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A NOTE ON A TWO-UNIT STANDBY-REDUNDANT
SYSTEM WITH IMPERFECT SWITCHOVER

par Shunji

Abstract. — This paper discusses a two-unit standby redundant model with imperfect swit-
chover. Considering the failure of the switchover device, we dérive the Laplace-Stieltjes
transform of the time distribution to the first System down and the mean time to the first
System down under the most generalized assumptions. We further discuss the behavior after
the system down.

1. INTRODUCTION

Reliability analysis of a two-unit standby redundant model was discussed
by Gnedenko et al. [1] and Srinivasan [5]. TheyderivedtheLaplace-Stieltjes (LS)
transform of the time distribution to the first system down and the mean
time to the first system down under the most generalized assumptions. Further
investigations were made by considering the noninstantaneous switchover,
the préventive maintenance, etc. (see, e.g., Osaki [2, 3]).

In this note, we shall discuss a two-unit standby redundant model with
imperfect switchover. That is, we should consider the failure of the switchover
device. Considering the failure of the switchover device, we shall dérive the LS
transform of the time distribution to the first system down and the mean time
to the first system down under most generalized assumptions. We further
discuss the behavior after the system down.

The analysis of our model has recourse to Markov renewal processes.
For Markov renewal processes, see Pyke [4] and papers cited there. We also
apply the relationship between Markov renewal processes and signal flow
graphs. The detailed discussion can be found in Osaki [2, 3].

(1) Department of Electrical Engineering, University of Southern California, Los
Angeles.

Supported by the National Institutes of Health under Grant No. GM 16197-03.

Revue Française d'Informatique et de Recherche opérationnelle n° V-2, 1971.



104 S. OSAKI

2. MODEL

First consider a model of two identical units. We assume that the failure
time distribution of each unit is an arbitrary F(t) and the repair time distri-
bution of each unit is an arbitrary G(t). A unit recovers its function perfectly
upon repair. It is assumed that ail switchover times from the failure to the
repair, from the repair completion to the standby state, and from the standby
state to the opération are instantaneous. We further consider the behavior
of the switchover device. We assume that the failure time of the switchover
device is distributed exponentially with parameter As and the repair time of
the switchover device is also distributed exponentially with parameter /zs.
The behavior of the switchover device is assumed to obey the cycle of failure
and repair. When the operative unit fails and at that time the switchover
device is under repair, we cannot utilize a standby unit even if we have a standby
unit, which means the System down. We finally assume that the behavior of the
switchover device is independent of that of the two units.

Under the above assumptions and the initial condition that one unit
begins to be operative, the other in standby, and the switchover device is
operative at t = 0, we shall dérive the time distribution to the first System
down.

3. ANALYSIS

TABLE I. — The states of the model (the upper bar dénotes the repair)

ABS state s0

ABS state st

ABS state s±

ABS state s2

ABS
ABS state s2

ABS state s2

ABS state s2

Label the two units A, B, and the switchover device S, The possible states
of the model is shown in table I. Noting that the two units are identical, and
the failure and the repair time distributions are arbitrary, we have the following
three observable states :

State s0 : One unit begins to be operative, the other is in standby, and the
switchover device is operative.

State s± : One unit begins to be operative, the other begins to get repaired,
and the switchover device is operative.
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TWO-UNIT STANDBY-REDUNDANT SYSTEM 105

State s2 : The system down occurs. That is, two units are under repair or
failure simultaneously, or one unit fails, the other in standby, but the switchover
device is under repair.

The state transition diagram (i.e. the signal flow graph) of the model is
shown in figure 1. We shall obtain each branch gain of the graph.

s0

Figure 1
The state transition diagram (i. e., the signal flow graph) of the model.

First consider the behavior of the switchover device. As the switchover
device repeats the cycle of failure and repair, the probability P(t) that the
switchover device is operative at time t, given that the switchover device was
operative at t = 0, is given by

+ ^ e ~ ( A ' + " *

which can be easily derived by the theory of queues. Further the probability P(t)
that the switchover device is under repair at time t, given that the switchover
device was operative at t — 0, is given by

(2) P(t) = 1 — P(t) = ^ - ~ — [1 — e"(A* + *>%

The probabilities (1) and (2) will be used afterwards.
We shall dérive each branch gain of the graph in figure 1. First consider

the transitions from state s0. Two transitions can be considered from state s0 :
One is to state sx and the other to state s2. A transition from state s0 to state 5t

is an event that the operative unit fails and at that time the switchover device is
operative. The other transition from state s0 state s2 is a similar event except
that the switchover device is under repair at that time. Using the probabi-
lities P(t) and 7(t), respectively, we have

(3) ?oi(*) = e""P(0 àF(t) = YJZ— *& + Y^T- A* + K + fh),
Jo 4 + Ps ŝ + ^s

(4) gO2(s) = f "e-s'P(0 dF(t) = j±— [F(s) - F(s + Xs + Ms)],
JO As "T Ms

where the LS transform of the distribution is denoted by a circumflex (A).
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106 S. OSAKI

Next consider the transitions from state st. Two transitions can be consi-
dered from state st : One transition from state st to state st is an event that
the operative unit fails after the repair completion and the switchover device
is operative at that time. Thus we have

J
(5) ?ii(*)= e-stP(t)G(t)ÛF(t).

