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PRIORITY, PARALLEL DISCOVERY, AND PRE-EMINENCE

NAPIER, BÜRGI AND THE EARLY HISTORY OF THE

LOGARITHM RELATION

Kathleen M. Clark & Clemency Montelle

Abstract. — There has never been any doubt as to the importance of the
logarithm, a mathematical relation whose usefulness has persisted in different
aspects to the present day. Within years of their introduction, logarithms
became indispensable for mathematicians, astronomers, navigators, and geog-
raphers alike. The question of their origins, however, is more contentious. At
least two scholars, the Scottish nobleman John Napier and the Swiss craftsman
Jost Bürgi, simultaneously and independently produced proposals which em-
bodied the logarithmic relation and, within years of one another, produced
tables for its use. In light of this parallel discovery, we read, analyzed, and
interpreted the texts of Napier and Bürgi to better understand and contex-
tualize the two distinctly different approaches. As a result, here we compare
and contrast the salient features of Napier’s and Bürgi’s endeavors and the
construction of each man’s tables of logarithms. Through these details, we
will query the focus on the issue of priority and pre-eminence when discussing
the historical development of logarithms, and pose critical questions about
the phenomenon of parallel insights and what they can reveal about the
mathematical environment at the time they arose.

Résumé. — Il n’y a jamais eu de doute sur l’importance du logarithme; une
relation mathématique dont l’utilité a persisté de différentes manières jusqu’à
nos jours. Quelques années à peine après leur introduction, les logarithmes
sont devenus indispensables aux mathématiciens, ainsi qu’aux astronomes,
navigateurs et géographes. Cependant, la question de leur origine est délicate.
Au moins deux savants, le noble écossais John Napier et l’artisan suisse Jost
Bürgi, ont produit simultanément et indépendamment des propositions qui
englobent la relation logarithmique, et à quelques années de distance ont
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C. Montelle, University of Christchurch, New Zealand.
Key words and phrases : Logarithms, Napier, Bürgi, Renaissance, priority.
Mots clefs. — Logarithmes, Napier, Bürgi, Renaissance, priorité.

© SOCIÉTÉ MATHÉMATIQUE DE FRANCE, 2012



224 K. M. CLARK & C. MONTELLE

produit des tables pour son utilisation. Partant de cette découverte parallèle,
nous avons lu, analysé et interprété les textes de Napier et Bürgi pour mieux
comprendre et contextualiser ces deux approches bien différentes. En guise de
résultat, nous comparons les principales caractéristiques des efforts de Napier
et Bürgi et la construction de leurs tables de logarithmes réciproques. À travers
ces détails, nous nous posons la question de la priorité et de la pré-éminence
dans la discussion du développement historique des logarithmes, ainsi que
des questions critiques sur le phénomène d’intuitions parallèles et ce qu’elles
peuvent dévoiler sur l’environnement mathématique de leur époque.

1. INTRODUCTION

The computationally powerful and conceptually brilliant logarithmic
relation has followed an interesting course in the history of mathematics.
Making its first official appearance in 1614 in Scotland in a work by John
Napier (1550–1617), the logarithm relation was simultaneously being
developed in Switzerland by Jost Bürgi (1552-1632). This overlap has
intrigued historians and the question of priority has often dominated
historical scholarship, with varying effects. Several scholars have been
compelled to determine who rightfully has the “title to priority” [Cajori
1915, p. 93]; [González-Velasco 2011, p. 101], or even allude to a race
that was “won” [Shell-Gellasch 2008, p. 6]. In other accounts, the effects
have been more subtle (see, for instance, [Katz 1998, p. 416]1; [Naux
1966/1971, p. 12–13]; [Calinger 1995, p. 282]2], with historians acknowl-
edging the achievements of Bürgi, but admitting that scant information
concerning his works has prevented further discussion. Indeed, despite
much attention to this topic, Napier’s works have received thorough
and repeated examination, while the contributions of Bürgi remain only
poorly studied.

1 In this case, Napier’s work gets an entire section in a discussion of the logarithmic
relation, whereas Bürgi gets but a single mention: “the Scot John Napier and the Swiss
Jost Bürgi came up with the idea of producing an extensive table... Napier published
his work first”.
2 Calinger indicates a certain confusion concerning the connection, as he seems to
imply that Bürgi in fact ‘enthusiastically advanced’ Napier’s logarithms.
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More broadly, throughout the history of mathematics, critical insights
have frequently been made by more than one individual almost simulta-
neously.3 These parallel insights prove themselves to be fertile episodes
for the historian. What is the importance of chronology when one con-
siders the emergence of a mathematical concept?4 What is the relevance
and repercussions of determining which individual can be identified as
being ‘the first’ when it comes to mathematical insight and inquiry? What
counts as ‘publication’ in the times before the emergence of professional
academic societies and journals? These issues and others reveal that the
question of priority is a delicate one and, in certain cases, overemphasiz-
ing it has resulted in some regrettable biases. We aim here then, in this
contexte, to begin to redress the balance.

The late Renaissance brought with it endeavors which required ever
new and improved computational techniques from mathematics. De-
mands from these areas—notably, observational astronomy and long-
distance navigation and, not long after, geodesic science and the efforts to
measure and represent the earth5—meant that much energy and scholarly
effort was directed towards the art of computation. The central foundation
for these fields was trigonometry, and its articulation and computation
were the subjects of massive enterprise. For the most part, such applica-
tions required detailed and long computations—reducing the burden of
calculation and, with it, the errors that inevitably crept into the results,
became a prime objective. Techniques which could bypass lengthy pro-
cesses, or could replace long multiplications or divisions with equivalent

3 For example, Newton and Leibniz, regarding calculus; Tartaglia, Cardano, del
Ferro, Ferrari, and Bombelli regarding the race to the solution for cubic equations;
and Hadamard and de la Vallée Poussin regarding the prime number theorem, to
name but a few of many instances. Sometimes key concepts and ideas are developed
independently by practitioners in different cultures of inquiry which are also sepa-
rated by many centuries, for instance Al-Samaw’āl (b. ca. 1130) and Pascal (b. 1623)
and the ‘triangle’ of binomial coefficients; Indian scholar Mādhava (b. ca. 1350) and
Newton (b. 1642) and others with the infinite series expansions of sine, cosine, and
arctangent.
4 In this sentiment, Stedall [2008, p. 106] remarks “It... [is] a useful reminder that
mathematical progress in any but the simplest problems is rarely straightforwardly lin-
ear.”
5 [Gridgeman 1973, p. 50]
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additions and subtractions were explored. One method originating in
the late sixteenth century that was used extensively to save computational
effort was the technique called prosthaphaeresis.6 This relation transformed
long multiplication and division into addition and subtraction via suitable
trigonometric relationships.7 The technique of prosthaphaeresis did have
its disadvantages though. It was based upon trigonometric tables that
were not always accurate, and rounding errors accumulated in the process
further decreased the accuracy of this technique.

Yet another mathematical insight that offered potential to facilitate
computation was that concerning the relations between arithmetical and
geometrical sequences. This relation had been recognized by mathemati-
cians as early as Archimedes (287–212 BCE),8 and more than a millennium
after Nicolas Chuquet (c. 1430–1487) and Michael Stifel (c. 1487–1567)
turned their attention to the relationship. Their examination was more
probing due to the newly developing notation for representing exponents.
Now the mathematical connection between a geometric and an arithmetic
sequence could be made all the more apparent by symbolically capturing
these sequences as successive powers of a given number and the powers
themselves, respectively. Such symbolism brought more sharply into view
various mathematical properties and relations.

For instance, from more general formulations, Stifel9 explored the
relationship between powers of two (a geometric sequence; the lower

6 A compound constructed from the Greek terms: prosthesis ‘addition’ and aphaeresis
‘subtraction’.
7 Such as 2 sinA sinB = cos(A� B)� cos(A+ B). This, and related rules, were recog-
nized as early as the beginning of the sixteenth century by Johannes Werner in 1510
and perhaps in the eleventh century by Ibn Yunus [Berggren 2003] but this claim is
dubious at best and is often only cited in older scholarship [Thoren 1988, p. 32]. Its
application specifically for multiplication first appeared in print in 1588 in a work by
Nicolai Reymers Ursus [Thoren 1988, p. 33]. It was further extended in use by the
likes of Christopher Clavius, François Viète, and Tycho Brahe.
8 See [Heath 1953]: “When numbers are in continuous proportion starting from the
unit, and that some of these numbers are multiplied between them, the product will
be in the same progression, far away from largest from the multiplied numbers of as
many numbers as the smallest one of the multiplied numbers is from the unit in the
progression, and far away from the unit of the sum minus one of the numbers from
which the multiplied numbers are far away from the unit.”
9 As given in his Arithmetica Integra [1544].



