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SELF-PORTRAITS WITH ÉVARISTE GALOIS 

(AND THE SHADOW OF CAMILLE JORDAN) 

FRÉDÉRIC BRECHENMACHER 

ABSTRACT. - This paper investigates the collections of 19th century texts in 
which Evariste Galois's works were referred to in connection to th ose of Camille 
Jordan. Before the 1890s, when object-oriented disciplines developed, most 
of the papers referring to Galois have underlying them three main networks of 
texts. The se groups of texts were revolving around the works of individuals: Kro
necker, Klein, and Dickson. Even though theywere mainly active for short peri
ods ofno more than a decade, the three networks were based in turn on specific 
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references to the works of Galois that occurred in the course of the 19th cen
tury. By questioning how mathematicians were portraying themselves and their 
mathematics through their references to Galois, this paper therefore sheds new 
light on some collective interpretations of Galois's works. It especially high
lights the important role played in the long term legacy of Galois by some prac
tices of reduction modeled on the analytic representation of the decomposition of 
linear substitutions into two forms of actions of cycles. 

Complementary to the local study of these networks, the article proposes a 
more global analysis. Galois's works were often related to the problem of the 
"classification and transformation" of the "irrationals." Contrary to what has 
become, in the 20th century, a commonplace of the historiography of algebra, 
and distinct from the teaching of courses in Algèbre supérieure, Galois's works 
were fitted into classifications of mathematical knowledge neither under the 
heading of the theory of equations nor as part of the theory of substitutions. 
For most of the 19th century, the problem of the irrationals involved elliptic 
(or abelian) fonctions (and therefore complex analysis). The impossibility of 
solving general algebraic equations of degree greater than four by radicals high
lighted the necessity of characterizing the ,pecial nature of the irrational quan
tities and fonctions defined by both algebraic and differential equations. 

RÉSUMÉ (Auto-portraits avec Évariste Galois ( et l'ombre de Camille Jordan)) 
Cet article questionne les dimensions collectives des relations entre les tra

vaux de Galois etJordan au x1xe siècle. Avant les années 1890 et le dévelop
pement de disciplines centrées sur des objets, les références à Galois se répar
tissaient majoritairement au sein de trois réseaux de textes centrés sur des tra
vaux d'individus : Klein, Kronecker et Dickson. Bien que ces réseaux n'aient 
été chacun essentiellement actif que sur le temps court d'une décennie, tous 
s'appuyaient sur des références spécifiques à Galois qui impliquaient le temps 
long du x1xe siècle. En envisageant de telles références comme des autopor
traits de mathématiciens et de leurs mathématiques, cet article porte un nouvel 
éclairage sur les travaux de Galois et leurs circulations. Il montre notamment 
l'importance du rôle joué sur le temps long par des pratiques de réductions 
prenant modèle sur la représentation analytique de la décomposition des substi
tutions linéaires en deux formes d'actions des cycles. 

En complément de l'étude locale de ces trois réseaux, cet article propose 
également une analyse à un niveau plus global. Contrairement à ce qui était de
venu au xxe siècle un lieu commun de l'historiographie de l'algèbre, et à l'ex
ception du domaine del' enseignement del' Algèbre supérieure, les travaux de 
Galois ont pendant longtemps été envisagés collectivement dans des cadres dif
férents de ceux de la théorie des équations ou de la théorie des substitutions. 
A l'échelle d'un demi-siècle en Europe, ces travaux ont été effectivement lar
gement commentés dans le cadre du problème de la" classification et la trans
formation,, des "irrationnelles"· Pendant une large partie du XIXe siècle, ce 
problème impliquait notamment les fonctions elliptiques et abéliennes-et par 
conséquent l'analyse complexe. L'impossibilité de résoudre par radicaux des 
équations algébriques générales de degré supérieur ou égal à cinq démontrait 
en effet la nécessité de caractériser la nature spéciale des grandeurs ou fonctions 
irrationnelles définies par des équations aussi bien algébriques que différen
tielles. 
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INTRODUCTION1 

Opening Camille Jordan's 1870 Traité des substitutions et des équations al
gébriques-which will simply be called the Traité in the sequel-one reads in 
the preface that Galois was first to have grounded the theory of equations 
on a "definitive base by showing that to each equation corresponds a group 
of substitutions in which its essential characteristics are reflected" Uordan 
1870, p. v]. But the Traité aimed at going beyond Galois: " ... the solu
tion of equations by radicals ... now appears just as the first link in a long 
chain of questions concerning the transformations of irrational numbers 
and their classification." To achieve this, Jordan presented an "essential" 
"method of reduction" of a group into chains of (normal) subgroups Qor
dan 1870, p. 392] ,2 which transformed Galois's ideas into a fully fledged 
theory, a "corps de doctrine." 

