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THE RELEVATION TRANSFORM
AND A GENERALIZATION

OF THE GAMMA DISTRIBUTION FUNGTION

par Martin KRAKOWSKI

Abstract. — Survival models arising in mathematical demography, in renewal and
in replacement models lead to a generalization of the Gamma distribution function. In these
models the reîevation product corresponds to the addition of random variables, generally
dependent. The reîevation product is non-commutative, non-associative, and only left-
distributive.

In the case of auto-relevation, a reîevation product of two identically distributed random
variables, a measure of renewal gain or life-extension is described by an expression akin
to Shannori*s entropy.

A common generalization of both the reîevation and convolution opérations is indicated
in Section 8.

Section l

Définition. s(t) is a survivability function if 1 —s(t) is the cumulative distri-
bution function of a non-negative random variable. s(t) is interpreted as the
probability that a newborn individual will survive (at least) till age t; or that
a new item will give at least t time units of service.

The probability density that a newborn individual will die at age t is
— s'(t)l cf. Appendix. Fpr simplicity of exposition we will assume, whenever
needed, the differentiability of the functions considered.

Theorenu Let ^4(0 and B(t) be survivability functions. Then

(1.1)

is also a s.f.
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108 M. KRÀKOWSKï

Proof. C(0) = 1, since A(0) = 1. C(t) tends to zero as t tends to infînity
since A(t) and B(t) do so and the intégral in (1) obviously remains finite. Finally,

U.1 a) C'(0 « - * '

since £ '(0 < 0 and dA(x) < 0. Therefore C(f) is a s.f. It follows from (1 a)
that C'(0) = 0.

To abbreviate the notation we introducé the symbol # , and write

(1.2) C{t)^A(t)#B(t) or even C = A#B.

The asymmetry of # suggests, correctly» the non-commutativity of the
opération.

We will say that C(t) is the relevation oîA{t) by B(t), the term being selected
because of its possible interprétations, as shown below. Indeed, it was in
connection with the following two examples, Sections 2 and 3, that the notion
of the relevation transform was introduced by the author. We will also refer
to C(t) as the relevation product, or relevation, of A (t) and B(t).

Section 2. An item from a population with the survivability function A(t)
is being replaced at the time of its failure, its âge being then x, by another item
of the same âge x but from another population with survivability function B(t).
Then, the s.f. of the cumulative service life, from the beginning of the service
until the failure of the second item, is the relevation C(t\ of A(t) by B(t).

Proof. The probability that either one of the two items, the original one or
its replacement, is still in sevice at time t is the sum of two probabilities :

à) the probability that that the first item is still alive (in service) at time t,
i.e. ^4(0; and

b) the probability that the first item failed at some time x < t, and that
the successor item has survived from its age x until age t, which is

here we have taken into account that the probability density of a first item
failing at age x is — A'{x) and that the probability that a second item selected
at age x will survive at least until age t > x is B(t)/B(x).

Therefore, the probability C(t) that the combined, or relevated, life is not
terminated at time t (since beginning of service) is

(1.1)

q.e.d.
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RELEVÂTION TRÀNSFORM 109

The corresponding probability density of the total life spans is —C'(0 as
given by (Lia).

Section 3. The auto-relevation of A(t), defined as A(t) # A(t% has an
interesting interprétation. Assume that in a human population with the s.f.
A(t) a new miracle pill restores to a dying person, whatever bis physical condi-
tion, the full remaining lifetime distribution of his âge; in other words the
dying person becomes statistically typical of his âge group. However, this
wonder medicine can be taken only once by each individual because it is
entirely ineffective if taken again. Then, the new survivability function (of the
double, relevated life) is the auto-relevation function ^4(0 # A(t).

Note that

C(t) = A{t) # Ait) - Ait) - A{t) i ' ̂ ^ = Ait) - Ait) f d In Aix)
Jo ^ w Jo

and therefore

(3.1) dt) = Ait) # Ait) = Ait) — Ait) In Ait).

The expected increase in the life-span due to the wonder drug, is for a
new-born individual, with C(f) given by (3.1),

= — ! tCït)dt = — tCit) ™ + (*
Jo o Jo

Cit)dt.

tC(t) tends to zero, as t —>- oo, under ail realistic conditions, e.g. when nobody
lives longer than a million years; or when Ait) ^ l/*1 + e, for large /, as is
easily seen.