THE EARLY HISTORY OF THE LOGARITHM RELATION 227

sequence here) and the index associated with it (an arithmetic sequence;
the upper sequence here):

�3 �2 �1 0 1 2 3 4 5 6
1
8

1
4

1
2 1 2 4 8 16 32 64

Here, Stifel introduced the two progressions using the prepositions
supra (above) and infra (below).10 He further noted that each can be
extended infinitely in both directions and that calculations with elements
of the lower sequence in fact have associated – but simpler – operations
when using the elements in the upper sequence.11 To explain such oper-
ations, Stifel employed the term exponens, or exponent, for the elements
of the upper sequence: “6 is the exponent of the number 64, and 3 is the
exponent of the number 8” [Stifel 1544, p. 250].12

It seems Stifel recognized that relations of these sorts would be of great
importance for the scientific community and they undoubtedly served as
a foundation for the invention of logarithms soon after. He glimpsed the
potential of extending his contribution, however, commenting “I might
write a whole book concerning the marvellous things relating to numbers,
but I must refrain and leave these things with eyes closed”.13 However,
while Chuquet, Stifel, and others noticed that certain operations could be
carried out more efficiently in one domain and then converted back to the
original, their application towards substantially reducing computational
complexities was not seen.

Scottish mathematician John Napier spent a lifetime investigating de-
vices and methods for assisting and reducing computational effort. His
numbering rods, fondly known as ‘Napier bones’, provided a mechanical
means for facilitating calculation.14 In this spirit, Napier developed the
logarithmic relationship to assist with computation. He set to the task of

10 For example: “Nam sicut supra unitatem ponuntur numeri integri, & infra uni-
tatem finguntur minutiae unitatis, & sicut supra unum ponuntur integra, & infra
unum ponuntur minuta seu fracta...” [Stifel 1544, p. 249].
11 [Calinger 1999, p. 431]
12 “... 6 est exponens numeri 64, & 3 est exponens numeri 8.”
13 “Posset hic fere nouus liber integer scribi de mirabilibus numerorum, sed oportet
ut me hic subduca, & clausis oculis abea” [Stifel 1544, p. 250]; as translated by [Smith
1958, p. 521].
14 [Gridgeman 1973, 53–54].
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compiling tabular entries it is supposed in about 1594. The ways in which
Napier decided to construct and organize these tables necessitated the
computation of millions of calculations from which to select his entries. In
addition, he gave the original problem kinematic expression and worked
the relationships his tables rested upon into a larger mathematical frame-
work. Tables and accompanying documentation were finally completed
and published in 1614.

Simultaneously, the Swiss craftsman, Jost Bürgi15 whose skills in instru-
mentation, particularly clock manufacture, were highly prized, also had
the burdens of calculation impressed upon him. Working in the court
of Landgrave Wilhelm IV in Kassel,16 he was assigned the task of com-
piling and constructing astronomical charts. He eventually came under
the employ of Emperor Rudolf II (Prague, 1603) where he worked with
Kepler (1571–1630). This interaction would have exposed him firsthand
to the challenges facing astronomers. Bürgi too devoted attention to the
technique of prosthaphaeresis, supplying formal proofs for at least two of
the identities.17 He recognized the potential of this technique to simplify
computations with very large numbers and his work on this subject must
have also stimulated, by analogy, the broad idea that certain more involved
arithmetical operations could be replaced by the simpler algorithms of
addition and subtraction.18 With this in mind, he set himself the task of
compiling tables utilizing this insight, with a view to facilitate calculation.

15 No substantial personal information on Bürgi exists, other than where he was
born, lived, and died. Some of the information about the almost three decades he
spent in Prague is vague. For example, the Dictionary of Scientific Biography entry on
Bürgi notes that, “He lived in Prague from about 1603 and became assistant to and
computer for Kepler” [Nový 1970, p. 602]. The entry on Kepler, however, makes no
mention of this.
16 Bürgi did not receive a formal education in his youth. Nový [1970] speculates that
he completed his education while in the service of Duke Wilhelm IV while working at
the duke’s observatory. He did not appear to know Latin.
17 [Thoren 1988, p. 38]
18 To do so Bürgi would have worked on tables of sines. Nový [1970, p. 602] indi-
cates that Bürgi completed such tables.They were not, however, ever published and no
manuscripts have since been found. Bürgi may have learned of the idea to relate arith-
metic and geometric progressions from the work of Stifel [J. van Maanen, personal
communication]. Naux described aspects of Bürgi’s work as a reproduction of Stifel’s
pages” [1966/1971, p. 96] “D’abord, Bürgi a reproduit assez fidelement quelques
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There is speculation that Bürgi computed his tables at some point between
1603 and 161119, but the earliest extant document we have dates to 1620.

In an environment where many practical endeavors were dependent on
such intensive calculative techniques, it was no coincidence that alleviating
some of the burden of computation was on the mind of more than one
scholar. That such a relation was recognized, explored, and developed
by at least two practitioners simultaneously is not at all surprising. The
significant point is that wider conditions propelled multiple scholars, not
just Napier, towards this insight. However, history has deemed Napier
pre-eminent and he has thus been accorded priority. As a result, historical
attention has favored Napier’s work over all others.

Accordingly, our present investigation aims to consider and compare
the approaches of these two scholars through their works: the Mirifici Loga-
rithmorum Canonis Descriptio of Napier and the Arithmetische und Geometrische
Progress Tabulen20 of Bürgi. Modern scholarship on Napier is plentiful and
there exist many modern analyses of his endeavors. Details on his work will
be included largely for comparison purposes with the analysis of Bürgi’s
system, which will be treated much more thoroughly given the lack of
primary source examination of his work.21 After a technical examination
of the tables and the accompanying texts of these two scholars, we will
highlight the distinctive features and underlying differences between the
two approaches. This will allow us to explore the issue of priority and

pages de Stiffel...”, yet instead of Stifel Bürgi mentioned the famous 16th century Ger-
man reckoning master Simon Jacob, as well as Moritius Zonz in the “Bericht” (page 2;
see section 3). Simon Jacob’s treatment of series and the nature of exponents is the
more likely influence on Bürgi’s work [Smith 1958, p. 338]. Cantor [1900, p. 726] also
noted that Jacob was perhaps the stronger influence and that little was known about
Moritius Zonz.
19 Several sources of speculation exist, such as [Cajori 1915, p. 103]. Moreover,
[Folta & Nový 1968, p. 98] noted that Bürgi already had the idea of logarithms at
the end of the 16th century, while he still resided in Kassel. [Grattan-Guinness 1997,
p. 180–181] places Bürgi’s work as early as 1590; [Boyer & Merzbach 2011, p. 290] as
early as 1588.
20 The complete title is Arithmetische und Geometrische Progress Tabulen/sambt
gründlichem unterricht/wie solche nützlich in allerley Rechnungen zu gebrauchen/und
verstanden werden sol. See section 3.
21 A complete translation and commentary of his work is in preparation.
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pre-eminence in this context and redress a perceived imbalance in his-
torical accounts of the emergence of the logarithm relation in the early
seventeenth century. In turn, we will reflect more generally about the
historiographical issues relating to the phenomenon of parallel insights in
mathematics. Our perspective casts critical light on those historians who
have singled out as pertinent a claim to priority when analyzing episodes
in the history of mathematics.

2. NAPIER

In 1614, Napier published his work Mirifici logarithmorum canonis descrip-
tio, literally A Description of the Wonderful Table of Logarithms (henceforth re-
ferred to as the Descriptio). Napier’s very title signaled his ambitions for this
proposal—the provision of tables based on a new technique that would be
nothing short of ‘wonder-working’ for practitioners. Napier conceived of a
new technical term for his concept—‘logarithmus’—a compound derived
from two terms from ancient Greek: logos meaning here proportion,22 and
arithmos meaning number.

Even though Napier did not consistently nor continually use this term,
it persisted. Within a decade, his initial formulation had been transformed
by two of his contemporaries: Henry Briggs and Edmund Gunter.23 Origi-
nally written in Latin, the work was translated into the vernacular, English,
two years later for the immediate use of seafarers and navigators.24 What
made Napier’s tables so readily received by practitioners was the fact that
his logarithm relationship was imbedded in tabulations of increasing sines

22 This disagrees with traditional interpretations, such as [Gridgeman 1973, p. 55],
who translates it as ‘ratio’. [Naux 1966/1971, p. 66] interprets this term as ‘la rai-
son de différence’. The ancient Greek term logos has many meanings, including (in
a mathematical context) reckoning, computation, measure, relation, sum, rule. In
modern mathematics, a ratio is the relation between two numbers of the same kind; a
proportion is a more general relation, typically to express the equality between mul-
tiple ratios. We prefer the more general term ‘proportion’. Napier does not seem to
have explicitly described why he selected this term and the intended reading.
23 Briggs published his Logarithmorum chilias prima in 1617, constructing a table of
logarithms of numbers of base 10; Gunter published his Canon triangulorum in 1620,
which extended Briggs’s work to logarithms of base 10 of trigonometrical functions.
24 The English translation is that of Wright [1616].
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of angles. Navigation and astronomy both involved the computation of
trigonometrical functions. Particularly time-consuming was the multiplica-
tion of sines, and Napier sought to additionally reduce this computational
effort by tabulating the sine then its logarithm.