The present paper, in a way, follows a similar method; it aims at inves
tigating how the decomposition of a corpus of mathematical papers into 
networks of texts can unveil certain collective dimensions in the historical 
process of mathematics. More precisely, this paper aims at investigating 
the collective dimensions of the relations between the works of Évariste Ga
lois and Camille Jordan. 

Jordan's Traité, the starting point of this paper, has often been taken 
to be a midpoint in the historiography of Galois Theory. In a retrospec
tive perspective,Jordan's Galois would mark a turning point in the unfold
ing of the abstract group concept [Wussing 1984], of Artin's Galois theory 
[Kiernan 1971], or more generally of the rise of a structural image of alge
bra [Corry 1996]. Recently, in the opposite historical direction, the Traité's 

1 This paper will appeal to quotation marks qui te often for the purpose of mention
ing expressions or terminologies as they were used by the actors (and solely for this 
purpose). 
In this paper, the term "substitution group" designates a permutation group on a fi
nite number of letters, and "linear" substitutions/groups designate both linear and 
affine substitutions/groups. Moreover, p is a prime number, n is an integer, ( is a 
primitive nth root of unity, and g is a primitive root mod p. 
2 An irreducible equation /(x) = 0 is solvable by radicals if and only if its Galois 
group can be "reduced" by a series G = Ho :J H1 :J H2 :J • • • :J Hm = 1 in which every 
Hk is a normal subgroup of G and ail Hkl Hk+l are abelian. This theorem is closely 
related to the Jordan-Hôlder theorem, but the chain of subgroups here is not nec
essarily a composition series, with simple abelian quotients (and therefore cyclic of 
prime order). This criterion of solvability was first stated in (Jordan 1864], while the 
theorem on the invariance of the orders of the successive quotients in a composition 
series was stated in (Jordan 1869a] and proved in (Jordan 1870, p. 42-48]. 
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Galois has been studied with a focus on Galois's "Mémoire sur les condi
tions de résolubilité des équations par radicaux" (the Mémoire, for short) 
by Caroline Ehrhardt [Ehrhardt 2007]. 

Our emphasis, however, will not be on the Galois theory of general equa
tions, but rather, following [Neumann 1997], on three applications of that 
theory in Galois's writings: to equations of prime degree, to primitive equa
tions of prime power degree, and to modular cquations. To be sure, these 
special equations intervened in Galois's works not so much as applications 
of, but rather as rnodels for the general theory. They are all associated with 
linear substitutions [Goldstein & Schappacher 2007a, p. 34], i.e., to what 
Jordan was to transform into a general object ofinvestigation.3 Rather than 
concentrating on the dichotomy between abstract and concrete, this paper 
will thus peruse the intertwining of the general and the special. Moreover, 
we shall see that one of the main specificities of Jordan's Galois was not 
the development of the group concept, but the circulation of a practice of 
decornposition (Galois), or reduction (Jordan), in which the analytic represen

tation of substitutions played the key role. 
Let us briefly recapitulate the stages of Jordan's treatment of Galois 

prior to the Traité. He commented for the first time on Galois in the few 
pages he added to his thesis with a view to competing for the Grand prix 
of the Paris Academy in 1860.4 Between 1864 and 1870, he published a 
series of notes and memoirs on issues which he related to Galois: solvable 
groups, solvable equations, and irrational numbers. Jordan then pub
lished three commentaries on "Galois's fondamental theorem," i.e., on 
the relationship between the "adjunction of roots to an equation" and 
the "reduction" of a group. 5 But while the Préface of the Traité presented 
the whole book as a commentary on the works of Galois Uordan 1870, 
p. VIII], Jordan did not refer to Galois any longer after 1870, not even 
when the latter entered the mathematical pantheon around the turn of 

3 In modern parlance, if one considers the symmetric group S on pn letters as the 
group of permutations of the field GF(p") a subgroup of S is solvable if and only if it 
is affine. Affine groups have been designated for a long time as "linear groups" with a 
distinction between general linear (i.e., affine) and homogeneous linear (i.e., linear). 