Therefore, the expected increase in longevity is

(3.2) H = — f Ait) hi A® dt,
Jo

an entropy-like expression.
Assume now that the effect of the pill is to revive the dying person by

transferring him to a population characterized by the s.f. Bit). Thus, if the
(first) death is about to occur at an age x the pill causes the remaining lifetime
y to have the s.f. Bix + y)/Bix). The total life-span, composed of the successive
phases A and B, has the s.f. given by (1.1), of course. Indeed, we have a re-inter-
pretation of the scenario in section 2.

Section 4. The expression for H in (3.2) is not an entropy since Ait) is not a
probability density function. Of course, Ait) can be normaJized by multiplying
it by a suitable factor to make it integrable to 1. This normalization occurs
naturally when relating Ait) to the associated age density of a stationary
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110 M. KRAKOWSKI

(zero-growth) population whose survivability function is A(t). As shown in
the Appendix for such a stationary population the âge density p(t) is

(4.1) p(t) = A(t)/M

where the constant M is the life expectancy at birth.
Substituting A(t) = Mp(t) into (3.2) we get

(4.2) H = M£«* { p(t) } — M In M

where

(4.3) Ent {p(t) } = - rp(t)lnp(t)àt
Jo

By a suitable choice of the time unit, namely using the expected lifetime m
as the unit span, Le. M = 1, we obtain the more elegant expression (4.4) in
place of (4.2) :

(4.4) fT=Ent{/<0} = — PxOlnXOd* ; M - 1 , A(t)=p(t).

(Note that A(t) is dimensionless but p(t) is in units l/time.)

It is rather curious that the entropy expression should arise in a context
outside information theory.

Section 5. It is easy to see that the relevation product is left-distributive,
that is, if A(i), B(t), and C(t) are survivability functions and a + b — 15

a ^ 0, b > 0, then

(5.1) (oA + bB)#C = aA#B + bB# C.

If we define formally the relevation product by formula (1.1) without
requiring A, B, and C in (5.1) to be survivability functions, and allowing a and b
to be any numbers, then the left-distributiove property still holds.

Obviously, there is no right-distributivity, generally, for the relevation
product.

Commutativity holds only under the conditions described in the following
Theorem.

Theorem. A(t) # B(t) = B(t) # ^(0 holds if, and only if, A(t) - [B{t)}\
or equivalently if A(t) = [s(t)]m and B(t) = [s(t)]n. s(t) is a survivability
function, and a, m, and n are non-vanishing real numbers.

Proof. It can be easily verified that

(5.2) W)T # [s(t)T = [m[s(f)Y -
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RELEVATION TRANSFORM 111

From the symmetry in m and n it follows that sm # sn = sn # sm.
To prove the converse assume that

(5.3) A(t) - B{t) f' ^ d* « Bit) -
Jo B(x)

Ait)

Differentiating both sides of the identity (53) we get

Differentiating both sides of the identity (5.4) results in

Eliminating the two intégrais from (5.3), (5.4), and (5.5) we obtain after
some algebraic simplifications

A\t)IA\t) - Afit)/Ait) - B"it)IB'it) - B'it)IBit)

Integrating the last identity we obtain

and

(5.6) .v = a f- , where a is a constant.
A(t) B[t)

Therefore

^ a~lnBit)

and
In 4(0 = a In Bit) + constant.

Since 4(0) = 5(0) = 1 the above constant vanishes and we have

Ait) = [Bit)]a

which complètes the proof.

Observe, that in view of the relation (5.6) the Theorem can be restated as
follows : Two survivability functions commute if and only if the corresponding
mortality functions are proportional to each other. Cf. Appendix (45).
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112 M. KRAKOWSKI

It follows, in particular, that any two exponential survivability functions
commute in their relevation product. From (5.2)

(5.7) e '0" # e"&< = e~3f # c"at = [p e"a ' — oc e"^]/(p — a).

In this case the relevation product is equivalent to the convolution of the
two cumulative distribution functions 1—e~a* and 1 — e"~&*. We have
namely

(5.8) e~a< # e"** = 1 - \l-B(t- x)] d[l - A(x))
Jo

as can be easily verified. This équivalence for exponential survivability func-
tions can also be deduced from the interprétation of the relevation product
as given in section 2.

The convolution of two s.f.'s corresponds to the case where the two life
phases are independent random variables; the saved individual is as good as
a newborn baby in the second population and goes through two full lives, one
in each population. Under the conditions of the relevation product the indivi-
dual carries over his age (at the time of imminent death) into the new popula-
tion. For exponential s.f.'s mortality is a constant, independent of age, and
the relevation product coincides with the convolution.