The Descriptio contains Napier’s tables, as well as a description of their
features and worked examples. A second work was written entitled the Mir-
ifici logarithmorum canonis constructio, literally The Construction of the Wonder-
ful Table of Logarithms (henceforth the Constructio). This work addressed in
more detail the ways in which the tables in the Descriptio had been com-
puted and the motivation behind them. However, this work was not pub-
lished until two years after Napier’s death under the supervision of his son,
Robert Napier, in 1619. This delay might have been in some part inten-
tional, as Napier seemed concerned to await the reception by the scholarly
community of his first work, “to await the judgement and criticism of the
learned.”25

2.1. The Descriptio

The Descriptio represented a monumental undertaking, and was the re-
sult of years of involved calculation. The work itself is comprised of two dis-
tinct sections: text (57 pages of text giving mathematical background, con-
text, as well as a few examples) and 90 pages of tables. Taking Napier lit-
erally on his statement that he had been working on logarithms for twenty
years would locate his initial attention to this task to about 1594.

The text of the Descriptio contains two books, each divided into chapters,
with the following topics being addressed:

25 As cited from [Gridgeman 1973, p. 55].
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Table 1
Napier’s Descriptio

Book I 1 Definitions
2 Propositions
3 Description of the tables; in particular, each of the seven columns
4 How to use the tables with worked examples
5 How to use the tables for proportions with worked examples

Book II 1 Trigonometry—general background
2 Application of logarithms to triangles
3 Spherical Triangles
4 Worked examples

The work opens with his preface where he gives his motivations:

Seeing there is nothing (right well beloued students in the Mathematickes)
that is so troublesome to Mathematicall practise, nor that doth more molest and
hinder Calculators, than the Multiplications, Diuisions, Square and cubical Ex-
tractions of great numbers, which besides the tedious expence of time, are for
the most part subiect to many slippery errors. I began therefore to consider in
my minde, by what certaine and ready Art I might remoue those hindrances.
Napier Descriptio (from the English translation of [Wright 1616, A5])

Furthermore, in this English edition, Napier endorses the translation into
English by Wright because it makes, in his words, “his secret inuention...
so much the better as it shall be the more common”. Clearly, Napier was
concerned with making his ideas as widely disseminated as possible.

In Descriptio I,1, Napier sets out the foundations for his logarithmic rela-
tion. Notably, Napier does not invoke the comparison between arithmetic
and geometric sequences directly, but rather firmly grounds his concep-
tion in a kinematic scenario—for him, the make-up of the problem was
based on the analysis of motion. Relations between arithmetic and geomet-
ric sequences are present, but are embedded in a physical problem that
involves points, lines, distances covered, and changing velocities. His de-
scription focuses on a comparison between the distance traveled by two
particles in equal increments of time, one with constant velocity the other
with geometric deceleration.26

26 Whiteside [1961] calls it a “distance-speed model” and comments that “Napier’s
distance-speed model is medieval rather than modern and its now usual treatment by
methods of the calculus is quite foreign to its kinematic nature” [220].
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Figure 1. Napier’s two parallel lines with moving particles.

Napier imagined these two particles traveling along two parallel lines.
The first line was of infinite length and the second of a fixed length (the
length of the whole sine). The two particles start from the same point at
the same time with same velocity. The first particle (b)27 progresses uni-
formly as time elapses, and so covers equal distances. The second particle
(�) progresses at a decreasing rate proportional to the distance remaining
to a fixed terminal point, that is, its velocity is proportional to its distance
from the end of this second finite line segment.28

Upper case letters of the alphabet delimit the equal increments of the
first line (see Fig. 1)29. The second line of finite length is delimited by the
Greek letters � and !. This length is set as the length of the ‘whole sine’
(i.e., the radius, R); in Napier’s case this is 10,000,000. The particle travel-
ing along this line decelerates, traversing, in equal times, intervals decreas-
ing proportionally to the particle’s distance from the end (!). Napier then
describes how these moving particles and their distances covered are re-
lated to the sines and the logarithm:

For the sake of an example: Let both figures from earlier on be repeated and
let B be moved always and everywhere with equal velocity which � began to be
moved, being initially at �. Then, at the first moment, let B proceed from A to C

and in the same moment � from � to  proportionally. The number expressing
AC will be the logarithm of the line, or the sine !. Then, in the second moment

27 This is referred to in his text as ‘B’.
28 For further details on this see [Katz 1998, p. 417].
29 In fact, first the upper part of this diagram appears on p.1 of the 1614 edition.
Then after some prose-text, the lower part appears on p. 2. But then the two figures
are put together and repeated (this is pointed out by Wright).
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Figure 2. The relation between the two lines and the logs and sines.

let � be moved forward proportionally from  to �, the number expressing AD

will be the logarithm of the sine �!. Therefore, in the third moment, let B move
equally from D to E , and in the same moment � move from � to �. The number
defining AE will be the logarithm of the sine �!. Also, in the fourth moment
let B move forward to F and � to �. The number AF will be the logarithm of
the sine �!. And preserving the same order continually, the number AG will
be (taken from the above definition) the logarithm of the sine �!. AH will be
the logarithm of the sine �!. AI will be the logarithm of the sine �!, AK the
logarithm of the sin �! and so forth infinitely.
Descriptio I, 1 (p. 4); second author’s translation

The lines can be imagined as being divided into two parts: that part
which has been traversed by the particle, and that which is still to be tra-
versed. According to the description above, the untraversed distance on
the second (finite) line is the sine. The traversed distance on the infinitely
long (first) line is the logarithm of that sine (see Fig. 2). While the sines
decrease, Napier’s logs increase. Thus by Napier’s account:
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AC = lognap(!) where ! = Sin�1

AD = lognap(�!) where �! = Sin�2

AE = lognap(�!) where �! = Sin�3

and so on...

or in other words, using modern notation:30

x = Sin�

y = lognap(x)

The important corollary is that the logarithm of the whole sine, or R, is
zero (Napier observes this in chapter 1 [1614, ‘Corollary’, p. 4]) and the
logarithm of zero is infinite.

Embedded within this kinematic conception are arithmetic and geo-
metric sequences. The increasing arithmetic sequence is:

0; AC; AD; AE; AF; � � � = 0; b; 2b; 3b; 4b; : : :

The decreasing geometric sequence is formed from the distances from the
right endpoint to the particle, namely:

�!; !; �!; �!; � � � = R; aR; a2R; a3R; : : :

where R (total sine = 10,000,000) is the length of the line and a is some
number chosen to be less than but very close to 1. Napier set this number
at 1� 10�7 . Therefore, Napier’s geometric progression, first term x1 = R

= 10,000,000 and common ratio a = 1� 10�7 is generated via:

xn+1 = xn � (1�
1
107
)

so that the first dozen terms and their corresponding logarithms are:

30 Care must be taken in general regarding notation. In Napier’s case, the Greek
letters ; �, etc., are used to indicate a line segment by means of its endpoints: i.e., !
etc.
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Table 2
Napier’s logarithms

xn+1 n = lognap(xn+1)

10000000.0000000 0
9999999.0000000 1
9999998.0000001 2
9999997.0000003 3
9999996.0000006 4
9999995.0000010 5
9999994.0000015 6
9999993.0000021 7
9999992.0000028 8
9999991.0000036 9
9999990.0000045 10
9999989.0000055 11

This is not the final form of the tables however, as Napier wished to
present the logarithmic relationship tabulated not in order of increasing
natural numbers, but rather in increasing angles, given in degrees and
minutes. Thus, for the sine of each angle, the appropriate logarithm was
selected, as follows:

Angle (�) x = Sin� lognap(x)

90�000 10 000 000 0
89�590 10 000 000 1
89�580 9 999 998 2
89�570 9 999 996 4
89�560 9 999 993 7
89�550 9 999 989 11

Compare this to the last three columns (in reverse) of Napier’s table
(see Fig. 3).

Essentially, the tables given in the Descriptio are logarithms of sines, and
by ingenious arrangement, related trigonometric functions. Although
the above derivation represents the intent of Napier, in practice, comput-
ing values in this way and then extracting the appropriate ones for the
corresponding sine would have required Napier to compute about ten
million values to fourteen significant places. This, for obvious reasons, was
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Figure 3. The first page of Napier’s tables.

impractical, and Napier devised some ingenious interpolation techniques
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and computation saving short-cuts.31 He described these techniques in
the later published Constructio.

Napier then set about presenting these computed values in a tabular ar-
rangement to further facilitate their practicality. Indeed, the layout of the
tables has been carefully thought out and the tables contain clever symme-
tries; these are described by Napier in Descriptio I, 3. Each page consists of
seven columns. The first column lists the arcs (or angles) in degrees and
minutes, increasing minute by minute from 0� to 45� . Each page covers
30 minutes; 1� takes two pages to tabulate so that the tables are 90 pages
in length. This column is related to the seventh column on the far right,
which gives the angles decreasing, minute by minute from 90� . In this way,
the whole quadrant is tabulated, invoking the symmetry of the sine func-
tion. The second and sixth columns are headed sinus and are the results
of computing the sines of the angles given in the first and seventh column
respectively. These sines are taken from the sine tables of Erasmus Rein-
hold [Baron 1974, p. 611]. The third and the fifth columns are headed log-
arithmi and contain the logarithms of the sines in the preceding column.
The fourth column is called differentiae. This column contains the differ-
ences between the logarithms in the third and fifth columns.

