)eD + 1 - 0,

Z 8 i < l , 9,.>0, O = 1, . . . , D+l) for some ueUy

where u19 .. .>uD are defined as in the proof of Theorem 1. By the argument
used previously to show that the set S is convex, we can easily establish that
S* is convex. Since S± is convex and équations (l)-(6) in Theorem 1 have
no solution for u e U, Sx and 5 | are disjoint hence separated
by a hyperplane. But 52 £ closure S% (let 0O+ x -> 1) so that Sx and S2 also are
separated.
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