The relevation product is generally not associative, even for exponential
s.f.'s, as can be easily seen. Ho wever, for any s.f. s(t) and any non-vanishing,
pairwise different real numbers m, «, and r we have

(5.9) (/*#/)#/ ƒ" nr

(m — n)(m — r)

~T* •» , „\/„ «„\ ' Î(n — r)(n — m) (r — m)(r — ri)

as can be verified. Since the right side of (5.9) is symmetrical in m, n and r
it foUows that the order of the powers of s{t) can be changed on the left side
provided that the parentheses remain in place. For example

It is easily verifiable that (5.10) remains valid even if the m, », and r are
not pairwise different.

The analysis of relevation products is, as a rule, much more complex than
the analysis of convolutions, the latter being commutative, associative, distri-
butive, and corresponding to the addition of independent random variables.

Section 6. We modify now the scenario of Section 3 by assuming that there
are n life phases in the total relevatedlife; the miracle medicine is fully effective
n — 1 times for each individual and then it becomes entirely ineffective for
him; n ^ 1.
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RELEVATION TRANSFORM 113

During the first n — 1 phases of life, whenever an individual is on the verge
of dying, say at the relevated (i.e. cumulated during all lived through phases)
age x9 the pill restores him to the physical condition at age x and transfers
him to his next life phase. « Physical condition at age x » means that his
sojourn distribution in the new life phase is the same as the distribution of
remaining lifespans for individuals of age x in the original pre-pill population,
characterized by the s.f. A(t). (The s.f. for the remaining lifespans within the
new life phase is thüs A(x + t)/A(x); t = 0 at the beginning of this new phase,
of course.)

Définition. Dénote by A(t;n) the s.f. resulting from the possibility of taking
the wonder drug n — 1 times, n ^ 1, with full effectiveness, as explained above.
(The total number of life phases is thus n.) Symbolically, we define

(6.1) A(t;l) = A(t). and

A(t;n + 1) - A(t;n) # A(t) , n > 1.

Theorem

(6.2) A(t ; n) = A{i) "f, i [ - In A(t)f , n > h
ko K\

Proof. We shall prove (6.2) inductively, that is by showing that if it holds
for n = m then it is valid for n = m + 1.

(6.3) A{t ; m + 1) = A(t ; m) # A(t) [(by définition 6.1)]

= M(o ï Y\ [~ln A(t)n * A(t) [(6-2) valid for n = m]

'"'f ^[-lnA(t)]k+ (m
1_l)l[-lnA{t)]m-1 }j # A(t)

#A{t)

] # A(f) [(cf. 5.1)].

Since (6.2) is valid for'« = m — 1 we have

(6.4) A(t) 2 , £ 7 [— l n A(t)T \ # A(f) = A ( t ; m — l ) # A(t) = A(t ; m).
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114 M. KRAKOWSKI

Furthennore, applying formally (1.1) we get

+ A(i) f ' [ - In A(x)T~l d [ - In A(x)]- A(t) f d[-In

= A{t)[— In A(t)T~1 + Ait) • i [ - In A{t)T - A(t)[- In A{t)T~l

= ±A(t)[-ln.A(t)T.

Substituting (6.4) and (6.5) into (6.3) we get

(6.6) Ait ; m + 1) = AQ ; m) + ± Ait)[~ In Ait)T.

From (6.6) and (6.2) with n = m we get

(6.7) Ait;m + l) = Ait)fJ±-[-]nAit)f , q.e.d.
0 & '

Section 7. Let A(t) = e"l/fl-. Then — In A(i) = tja and (6.2) becomes

(7..) ^

The corresponding probability density is

< z 2 ) - ^ ^

V{n)an

This can be recognized as the Gamma density distribution with parameters n
(positive integer here) and positive a; cf. for example S.S. Wilks, section 7.5.

Thus, the expression (6.2) is a generalization of thé Gamma distribution
(in the s.f. form) which becomes the Gamma distribution when the kernel

The resuit (7.2) is not surprising because the life phases are under these
conditions identically and independently distributed (that is the remaining
lifetimes at âge x are independent of x), as known from the properties of
negative-exponential distributions.
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Section 8. The s.f. A (t; n) can be generalized by allowing the parameter
n to be a real number, not necessarily an integer. The probability density
corresponding to (6.2) is

(8.1)

as can be easily verified.
The function (8.1) remains a probability density function if we allow n

to be a positive real number. This function f8.1) is positive and its intégral is

i fo r i l"" 1

i
I n -

(cf. Bjerrens de Haan, Tables of Definite Intégrais).
A generalization of (1.1) is obtained by modyfing the scenario of section 2.