What is particularly ingenious about this layout is that each of the
columns when read in a particular direction gives each of the trigonomet-
ric functions. Reading from the left-most column rightwards, the tables
present an angle, its sine, the logarithm of its sine, the logarithm of its
tangent,32 the logarithm of its cosine, its cosine,33 then the angle’s com-
plement.34 These relationships are essentially the same reading the table
from the right-most column leftwards, except that the middle column is
the logarithm of the cotangent.

31 This explains the discrepancies in the computations presented above, and the ac-
tual numbers presented in Napier’s tables. For details on his interpolations, see for
example [Baron 1974, p. 612].
32 One can take the difference of the tabular value corresponding to the sine and
the cosine to find this entry, since tan � = sin �

cos �
.

33 As sin � = cos(�+ 90).
34 As �+ � = 90� .
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Napier provided his readers with some worked examples. For instance,
the first example he gives is how to find the logarithm of a given sine:

I seeke the Logarithme of the sine 694658. I finde that sine precisely in the
second column, answering to the arch 44 degrees 0 min etc in the same line of
the third column, there standeth ouer-against it, the Logarithme 364335 which
I sought.
I,4 (as translated by Wright):14

Thus, by simple table look-up:

lognap(694658) = 364335

Napier gives many other examples of increasing complexity, including
the computation of mean proportionals (sometimes known as the geomet-
ric mean). Here, he details the original way in which it would have been
computed, and points out that his technique using logarithms finds the
answer ‘earlier’.

Let the extremes 1000000 and 500000 bee given, and let the meane pro-
portionall be sought: that commonly is found by multiplying the extreames
given, one by another, and extracting the square root of the product. But we
finde it earlier thus; We adde the Logarithme of the extreames 0 and 693147,
the summe whereof is 693147 which we divide by 2 and the quotient 346573
shall be the Logar. of the middle proportionall desired. By which the middle
proportionall 707107, and his arch 45 degrees are found as before.. . found by
addition onely, and division by two.
I, 5 (as translated by Wright):25

In order to find the mean proportional by traditional methods, Napier ob-
serves that one has to compute the product and then take the square root,
that is:

p
1000000� 500000 =

p
500000000000 � 707106:78

Instead, Napier proposes:

lognap(1000000) + lognap(500000) = 0 + 693147 = 693147

693147� 2 = 346573 (6s:f:)

So the mean proportional is 707106 as required:
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Therefore, rather than an involved procedure to extract a square root,
one needs only perform addition once and division by two, a saving which
Napier himself points out.

Napier’s tables were logarithms, but with additional convenience to
practitioners. The tables were specifically designed to be immediately use-
ful to those who needed the relation to facilitate arithmetical operations
primarily with trigonometric functions. This, however, had the conse-
quence that the table could not easily assist with arithmetic operations
outside of a trigonometric context. Napier’s ambition to avoid tedious
and long computations resulted in a method which he gave a kinematic
basis. It was, as Katz observed, an “imaginative idea of using geometry
to construct a table for the improvement of arithmetic” [1998, p. 417].
But questions persist in the study of Napier and his logarithm. Most in-
triguing is where Napier’s initial motivation to consider the grounding
of the problem to be the motion of particles arose. Why did his particles
have such a relationship, such that their distances were inversely propor-
tional? Why was his second particle undergoing uniform deceleration, so
that his geometric sequence decreased? Can the fact that he tabulated
the logarithms of sines and not the logarithms of numbers be explained
only with recourse to application, or was it because of something deeper?
These questions are key, and although they are not addressed here they
are important insofar as they highlight the contrast in Napier’s intention,
motivation, and approach with those of Bürgi.

3. BÜRGI

Jost Bürgi collected his work on the logarithmic relationship into
the Arithmetische und Geometrische Progress Tabulen/sambt gründlichem unter-
richt/wie solche nützlich in allerley Rechnungen zu gebrauchen/und verstanden
werden sol35 (henceforth referred to as Progress Tabulen), which was issued
in 1620 in Prague; as yet, this is his only surviving work available to mod-
ern scholars. Only a few copies of the Progress Tabulen are known to exist,

35 Arithmetic and Geometric Progression Tables/with thorough instruction/how these can be
usefully applied in various calculations/and how they are to be understood.
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though not all of these are considered complete because they do not
contain the handwritten “Bericht”.36

3.1. The Manuscript

The copy of Bürgi’s Progress Tabulen used for this investigation is housed
in the Universitätsbibliothek Graz (University Library Graz, Austria)
and contains the shelf mark Graz, University Library, I 18600-18601. The
manuscript37 is bound together with Krabbe, Johannes: Newes Astrolabium;
Frankfurt: Becker, 1609.

The manuscript was previously owned by Oswald Müller and Paul
Guldin. Paul Guldin, a Jesuit and trained mathematician, amassed in
his lifetime (1577-1643) a large collection (some 300 titles) of 16th and
17th century volumes, manuscripts, and correspondence, which are now
part of the Special Collections of the University Library in Graz. Possibly
because it was owned by just one other individual before Guldin, the
Bürgi manuscript is in very good condition. There is evidence of age and
moisture spotting (e.g., page 1) and two pages (15 and 16) are missing a
bottom corner. No portion of the handwritten text appears to have been
affected by damage. Lastly, the manuscript contains no commentary or
notes, other than the text intended for the manuscript. “Justis Byrg[i]y”
is handwritten in red ink above the first phrase of the title on the printed
cover page. Also, the initials, “J B”, are written above the phrase “Die ganze
Rote Zahl” (“The greatest red number”) on the same page, though these
initials are of a different hand than “Justis Byrg[i]y”.

The manuscript comprises three parts: the printed title page, printed
tables of logarithms (by Paul Sessen (“bey Paul Sessen”) in Prague, 1620)
and a handwritten “Kurzer Bericht” (“Short Report”) or “Bericht” (“Re-
port”), which includes a two-page foreword. The tables are printed and
written on paper with pages of size 19 cm by 16 cm and bound using
flexible parchment. The tables fill 58 unnumbered pages, with labels
centered at the bottom of every first and eighth page (most likely formed

36 See, for example, the holdings at BSB-Münich, whose copies do not include the
handwritten “Bericht" (H. Tichy, personal communication, May 9, 2009).
37 Here we refer to the Progress Tabulen as a ‘manuscript’, although it is a hybrid con-
taining a printed part and a handwritten part.
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as a quire – four sheets of paper that formed eight pages when folded or
stitched together). For example, the ninth page is labelled “B” and the
eleventh page is “B 2”. The odd-numbered pages of the 21-page handwrit-
ten “Bericht” are so indicated, beginning with 1 and ending with 21. The
foreword does not contain page numbers. It is understood that the entire
manuscript described here was issued in 1620.

The use of red and black ink is evident in the printed cover page,
printed tables, and handwritten “Bericht”. The first and second-to-last line
of the title page (see Fig. 4) are written in red ink, along with the appro-
priate values of logarithms and “Die ganze Rote Zahl/230270022”, and
two different instances of either Bürgi’s name or initials. The tables them-
selves are printed with the logarithms’ values (the top row and left-most
column) in red and the antilogarithms in black. Finally, red ink is used
throughout the “Bericht”, whenever elements of an arithmetic sequence
or the red numbers from the tables are used, or operations on the red
numbers are performed. (There are, of course, a few exceptions to this
due to irregularities.)

The language used in the printed title page and the handwritten fore-
word and “Bericht” is most likely Early New High German, which was
generally dominant from around 1350 to 1650. The small amount of
non-numerical text that appears on the printed title page (other than the
first line) is consistent with Fraktur, a blackletter typeface and handwrit-
ing style used in German and other European languages from the 16th
century until 1950. Much of the first line of text of the printed title page is
reminiscent of some form of a minuscule script, characterized by uniform
and rounded shapes. Curiously, there is a slight mixture of Fraktur along
with this crisper typeface, as is seen in the “-sche” endings and the word
“und”.

There are notable uses of Latin (or at least a hybrid use) for math-
ematical terms in both the handwritten foreword and the handwritten
“Bericht”. The change in this handwritten script for Latin terms found
in the “Bericht”, however, is more distinct. Terms such as Fundamenta
(“Bericht”, page 1); Radicem Quadratum (page 10); and hybrid terms such
as Medio Proportional (page 14) appear throughout the text. In each in-
stance the terms are written in a more distinct script, characterized by
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Figure 4. Title page of Bürgi’s Progress Tabulen.

disconnected and more pronounced letters. Perhaps the most frequently
used of these Latin mathematical terms is the hybrid Medio Proportional,
which first appears in the “Bericht” as “mitler Proportional” (page 3).

Finally, the scribe of this copy of the manuscript could in fact be Jost
Bürgi. Three key features of the manuscript lead us to this conclusion.
First, several passages are written in the first person, as if Bürgi is taking the
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opportunity to be more instructive than is found within the calculations
of the examples.38

A second feature that is actually one of omission is that no colophon is
found anywhere in the manuscript. The omission of a colophon, coupled
with the fact that the red initials “J B” on the title page could be the rubri-
cation of the scribe completing this copy39, provide evidence for our claim.