4 The Grand prix of 1860 concerned the problem of the number of values of a 
fonction, i.e., one of the main lines of development of the theory of substitutions 
[Ehrhardt 2007, p. 397]. 

5 First a note in the Comptes rendus (Jordan 1865], next in "Lettre à M. Liouville sur 
la résolution algébrique des équations" (Jordan 1867b], and finally in the "Commen
taire sur Galois" published in Crelle's]ournal (Jordan 1869a]. Recall that when Liou
ville had edited Galois's works in hisjournal in 1846, he had claimed he would com
ment further on the Mémoire in a forthcoming paper [Ehrhardt 2007, p. 189-210]. 
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the century.6 Already by that time, however, Jordan was often presented 
as the mathematician who had emancipated the notion of group from Ga
lois's Mémoire by developing it into an autonomous theory of (substitution) 
groups. 

Focusing now onjordan's Traité, a quick survey ofits four books (livres) 
shows the limitations of the common view that its focus is on the theory of 
equations: 

The "Théorie de Galois" alluded to in the very short Livre I is all about 
higher congruences f = 0 (mod P), for an irreducible polynomial of 
degree n with integer coefficients. It thus deals with what would nowa
days be called finite fields, or Galois fields, in the tradition of the number
theoretical imaginaries which Galois had introduced in his 1830 "Note sur 
la théorie des nombres."7 But Galois's imaginaries bear only a very indi
rect relation to the general principles of his Mémoire, and therefore also to 
the correspondence between fields and groups which is today perceived 
as the very essence of Galois theory. 8 Indeed, for Galois, number-theoretic 
imaginaries were above all useful in enabling a practice for dealing with the 
substitutions involved in the investigation of primitive equations of prime 
power degree [Galois 1832, p. 405-407], [Galois 1830b, p. 410]. More 
precisely, one of the first general principles of the Mémoire had been to 
consider as rational "every rational fonction of a certain number of deter
mined quantities which are supposed to be known a priori. . .. we shall 
[then] say that we adjoin them to the equation to be solved" [Galois 1846, 
p. 418].9 The Mémoire's first proposition stated that: "Let a given equation 
have the m roots a, b, c, ... There will always be a group of permutations 
of the letters a, b, c, ... [ ... ] such that every fonction of the roots, invari-
ant under the substitutions of the group, is rationally known" [Galois 1846, 
p. 421]. The known rational fonctions can be retrospectively understood 

6 The constitution of disciplinary pantheons has been recently discussed in [Weber 
2012] in connection to the issue of the grandeur savante in France at the turn of the 
20th century. 

7 Independently of the legacy of Galois, finite fields had been developed in the 
legacy of Gauss by Schônemann, Dedekind, and Kronecker. See [Frei 2007]. 

8 In 1846, Liouville had insisted on the distinction between Galois's imaginaries and 
the solvability of equations when he pointed out that the representation afforded by 
primitive roots did not imply any result on the solvability of higher congruences by 
radicals (Liouville in [Galois 1846, p. 401]). 

9 This recourse to "known rational functions" was not original with Galois in 1830. 
Lagrange had developed the notion of "similar" fonctions as early as 1770 ( cf. [ van 
der Waerden 1985, p. 81]). Two fonctions / and g of the roots of a given equation 
are called similar, if ail substitutions leaving / invariant also leave g invariant. It then 
follows that gis a rational fonction of/ and of the coefficients of the initial equation. 
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as forming a field. But the substitutions were acting on indeterminate let
ters or on arrangements of letters, not directly on the jield. 10 In the case 
of an equation of prime power degree, the jli roots could be indexed by 
number-theoretic imaginaries. These in turn could be substantiated via cy
clotomy, thus providing an analytic representation for the substitutions in
volved [Galois 1830b, p. 405]. 