Jo

The other transition from state st to state s2 is an event that the operative
unit fails after the repair completion and the switchover device is under repair
at that time, or the operative unit fails before the repair completion (the
latter event is independent of the behavior of the switchover device), whichever
occurs first. Thus we have

(6) qt2(s) = f°e -stP(t)G(t) dF(t) + T e ~stG(t) dF(t).
Jo Jo

Noting that F(t) + P(t) = 15 we rewrite (6) as follows :

(7) ?i2C*)--= e~stP(t)G(t)dF(t)+ e-s'P(t)dF(t),
Jo Jo

the right-hand side of which can be similarly interpreted.
We note that

(9) *ii(O) + *i2(0) = 1,

because we consider all the possibilities from states s0 and su respectively.
Defining that state ̂ 0 is a source and state s2 is a sink, and applying Mason's

gain formula, we have

(10) <po(s) - qO2(s) -

which is the LS transform of the time distribution to the first system down
starting from state s0 at t = 0.

Modifying some branch gains and applying Mason's gain formula again,
we have the mean time to the first system down

(11) h = E{X) + YZI~(Ö)E{X)'

where

(12)

is the mean repair time. We can similarly obtain the higher moments (see
Osaki [2, 3]).
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TWO-UNIT STANDBY-REDUNDANT SYSTEM 107

4. A MODEL WHICH IS ERGODIC

In the preceding section we restricted our attention to the first system
down. In this section we consider the behavior after the system down. That is,
we consider a model which is ergodic.

For tractability of analysis we assume the following assumption :

(13) = l — exp(—

In the preceding section we defined only one state which dénotes the sys-
tem down. However, instead of state s29 we define the following three states
which dénote all the system down.

State $3 : One unit is in the operating condition, the other is under repair,
and the switchover device is under repair. This state is caused by an event
that we cannot utilize the standby unit because of the repair of the switchover
device, which means the system down.

State ,Ï4 : The two units are under repair simultaneously and the switchover
device is operative.

State ss : The two units are under repair simultaneously and the switchover
device is also under repair.

Figure 2
The state transition diagram of the model which is ergodic.
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Note that the System down state is separated three states just mentioned
above by its cause. Then the signal flow graph for our model is shown in
figure 2. The branch gains qOi(s) and qXi(s) are the same in (3) and (5), respec-
tively. The other branch gains are given by

(14)

(15)

(16)

(17)

qozis) =
Jo

ql2(s) =
Jo

q±3(s) =
Jo

qu(s) =
Jo

(18) q20(s) = f V " ( l - e - " K e - ' " dt
Jo

= Ms/0 + Ms) — H>s/(S + H* + Ps)>

(19) q2l(s) - f V " e-'V, e-*' d/ - pj(s + /x + /xs)3
Jo

(20) q31(s) = f V s ' e-As'(2^) e"2'" d/ = 2/*/(* + 2/* + As),
Jo

(21) ?34(*) = (""e-5 ' e"2/"A5 e" Ast d/ = A,/(j + 2/x + As),
Jo

(22) ?42(j) = f °°e-5t e"*f(2M) e"2" d̂  = 2^/(J + 2M + /*,),
Jo

(23) q43(s) = f "e"" e" 2 ^. e~*' d̂  - ^ ( j + 2/x + p,).
Jo

As we have obtained each qtj(s)9 we can obtain the transition probabilities,
the limiting probabilities, and the renewal functions from the results of Markov
renewal processes [4]. We, however, omit the results.

5. DISSIMILAR UNIT CASE

In the preceding sections we have discussed a model of two identical
units. We can extend a similar model of two dissimilar units. We first consider
a model which is absorbing. Then we can define four states and show the
corresponding signal flow graph. Obtaining each branch gain similarly for
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the graph and applying Mason's gain formula, we can obtain the system gain,
which is the LS transform of the time distribution to the first system down.
We can similarly obtain the mean time to the first system down.

We next consider a model which is ergodic. Then we assume that the
repair time is distributed exponentially. We can define seven states and show
the corresponding signal flow graph. We can similarly obtain the transition
probabilities, and the renewal functions from the results of Markov renewal
processes.
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