Lastly, another copy of this work that has been the focus of prior
modern scholarship [Bruins 1980; Gieswald 1856; Gronau 1996; Lutstorf
2005] is the manuscript which was housed at some point (and may still
be held, though several attempts at communicating with the library have
gone unanswered) in the Danziger40 Stadt-Bibliothek and transcribed
by Gieswald in 1856. There are several discrepancies between the copy
used by Gieswald and the copy housed in Graz. For example, several of
the passages that provide further explanation (in the first person) to
examples (e.g., “Bericht”, pages 16 and 18) do not appear in the Gieswald
transcription. Consequently, the copy housed in Graz is probably the older
of the two. The copy used by Gieswald also contains the initials “J B” on
the printed title page, along with two antilogarithm corrections, which
Lutstorf and Walter [1992] indicate as possibly being written by Bürgi.
Thus, it is quite probable that the two Progress Tabulen copies that include
the handwritten “Bericht” were written by Bürgi.

3.2. The Content

3.2.1. Foreword to the “Good-hearted Reader”

Bürgi announced clearly at the outset the intention behind his special
tables, namely to “remove the difficulties from multiplication, division,
and extraction of roots”41 (Foreword, page 1). He continued, stating that:
“through all time I looked for and worked to invent the general tables,
with which man would like to perform all of the afore-mentioned things”

38 Examples of this can be seen in the “Bericht” on pages 3, 5, 7, and 16, to name just
a few.
39 Jeep [2001, p. 609] notes in his entry on ‘Paleography’ that upon completing a
manuscript, a scribe would paint his initials in red.
40 The municipal library of what is today the Polish city of Gdańsk.
41 Each translated excerpt from the Progress Tabulen is the work of the authors.
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(Foreword, page 1). In particular, Bürgi’s key motivation was to construct
special tables that could be used for a variety of calculations, rather than
needing collections of various tables each of which were specific to a
particular operation. Indeed, Bürgi notes that having separate tables for
multiplication, division, square roots, and cube roots is “not alone irksome,
but also laborious and cumbersome” (Foreword, page 1). It is here in the
Foreword that Bürgi states he is able to create one table for a multiplicity
of calculations by considering the two progressions: one arithmetic; the
other, geometric. He closes the Foreword by noting that he will most likely
work with the tables for years to come, and promises another work for
those readers who desire a deeper understanding of the tables. Sadly, this
grand explanation, the “Unterricht”, or literally, the “Instruction”, promised
in both the title of the Progress Tabulen and in the Foreword was never
delivered. (At least, no copy of the “Unterricht” is known to have survived.)
Instead, the “Bericht” contains only a brief introduction to the relationship
between an arithmetic and geometric progression (with eight examples
of calculations using the whole numbers and the non-negative powers of
2) and some 26 examples of calculations using the tables he computed
(Table 3).

Bürgi delivers on his promise to construct special tables that can be
used for a variety of calculations. Table 3 identifies each type of calculation
found in the “Bericht" and for each calculation (multiplication, division,
square root, cube root, fourth root, fifth root, and middle proportionals),
Bürgi’s examples increase in complexity. The range of examples includes:
(1) straight-forward use of the tables (e.g., black numbers and an opera-
tion are given; the corresponding red numbers are found and associated
“simpler” operation performed; resulting black numbers are determined
from the table); (2) interpolation (e.g., resulting red values that do not
appear in the table that require linear interpolation between two that
do appear); (3) adding or subtracting 230270.022 (e.g., a resultant red
number larger than 230270.022 requiring that the “greatest red number”
be subtracted before determining the associated black number); and (4)
a combination of a subset of the first three types.
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Table 3
Distribution of examples in the Progress Tabulen.

Page Number Topic Content
p. 1 Introduction Arithmetic and geomet-

ric progressions (2n)
p. 2–4 Definition of operations 8 examples

with examples using 2n

p. 4–5 Introduction to Tables 2 examples
p. 5–6 Non-tabulated values 1 example
p. 7 Multiplication 2 examples
p.8 Division 2 examples
p.8–10 Rule of three 3 examples
p. 10–11 Square Roots 2 examples
p. 11–12 Cube Roots 3 examples
p. 13 Fourth Root 1 example
p. 13–14 Fifth Root 1 examples
p. 14–18 Middle Proportionals (MP) 6 examples
p. 19–21 Middle Proportionals 1 example finding two

MPs
1 example finding three
MPs
1 example finding four
MPs

3.2.2. The “Bericht”

The handwritten “Bericht” provides 21 pages of worked examples and
explanations. Bürgi begins by introducing the reader to two types of num-
bers: red numbers that are elements of an arithmetic progression (which
Bürgi uses for ‘sequence’) and black numbers that are elements of a cor-
responding geometric progression. In his introduction, he states that ev-
eryone will come to consider his tables as comprised of Fundamenta (or,
‘Fundamentals’) because they represented improvement on the previous
practice of needing multiple tables to perform all manner of calculations.
Now, one would only need Bürgi’s tables.

In the “Bericht” Bürgi provides examples that show the application of the
relationship between the two progressions (“Begriff der Eigenschafft diser
Zweien Progressen",(“Bericht”, page 1)). At the bottom of the first page of
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Figure 5. Arithmetic and Geometric Progression (powers of 2).

the “Bericht” (see Fig. 5) the reader is presented with the theoretical moti-
vation that underlies Bürgi’s tables, the juxtaposition of an arithmetic pro-
gression (the natural numbers, 0 to 12) and a geometric progression (the
first 13 powers of 2).

After Bürgi establishes the primacy of relating the two progressions,
he presents eight examples of performing a variety of calculations (e.g.,
multiplication, division, extracting square roots) on the black numbers
using corresponding, yet simpler operations (e.g., addition, subtraction,
halving) on the associated red numbers. He takes great care to highlight
the relationship between two sequences throughout the examples in his
text, as well as in his tables (see Figs. 6 and 8). In addition, he emphasizes
the usability of his design by including examples that work “both ways”;
that is, given black numbers, retrieve their corresponding red numbers
and vice versa. Among the first eight examples is a single example of a
Regula detri (“Bericht”, page 2).42 The example shown in Fig. 6 (“Bericht”,
page 3) highlights another significant feature of Bürgi’s text. Note the
careful alignment of the corresponding red numbers for each of the black
numbers in the example. Here we find his deliberate juxtaposition of the
colored numbers within the layout of the examples he uses to illustrate
his relation.

Here, the problem posed by Bürgi reads:

42 Regula detri means the “rule of three” or, it is medieval Latin for “equating ele-
ments by two equal fractions”, which is often considered an example of the rule of
three, in that if a/b = c/d, and any three of a, b, c, d are known, the fourth can be
determined.
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Figure 6. Regula detri example (“Bericht”, page 3).

8.geben. 128.was geben. 32 gib der Zahl ihr gebürrende
Rote Zahl 3.(in red ink) 7. (also in red ink) 5 (in red ink) addir und zusammen.

Restating this Regula detri problem in modern terms, the task is to compute
a from

8

128
=
32

a
(“Bericht”, page 3). In this example, the black numbers 8, 128, and 32 are
given, along with their red numbers (again, aligned just beneath the black
numbers). A product of 128 and 32, and then the result of that number
divided by 8, is sought. However, using only the red numbers in a vertically-
oriented calculation, Bürgi adds the corresponding red numbers for 128
and 32 (7 and 5, respectively); subtracts the red number for 8 (which is
3) from this sum; and using the red number 9 to find the corresponding
black number (512), the result is obtained. Thus,

8

128
=
32

512
:

Bürgi uses color and alignment consistently throughout the presenta-
tion of examples based upon the tables he constructed in the “Bericht". To
calculate the “vierte Proportional" (“Bericht”, page 8) or the fourth propor-
tional using the method of Regula detri, Bürgi gives the first, the second,
and the third black numbers taken directly from his tables. Then, as be-
fore, he gives the corresponding red numbers by aligning them beneath
the black numbers. The alignment is not limited to black number and
red number correspondence, however. As Bürgi completes calculations,
he ensures that he aligns his computations on the red numbers vertically.
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Figure 7. Calculating the fourth proportional, given three num-
bers (“Bericht”, page 9).

Thus, the statement of each example is oriented horizontally so that the
correspondence between the black numbers and their associated red
numbers are easily seen and all calculations are shown vertically. Fig-
ure 7 shows two worked examples for calculating the “vierte Proportional"
(“Bericht”, page 9).43

In the first example given on page 9, Bürgi seeks to find the fourth value,
given the first three numbers in a proportion. He begins by listing three

43 The second half of this excerpt beginning with “Das Ander Exempel” (in this case,
“The Second Example”) does not appear in Gieswald [1856].



250 K. M. CLARK & C. MONTELLE

nine-digit numbers (154030185, 205518112, 399854564) and their corre-
sponding red numbers (43200, 72040, 13860044). Then, Bürgi sets to cal-
culate on the red numbers only. He begins by adding the second and third
red numbers:

138600 + 72040 =
210640.

Next, Bürgi subtracts the first red number:

210640 - 43200 =
167440.