Assume that the probability of the pill's effectiveness is g(x), x being the age
at which death is imminent. « Efifectiveness » hère means the pill transfers the
patient into a population category with a s.f. B(t) and that he retains his age x
within the new population. If the drug is ineffective the patient dies promptly.

The probability that a newborn individual will still be around after a time t,
in either his first or second life phase, is the sum of :

a) the probability that he will still be alive in his first phase, i.e. A(t); and

b) the probability that he will have to take the pill at age x < t9 that the pill
will be successful, and that he will still be alive in his second phase at his rele-
vated (that is cumulated in both phases) at time t; this is

— A'{x)g(x) -^r dx = — B(t) 6V ' K

Jo £>(X) Jo n\X)

a) and b) add up to C (t, g) defined by (8.2)

(8.2) C(t,g) = A(t)-B^r8-^^
Jo ±f(X)

This may be called the relevation of A{t) by B(t) with the kernel g(t).
Note that g(x) is not a probability density, and its intégral need not be equal
to one. In particular, g(x) may be a constant, i.e. the probability of the pill's
effectiveness does not depend on age (but, of course, the future life expectancy
is age dependent; a child saved by penicilin from a deadly infection has a
higher remaining life expectancy than an old person saved by the same drug

n° mai 1973, V-2.



116 M. KRAKOWSKI

from the same illness). For each x we must always have 0 < g(x) ^ 1,
obviously.

Let g(x) = a, a constant. Then (8.2) becomes

(8.3) C(t,a) = A(t)-aB(t) f ^ , 0 < a ^ 1.

This is a convex combination of the s.f. A(t) and the s.f. 4(0 #
Let now g(x) — aB(x)9 so that the pill becomes monotonically less effective

with the patient's age (the fact that B(x) plays two roles in this example should
not be a source of confusion). Then (8.2) becomes

(8.4) C(t, aB) = A(t) — B(t) ! ' adA(x) - A(t) — aB(t)[A(t) — 1].
Jo

When a = 1, (8.4) becomes (8.5) :
(8.5) C(t, S) - 4(0 + Bit) — A(t)B(t\

Curiously, the last expression is also the probability that, given a pair of
newborn babies one with a s.f. A(t) and the other with a s.f. .0(0? at least one
of them will still be alive after the time t.

Because of the freedom in selecting g(x) the expression (8.2) is a rich source
of probability distributions.

Notice that the transformation (8.2) is linear with respect to g(x).
Further generalizations of (1.1) are possible. E.g. one can assume that the

distribution of the remaining lifetimes after the pill is swallowed dépends on
the age of the patient. We shall not pursue this topic, although it may be of
interest in some biométrie and renewal models, beyond showing that it is a
generalization of the convolution of the functions A(t) and B(t).

Let the individual, saved at age x, becoms a member of age x> of a popula-
tion with the s.f. B(t | x), Each pill is now fully successful once (and never
again) for each individual. The relevated life is then :

(8.6) C(0 - A(t) - f A>(x)
Jo

Let B(t | x) = B(t — x) and thus B(x | x) = B(0) — 1. Then (8.6) becomes

(8.7) C(0 = A(t) — f *A'{x)B(t — x) Ax
Jo

and in the cumulative distribution form, 1 — s.f., more common in convolution
applications

(8.9) 1 _ C(t) = f '[1 - B(t - x)] • d[l - ^(*)J
Jo

as can be easily verified.
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RELEVATION TRANSFORM 117

The interprétation of the assumption B(t \ x) = B(t — x) makes it clear
why it leads to a convolution, namely by compensating for the age JC by a
transfer to an appropriately more favorable population.

The expression (8.6) generalizes both the relevation and the convolution
opérations at the same time.

Section 9. It is clear from (1.1) that

(9.1) C(f) > A{t)

since dA(x) < 0.
It is also easy to show that

(9.2) C(t) > B(t)

We have namely, B(x) being non-increasing,

(9.3) C0) = A0)-B0) f ^ > A)t)-B0) f\u(*)
Jo B\x) Jo

- A0) - B{i)[A0) - 1] = A(t) + B0) - A0) B0).