Finally, using the resulting red number, Bürgi identifies the “vierte Propor-
tional”, 533514619, by locating the black number from the table corre-
sponding to 167440.

A second noteworthy example of Bürgi’s use of color and alignment is
evident in an example of the extraction of the fourth root, the “ZZR" (see
Fig. 8) or given as “Radicem Zonsi Zonsicum”45 on (page 3 of the “Bericht”).
Using the same value (e.g., 56120370 or 561203700) from previous exam-
ples (another technique used by Bürgi), he seeks to calculate the fourth
root of 56120370.

To find the fourth root, Bürgi must first determine two things: how
many whole number digits will exist in the root and how many multiples
of his ‘greatest red number’ (230270022)46 must be incorporated into
the calculations involving red numbers. Bürgi determines the former by
placing a dot above the ones digit of the number (56120370) and then
placing a dot over every fourth digit until less than four digits remain
(since the fourth root is desired). Thus, Bürgi has placed a dot over the

44 The red number corresponding to 399854564 is first given incorrectly in the
manuscript as 938600 (“Bericht”, page 9). On line five, Bürgi gives the correct red num-
ber as 138600. It is worth noting here that such errors may be identified as copyist
errors and not necessarily original to Bürgi.
45 Many would argue that the manuscript should read “Zensi Zensicum Radicem” (to
properly indicate the fourth root), but the second letter of each of the first two words
is clearly an “o”.
46 For an explanation of this number, see section 3.2.1 below. Briefly, the loga-
rithm of a number that was 10 times another corresponds to adding (or subtracting)
230270.022 to (from) its logarithm in Bürgi’s system.
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Figure 8. Calculating the fourth root of 56120370 (“Bericht”, page 13).

0 (in the ones place) and the 2 (in the ten-thousands place). This means
the fourth root of 56120370 will have two whole-number digits.

To determine the latter, how many multiples of 230270022 are required,
Bürgi simply counts the number of digits remaining after the dot-placing
process. Thus, the red-number calculations will require three multiples of
the greatest red number: first, 172500 is located as the corresponding red
number for 56120370. Then, aligning and adding:

172500[000]
230270022
230270022
230270002
863310066

Since Bürgi seeks the fourth root, however, one-fourth of this resulting
value (or, 215827516) is the red number that must then be located in
the table.47 Finally, using linear interpolation, along with the fact that

47 Unfortunately, the final red number value that appears here (“Bericht”, page 13)
is incorrect in the Graz copy. The final red number given (190827516) is most likely
the result of dividing 763310066 by 4, instead of dividing 863310066 by 4.
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Figure 9. Interpolation example (“Bericht”, page 6).

the fourth root contains two whole-number digits, the fourth root is
86.5526026.48

The first instance of interpolation (“Bericht”, page 6) is not unlike the
presentation of other examples, with regard to careful alignment and use
of color. The example also includes, however, a brief explanation of how
to interpolate to find the red number corresponding to the black number
36.0000000.49

In the example in Figure 9, Bürgi selects the two values from the table
closest to 36.0000000, and lists the black numbers and their corresponding
red numbers:

48 This is a correction on the value given in the manuscript, 67.080769 (“Bericht”,
page 13).
49 This value appears as 36 0000000, with a small “o” situated above the 6. This was
Bürgi’s version of the decimal point, first introduced by Stevin [1585].
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The red number [1280]90 corresponds to the black number 35.9964763
The red number [128]100 corresponds to the black number 36.0000759

Next, Bürgi performs a simple linear interpolation for the non-tabulated
value 36.0000000:

First, 36.0000759 - 35.9964763 = .0035996 and
36.0000000 - 35.9964763 = .0035237.

Finally, solving the proportion

35996

10000
=
35237

x
Bürgi determines the value 9789 (page 6, line 14). To complete the inter-
polation, Bürgi adds 128000, 90, and 9.789 for a result of 128099.789 as the
red number (logarithm) corresponding to 36.0000000.

When appropriate, Bürgi provides examples from this range for each
type of calculation exhibited in the “Bericht”. The examples that are per-
haps the most notable are the “Medio Proportional” calculations. In these
examples, Bürgi establishes the use of black numbers from the table that
are not always nine-digit numbers. In other words, the powers of 10 implicit
in Bürgi’s table are highlighted in the sequence of examples.

As we have seen in calculating the fourth root (Fig. 8), there are many
advantages to basing the red numbers on multiples of 10 and using a scale
of 108 for the black numbers. Examining the example in Fig. 10, (“Bericht”,
page 16) in more detail provides another method in which Bürgi compen-
sates for performing calculations with different numbers of digits.
In the example, Bürgi seeks the mean proportional (or, geometric mean)
between 303419 and 304939818. To utilize the greatest red number in
this example, Bürgi simply determines the difference in the number of
digits. A six-digit and nine-digit number differ by three digits, therefore to
add the corresponding red numbers together, the six-digit number must
be increased 1000-fold, which requires Bürgi to add 230270022 three
times in order to proceed with the red number calculations. Thus, Bürgi
determines the corresponding red numbers from the table: 111000 and
111500. Adding the two red numbers yields 222500[000]. Next, Bürgi adds
the three multiples of 230270022, and the resulting sum is 913310066.
Since the geometric mean calculation requires the square root of the
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Figure 10. Calculating the middle proportional between a 6-digit
and 9-digit number (“Bericht”, pages 16–17).

product (represented here by the sum of the two red numbers and sub-
sequent multiples of 230270022), the next step is to divide 913310066 in
half, which is 456655033. This number, however, exceeds the greatest red
number found in the table and 230270022 must be subtracted so that the
resulting red number (226385011) can then be used to interpolate the
corresponding black number.50

The mathematical notation and symbolism used by Bürgi in the Progress
Tabulen illustrates his ability to present his work in ways that were relevant
to those who would read and use the tables and accompanying examples.
Most notable among Bürgi’s use of several mathematical symbols is his ver-
sion of the decimal point that appears for the first time on the printed title
page of the Progress Tabulen. His decimal point, a small “o” or zero character
written above the digit meant as the ones place of a whole number part of
a number. On the title page of the manuscript, we find Bürgi’s reference to

50 There is an error in the Graz copy of the Progress Tabulen here: 226335011 is given
instead of 226385011. The resulting mean proportional is also incorrect (“Bericht”,
page 17). The value should be 9618967.441.
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the greatest red number, 230270.022 corresponding to the greatest black
number, 1,000,000,000.51

In addition to Bürgi’s use of a decimal point, he also writes several re-
sulting black numbers in fraction form (e.g., (“Bericht”, pages 8, 14); see
Fig. 11). In each of these instances, the whole number part of the number
is written very closely to the fractional part and in doing so, the ones digit
of the whole number part is aligned with the “1” in the fraction’s denom-
inator. In all likelihood, Bürgi adopted this fraction-writing convention so
as not to confuse the final digit of the whole number with any digit of the
fraction.

Bürgi calculates two fourth roots (“Bericht”, pages 3, 13; see Fig. 12) and
one fifth root (“Bericht”, pages 13; see Fig. 12) in the “Bericht”. In the first
instance of calculating the fourth root, Bürgi uses the term Radicem Zonsi
Zonsicum (“Bericht”, page 3). For the second, however, Bürgi utilizes the ab-
breviation ZZR and Radicem ZZ (page 13, lines 1–3).52 When he provides
the example of calculating the fifth root, however, his notation is merely
Radicem Ss,53 (“Bericht”, pages 13-14).

A final illustration of Bürgi’s use of mathematical notation is found at
the end of a Medio Proportional example (see Fig. 13). After Bürgi identifies
two proportionals B and C between 119004521 (A) and 893423483 (D), he
writes: “Wie sich halt A zu B: also halt sich B zur C: und C zur D:”, or, ‘As
A is to B, in the same way B is to C and C to D:” (Fig. 13). Thus, he uses a
description that is part rhetorical and part symbolic.

3.2.3. The Tables

In contrast to the handwritten “Bericht”, the tables in Bürgi’s Progress
Tabulen are printed. The arrangement of his tables contrasts markedly
with Napier’s. The most significant and immediate feature is that Bürgi’s
tables give antilogarithms, or powers of the base 1.0001, multiplied by

51 Using the calculations discussed in the description of the tables, 1000000000 �
999999999:7 = (108)(1:0001)230270:022=10 .
52 Related to the cossic notation for powers: ZZ for ‘square-square’. Additionally, we
emphasize that this quote is from the manuscript (see Fig. 12). One would expect to
see radix”; instead, Bürgi has used the accusative radicem.
53 Again, from the cossic notation for powers: Ss for ‘sursolid’, or fifth power.
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Figure 11. Sample fraction notation (“Bericht”, pages 8, 14).

108 .54 Thus, as tables of antilogarithms the arguments are the logarithms
themselves and the base numbers are retrieved in the body of the table.
There are several techniques Bürgi employs to make his tables more
usable and comprehensible. As previously mentioned, throughout the
Bericht, to emphasize the difference between the antilogarithms and loga-
rithms Bürgi has consistently used color to demarcate the two. The body

54 The fact that Bürgi produced a table of antilogarithms was noted as being an im-
portant“marketing” device [Folta & Nový 1968, p. 98]. Also, Bürgi would not have
used the term “base”.



THE EARLY HISTORY OF THE LOGARITHM RELATION 257

Figure 12. Bürgi’s fourth- and fifth-root notation (“Bericht”, pages
3, 13).

Figure 13. Middle proportional (Medio Proportional) notation
(“Bericht”, page 19).

of the table, the antilogarithms, are printed in black and the logarithms
themselves which are arranged along the top and left edge are printed in
red. So as not to overcrowd the tables, for each new page of the tables,
only the first row of the body of the table always includes all nine digits
for each entry. The red numbers increase by 10 for each row; however,
there is also an implied scale factor of 10. By a careful cross-indexing of
the left-hand column and the top row, the exact logarithm (red number)
and its corresponding base number can be retrieved.
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For ease of reading, the columns are divided into 17 clusters of three
rows each. Additionally – and perhaps also for ease of reading – black num-
bers are not always given in their entirety (i.e., all nine digits). Instead,
nine-digit numbers are initially given once among every eight, nine, or ten
table entries in which the fourth digit of the sequence of antilogarithms
changes. As the tables progress, complete nine-digit numbers appear more
frequently until finally, beginning on the 45th page of the tables, the fre-
quency of complete nine-digit numbers diminishes, sometimes as little as
once every 16 entries.

Despite the fact that Bürgi presented the theoretical motivation for his
tables via the comparison of an arithmetic and geometric series that was
based on the powers of two, a different numerical parameter actually un-
derlies his tables. Bürgi was aware that a geometric progression with a com-
mon ratio of 2 (or any value much larger than 1) would produce terms that
became too large too quickly to be useful. Thus, selecting a common ratio
of 1.0001 for constructing his tables produced values more amenable to in-
terpolation. This common ratio choice created a smaller gap between any
two successive black numbers, enabling Bürgi to use linear interpolation to
determine close approximations for a black number (or red, if using the
tables in that direction) corresponding to any red (black) number result-
ing from calculations.

The first value in the body of the table (in black) is 100,000,000 (see Fig.
14). Its corresponding logarithm (red number) is 0. Modern reconstruc-
tions, e.g., [Katz 1998] show that subsequent values can be generated via
(where B is the antilogarithm (the black number) and R is the logarithm
(the red number)):

B = (108)(1:0001)R=10 ,

so that the black numbers form a geometric progression with ratio r =

1:0001. Bürgi does not reveal any such details that underlie the construc-
tion of his tables. Straight forward indexing techniques have been used to
tabulate the logarithmic values. To use the left- and top-edge of the table,
simple addition provides the logarithm value (or, 10 times the logarithm
value). For example, to find the logarithm of 101907877, we would add the
column value (1500) to the row value (390), and divide by 10. Thus, the
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Figure 14. Locating a logarithm value.

logarithm of 101907877 is 1890/10 or 189. To confirm this using the mod-
ern calculation, 101907877 = (108)(1:0001)189 .

The first 57 of the 58 pages of tables contain eight columns and 51 rows
which produce 408 entries per page, for a total of 23,256 entries. Except
for the first entry of the first page, each final column entry is also the first
entry of the next column. This means that of the 23,256 entries, 22,801
are distinct. Finally, page 58 of the tables includes 233 additional entries, of
which 229 are distinct. Thus, Bürgi’s tables are composed of 23,489 entries,
23,030 of which represent distinct calculations.
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Figure 15. Last page of Bürgi’s tables.

Although the construction of the tables appears to be driven by scale
factors (10 and (108)) for improved in precision without the need for dec-
imals, it is also clear from Bürgi’s note at the conclusion of the tables that
he saw the tables as being easily used for any number desired. On the 58th
sheet of the tables Bürgi states (see Fig. 15):

Also enden sich die zwo Summen Zalen in 9. Zyphern/vñ ist die Rote
230270022-
23027023+
Die Schwarze aber ist ganz, mit 9 nollen als 1000000000 vnd so dieselben ganzen
Zalen/nicht gnug geben mögen/so mag man dieselben 2. 3. 4. 5. 6. 7. 8. 9. zusammen
addieren.

So ends the sum of two numbers in 9 digits / and the Red (numbers)
230270022 -
230270023 +
The black [numbers], however, with only 9 zeroes as in 1000000000 may not be
enough / you can add the same as 2, 3, 4, 5, 6, 7, 8, 9 (-digit numbers), together.
(Last page of Bürgi’s tables; translation by first author)

Thus, Bürgi, with this note at the end of the tables, declares that the “en-
tire” red number (or, rather, the greatest logarithm he has calculated) is
between 230270.022 and 230270.023, and that the black numbers can ei-
ther be taken as multiples of or as parts thereof.
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In summary, Bürgi based his system on a geometric sequence, with ratio
1.0001 and first term 108 . He tabulated from 100000000 to 999999999 with

logbur(10
8) = 0

and
logbur(999999999) = 230270:022

and, to finally advance to the ten-fold value 1000000000 Bürgi knew that
logbur(1000000010) = 230270:023. Furthermore, the logarithm of a
number that was ten-fold different was equivalent to adding or subtracting
230270.022 to its logarithm. This factor of 108 was presumably to maintain
precision while using integers.

In addition to his tables, Bürgi included a graphical table which sum-
marized his system—a syncopated presentation of his tables (see Fig. 4).
This appears on the title page and consists of two concentric circles of val-
ues giving the red numbers in increments of 5000 and their corresponding
black numbers. All but the last value follows this pattern; the final value is
the largest red number 230270. Therefore, with this graphical rendering
on a single sheet and the appropriate interpolation pattern, users could
compute using Bürgi’s system. Whether or not it was in fact used in place
of the tables, this graphical image is emblematic of Bürgi’s system in sev-
eral ways: most importantly it highlights the cyclical nature of his system,
it conveys the actual numerical relations, and it captures the red-black nu-
merical relation.

Even with the unfortunate omission or loss of Bürgi’s promised “Unter-
richt”, much can be learnt from a detailed analysis of the Progress Tabulen
with respect to his conception of the logarithm. From his brief “Bericht”
we know the motivation for the construction of the tables. Furthermore,
the presentation of the examples highlights important details of Bürgi’s
use of notation, his concern for the ease of use of the tables (particularly
highlighted by the use of color), and his implied instructional techniques.
However, Bürgi remained silent as to any deeper conceptual foundations
for what led to his choices for the construction of the tables. Nor did Bürgi
provide any reason why he elected to construct his tables as he did, given
that the scientific community he worked within was concerned with astro-
nomical calculations that depended upon trigonometric values. Further-
more, we can only speculate that the fact that Bürgi promised a “user’s
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guide” [Gronau 1996, p. 1] may mean that he intended users of his tables
to include non-astronomers.

4. THE ISSUE OF PRIORITY

Eminent historian Florian Cajori opened his study on the history of the
logarithm with the comment “Few inventors have a clearer title to priority
than has Napier to the invention of logarithms”.55 Cajori’s emphasis was
on Napier’s claim to the logarithm concept, and his focus henceforth was a
systematic examination of Napier’s contemporaries to categorically dismiss
any challenges that they might pose to this priority. Indeed, the emergence
of tables of logarithms beautifully exemplifies a practice that is insidious
throughout many accounts in the history of mathematics—the evaluation
of the claim of an individual to an idea or insight and their rights to priority.

Even in the period near contemporaneous with the introduction of
these ideas, scholars were already assessing the claims of one of the pair
to priority. Kepler himself, who worked closely with Bürgi, comments:

qui etiam apices logistici Iusto Byrgio multis annis ante editionem Neperianam viam
praeiverunt ad hos ipsissimos Logarithmos. Etsi homo cunctator et secretorum suorum
custos foetum in partu destituit, non ad usus publicos educavit

These logistic points which showed Iustus Byrgi many years before the edition
of Napier the way to these very same logarithms. Even so, this man, a procras-
tinator and guardian of his secrets, abandoned his baby in childbirth and did
not nurture it for public use.
Kepler, Tabulae Rudolphinae [1627, p. 48].56

The issue of priority still grounded discussions in centuries following. In
1859, the French mathematician and politician Arago claimed: “I doubt
whether it were possible to cite a single scientific discovery of any impor-
tance which has not excited discussions of priority”.57 More recently, schol-
ars have conveyed sentiments such as the following: “Speaking of priority

55 [Cajori 1915, p. 93].
56 From [Gronau 1996, p. 6].
57 Biographies of Distinguished Scientific Men, First Series, Boston, 1859, p. 383; as
cited by [Cajori 1915, p. 93].



THE EARLY HISTORY OF THE LOGARITHM RELATION 263

disputes, Napier does not hold the title to logs free and clear.. . But publica-
tion won out on this one, and Napier has retained his title to priority”58 and
even “long before John Napier, Stifel seems to have invented logarithms in-
dependently.”59

When there is more than one individual wrapped up in a ‘priority
dispute’, scholarship has tended to focus on the ways in which these in-
dividual insights were similar, neglecting important points of contrast.
We should consider that such an emphasis on the similarities between
accounts risks reducing our capacity to appreciate the details and nuances
of each of these individual accounts. Examining the details of Napier and
Bürgi’s work and circumstances brings this point to light vividly. The two
men were working in different communities in distinct locations, and, as
the scant evidence suggests, simultaneously. The nature of their insight
and design required years of intensive calculation efforts and was not the
result of some instantaneous insight which could be written up quickly.