Cf. the paragraph after (8.5).

Since B0) ^ 1 we get (9.2) from the sharper inequality (9.3).
Both (9.1) and (9.2) are intuitively clear from the physical interprétation

of (1.1) as a renewal or life extension.
If A{t) and £(0 are positive for all finite t9 then (9.1) and (9.2) become strict

inequalities.
It may be of interest to solve (1.1) for A0) or for
Formai manipulations lead to (9.4) and (9.5) :

(9.4)
'Jt'

(9.5) B0) = eJ»

Proof. From (1.1) and (1.1 a) one éliminâtes | - ^ v > thus getting (9.4).

From (9.4), solving for B(t), one gets (9.5).

(9.4) and (9.5) are necessary conditions. Given a s.f. CO) and a s.f. B0)
the formula (9.4) may yield a function which is not a s.f. This may happen if,
e.g. (9.2) is violated, or if C'(0 ¥" 0, since (1.1 a) implies that if the first n
(right-handed) derivatives of B 0) vanish at t = 0 then so do the first n + 1
(right-handed) derivatives of CO)* In (9.5) it is necessary, that the intégral
in the exponent diverge as t —> oo.
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Solving (3.1) for A(t) in terms of C(t) = Ait) # A(t) is more difficult. Thus,
it is not known yet under what conditions the recursion

(9.6) An+1(t) = C(t) + An(t). In An{i) , n > 1,

where ^4x(0 is selected to be C(0,e~a ', or another s.f, converges to the solution
of 3.1. The successive An need not be survivability functions even if C(t) and
A^t) are such functions.

Section 10

The (age-specific) mortality m(t) corresponding to the s.f. A(t) is
— A'(t)/A(t); Cf. in Appendix.

If the mortality m(t) is non-decreasing with âge then, assuming differen-

tiability, T~*n(t) = [(A')2— AA"]/(A2) ^ 0. Therefore, m(f) is non-decrea-

sing when

(10.1) (A')2 > A-A".

Theorem. Let m{i) be non-descreasing, i.e. (10.1) holds. Then the mortality
corresponding to A(t;ri) in (6.2) is also non-decreasing? or equivalently

(10.2) [,

Proof. It follows from (6.2) that

(10.3) A'(t ;n) = A'.[— In AT~ll{n — 1) !

(10.4) A"(t ; n) = [— In AT~xl{n — 1) ! — [— In Af-2[A']2 [A-(n — 2) !]

and, after some algebraic manipulation,

(10.5) [A'(t ; n)f — A(t ; h)A'(t ; n)

mr2 f [-inAf r ( n a AmA„ M , . 2
: - ! ) l( ï i —1) (B — l ) ! l l i l J A A i + [A J

"•" Y (*—!)! L * «—ij J

(«2

It follows from (10.1) and k < n — 1 that [A']2/k ^ AA"/(n — l).
Since — In A ^ 0 the right side of (10.5) is ^ 0, qed.
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RELEVATION TRANSFORM 119

APPENDIX

Survivability, Mortality, and Age Distribution in Stationary Populations

The following proof outlines arç for completeness of présentation. The
relations are classical and can be found, e.g. in Keyfitz (cf. Bibliography)
although with different notation.

The c.d.f. corresponding to the s.f. s(t) is 1 — s(t) and hence

(Al) f(t) = — s'(t) = probability density of
the corresponding lifespans.

The expected lifespan M of a new entry is
/•oo

(A2) M = — ts'(t)dt.
Jo

If ts(t) —> 0 as t —> oo, as is the case in all pratical applications, then

(A3) M

The mortality function corresponding to s(t) is defined by (A4) :

(A4) m(t)dt = probability that an individual of age t
will die (exit) within df.

The function m(t) is also called the hazard function or the power of
mortality in actuariat contexts.

The probablity that a new entry will survive till age t + d/is the probablity
that he will survive till age / multiplied by the conditional probablity that he
will not die then within df. Hence,

s(t + dt) = s(t) [1 — m(t)dt]
and
(A5) m(t)=-s'(t)Mt).

A stationary population is one whose constant rate ofentries (births) equals
its rate of exits (deaths) and whose age distribution does not change with time.
At any instance the fraction p(x)dx of the population aged between
x and x + dx are survivors of the fraction aged between Oand dx as of x time
units earlier. The age density being independent of calendar time we have

(À6)

Integrating both sides of (A6) from O to oo we get/?(O) = M; cf. (A3).
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