Their proposals differ in many significant ways. Napier’s conception was
given kinematic expression from the outset.60 His comparisons rested on
the motions of particles subject to both uniform velocity and deceleration
over infinite and fixed distances. His work was designed and engineered
very much with his audience in mind. His results were not presented as a
table of logarithms, but rather as a table of uniformly increasing angles,
with their corresponding sines and logarithms thereof. This was so that
they would be immediately useful to those practitioners whose calculations
were largely trigonometric. He devised ingenious interpolation schemes to
save on computation efforts while allowing him to tabulate with a high de-
gree of detail. Napier’s work was quickly transformed into a practical tool
which was commercially distributed and exploited.

Bürgi on the other hand grounded his description in arithmetic alone,
defining both an arithmetic and a geometric sequence and carefully
showed the ways in which they were related and how his system took

58 [Shell-Gellasch 2008, p. 6].
59 [Pesic 2010, p. 506].
60 The question as to whether Napier’s conception was kinematic, or whether it was
simply presented that way is a fascinating one, but is beyond the scope of this present
study.
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advantage of this. He did not attempt to contextualize the relation more
broadly. His proposal was more mathematically general, in that it did not
tabulate according to trigonometric relations, and could be directly ap-
plied to any arithmetical operation. By design, his tables were essentially
antilogarithmic. Bürgi computed each entry directly, using only basic
rounding to furnish his table entries.

Napier’s logarithms are essentially embedded in what is a table of sines.
Bürgi’s logarithms are the very argument of tabulation. Napier coined ter-
minology for his concept, both the term logarithm that has persisted to the
present day, as well as the appellations ‘artificial’ and ‘natural’ numbers
for the elements of the related sequences. In contrast, Bürgi used color
to delimit his relations in place of technical terminology, and simply re-
ferred to the two sets of numbers as ‘red numbers’ (logarithms) and ‘black
numbers’ (ordinary integers). The distinction between the two was primar-
ily visual, and not through technical terms. Bürgi based his system on an
increasing geometric sequence, with common ratio 1.0001 and first term
108 . Napier based his system on a decreasing geometric sequence. He se-
lected R = 10; 000; 000 to accommodate its trigonometric orientation, and
progressed in increments of 1� 10�7 .

Napier had both works on his logarithm relation published. Bürgi only
one, though another was promised. One can only guess at the difference
in reception had this more ‘theoretical’ work made its way to public con-
sumption. Furthermore the dissemination and acceptance of results by
the mathematical community depends also on the way results are commu-
nicated.61 Napier’s first work was published in 1614 and was type set and
printed. Bürgi’s was finally issued in 1620, and although his tables were
printed his manuscript remains to the present day only in handwritten
form.62 Napier was part of the busier academic community, and had his
work translated into the vernacular by Wright almost immediately. His

61 In a broader context, [Bretelle-Establet 2010] edits a volume which considers the
role of documents, collections, and archives, and their availability and dissemination,
in the reception and development of ideas, both for the original cultures of inquiry
as well as historians, in the context of Asia.
62 Or, as a printed German transcription from the original Gieswald acquired
[1856].



THE EARLY HISTORY OF THE LOGARITHM RELATION 265

work was also quickly adopted by wider commercial interests. Bürgi wrote
in German which was arguably less accessible to the wider community.
Napier seems to have responded more quickly to the reaction of his con-
temporaries and the suggestions that they had for improving the system.
He promptly made various accommodations so that his system would
be easier to use; contemporaries of his helped devise and initiate these
changes. For instance, a year after the publication of the tables, Napier
shared with Briggs that 0 (zero) should be assigned to the logarithm of
unity (1)—as opposed to the logarithm of the whole sine (10,000,000)
that Napier initially proposed.63 In their discussions, Briggs wanted to
retain the logarithm of the whole sine as 0, but he eventually stated that
“0 should be the logarithm of unity” and that such a decision “was by far
the most convenient” [Huxley 1970, p. 462]. Inspired by Napier’s contri-
butions, further scholars focused their efforts on developing and refining
tables of logarithms, including Dutchmen Adriaan Vlacq (1600–1667) and
Ezechiel DeDecker (ca. 1603–ca. 1647) and Englishmen John Speidell
(fl. ca. 1619) and Edward Wright (1559–1615). For example, DeDecker
and Vlacq published a “complete ten-place table of logarithms from 1 to
100,000” [Boyer & Merzbach 2011, p. 289] and three years after Briggs
extended his own table in Arithmetica logarithmica (1624).

All of these contrasts reveal how progressive, yet halting the concept of
the logarithm was at this initial stage. Napier and Bürgi both initially expe-
rienced positive receptions for their efforts, but one of them encountered
inducements from his academic community that furthered his work. It is
of little surprise, then, that his name has been the more pre-eminent.

More generally, the question of priority must be dealt with carefully by
historians. When we focus on one individual’s right to claim an insight,
we lose a great deal of the richness from whence this idea originated. In
fact, parallel insights intimate a certain fecundity in the broader intellec-
tual scene. They earmark that particular moment in the history of mathe-
matics as rich. Of importance is the singularity of a breakthrough when it
occurs, but even more so are the conditions and incremental insights that

63 Consequently, a new table of logarithms needed to be calculated. Since Napier
was in poor health by this time, Briggs undertook the task [Suzuki 2009, p. 220].
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preceded this point, without which such a breakthrough would not have
been possible. A breakthrough made multiple times suggests an intensity
of activity in the mathematical scene.

Furthermore, seeking similarities in past mathematics may encourage a
reductionist attitude when evaluating the efforts of emerging mathemati-
cians and nascent ideas. For example, seventeenth century English math-
ematician John Collins comments about his predecessor, mathematician
and cartographer Edward Wright:

[Wright] happened upon the logarithms and he did not know it, he made a
table of logarithms... before logarithms were invented and printed, but did not
know he had donne it.
As cited in Cajori [1915, p. 99]

This reflection reveals the absurdity of evaluating the introduction of ideas
in this way; in a similar spirit, Cajori notes:

That such a table should turn out to be a table of logarithms is not as strange
as it may seem. Any set of numbers in arithmetical progression placed parallel
with a set of positive numbers in geometrical progression defines some system
of logarithms... [Cajori 1915, p. 99]

Indeed, Cajori brings to mind the challenges related to the retrospective
appraisal of ideas in history. To find traces of an idea in the work of math-
ematicians past is too easily done from a future standpoint, and it risks
anachronism or ignoring the context in which these ideas were under-
stood. Indeed, to speak of Napier’s “clear title to priority” to logarithms
obscures the fact that his proposal remained always within a particular
context. As we have shown, the logarithm was an evolving concept in the
history of mathematics, and its scope and articulation were developed by
many different individuals.

It is unquestionably valuable to bring to light the resemblances between
proposals and accounts of the various scholars, but emphasizing these sim-
ilarities can distract us from the more insightful issue of how these schol-
ars experimented with and articulated, both imperfectly and successfully,
the concept themselves. These parallel insights reveal an abundant legacy
of the challenges and motivations facing scholars and the ways in which
each of them responded to these. They reveal the various idiosyncratic and
creative ways in which scholars responded to the intellectual environment
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around them, and the unique methods or products they developed as a re-
sult of these stimuli. Parallel insights are immensely rich for the historian;
that legacy is too significant to be obscured by the determination to single
out one individual as ultimately pre-eminent over the others. When the his-
tory of mathematics lapses into an account of various incremental insights
and the individuals associated with those, the narrative simply becomes a
sequencing of successes. The richness and movement of the mathematical
landscape becomes characterized as a linear one that is initiated and main-
tained by key individuals. In this way, reflecting on the question of prior-
ity has elevated the role of the individual over the collective. History has
demonstrated, by contrast, that intellection is so very much a collaborative
process.

REFERENCES

Baron (Margaret E.)
[1974] Napier, John, in Dictionary of Scientific Biography, New York: Scribners,

1974.

Berggren (John Lennart)
[2003] Episodes in the Mathematics of Medieval Islam, New York: Springer, 2003.

Boyer (Carl B.) & Merzbach (Uta C.)
[1991] A History of Mathematics, New York: John Wiley and Sons, 1991.

[2011] A History of Mathematics, Hoboken, NJ: John Wiley and Sons, 2011.

Bretelle-Establet (Florence)
[2010] Looking at it from Asia: The Processes that Shaped the Sources of History of Sci-

ence, Boston Studies in the Philosophy of Science, vol. 265, New York:
Springer, 2010.

Bruins (Evert M.)
[1980] On the History of Logarithms: Bürgi, Napier, Briggs, De Decker,

Vlacq, Huygens, Janus, 67 (1980), pp. 241–261.

Bürgi (Jost)
[1620] Arithmetische und Geometrische Progress Tabulen/sambt gründlichem un-
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chard, 1966/1971.
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