Only a few references to Galois can be found inJordan's Livre II on sub
stitutions, and none at all in its opening chapter "On substitutions in gen
eral," which may today be described as group theory. The main allusion 
to Galois occurs in the section on the "Analytic representation of substi
tutions" ( chap. II, § I), precisely in connection with the Traité's first use 
of number-theoretic imaginaries for the indexing mentioned above (Jor
dan 1870, p. 91]. This resumption is crucial as it leads to the "origin of the 
linear group" (chap. II,§ II), i.e., to central abjects of Livre II. 11 Indeed, 
underlying the indexing of pn letters was one type of substitution ( a cycle) 
appearing in two analytic forms: (i i + l) and (i gi). The "linear form" 
( i ai + b) originated from the composition of these two forms. 12 As we 
shall see, the analytic representation of n-ary substitutions in the general 
linear group would be one of the main specificities ofJordan's Galois in 
the long run. 

The opening chapter of Livre III presents the Mémoire 's approach to gen
eral equations. However, the association between groups and equations 
was inscribed in the broader framework of a "General theory of irrational
ities." While the "Algebraic applications" (chap. II) to Galois's theory of 
equations represented only a small part of Livre III, the emphasis was on 
"Geometric applications" ( chap, III) and on "Applications to the theory of 

10 Even though substitutions were considered in relation to the invariance offunc
tions of the roots, they did not form the automorphism group of a field, but the per
mutation group of the roots. 

11 The groups considered are GLm (pn) along with its subgroups SLm (p"), PSLm (pn), 
Sp2n (p), PSp2n (p), On (pn), etc. Cf. [Dickson 1901 J as well as [Dieudonné 1962]. 

12 See [Galois 1846, p. 430-432], Uordan 1870, p. 91]. Finite fields were considered 
both as additive and multiplicative abelian groups but without direct relation to the 
rational functions of the roots. 
Because this paper will especially consider finite fields GF(pn ), which are separable 
extensions (and even Galois extensions) of Fp, I will not deal with the retrospective 
linear algebraic standpoint of Artin's Galois theory: most of the texts under consider
ation were not resorting to the notions of vector space, normality, separability, field 
extension, or even to a clear separation between groups and finite fields. Moreover, 
Galois's theory of general equations was related to the formally different values of 
functions on n variables (or roots of general equations), it can therefore be applied 
to special equations with no multiple roots. For this reason, the equations considered 
in this paper will be supposed to have distinct roots. 
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transcendental functions" ( chap. IV). For the geometric applications, the 
groups were usually not introduced by the adjunction of roots to equations 
as in Galois's method, but for instance by permutations between the lines 
on a surface, the invariance of an algebraic form, etc. And when it came 
to transcendental fonctions, Jordan considered the adjunction of certain 
"irrationals" corresponding to non-solvable equations (e.g., the modular 
equations of order n > 3) or to values of transcendental fonctions ( e.g., 
trigonometric, elliptic, and abelian fonctions). 

Livre N is devoted to "Solution by radicals." It is based on a theorcm 
whichJordan claimed for himself, thus going beyond Galois. This theorem 
provided the basis for the classification of maximal solvable subgroups of 
transitive groups through whatJean Dieudonné designated as "enormous 
machinery" consisting of successive reductions of general groups to a chain 
of special ones [Dieudonné 1962, p. xxxix-xlii]. All the rest of the treatise, 
almost one third of the book, is devoted to this problem. The general lin
ear group played a key role, as the largest group of the chain whosc substi
tutions could be analytically represented. 13 

Let us now corne back to the usual history of the relation between Jor
dan and Galois. The main problem is that its main categories are inde
terrninate. "Croups," "equations," "algebra" have had changing meanings 
in varions tirnes and spaces-not to mention the terms Galois groups, Ga
lois theory, Galois's ideas, etc. [Ehrhardt 2007, p. 1-45]. Let us consider 
two examples: First, Felix Klein and his followers in the 1880s used the 
phrase "the Galois groups" to designate the three special groups PSL2 (p) 
with p = 5, 7, 11. Second, Eliakim Hastings Moore stated in 1893 that ev
ery fini te field is the abstract forrn of a Galois field GF (pn) in the tradition 
of the Galois theory from Livre I., i.e., with no direct relation to the result 
that every finite field can be represented as a Galois extension of Fp. 14 

13 As shall be seen in greater detail later, the first step had been to reduce solvable 
transitive groups to primitive groups. A minimal normal subgroup A of a solvable 
primitive group Gis abelian of type (1, 1, ... , 1), i.e., isomorphic to a direct product 
of cyclic groups, i.e., to GF(p") *. Now G is acting on A as a linear group. In mod
ern parlance,Jordan had introduced the linear group precisely as the maximal group 
in which GF(pn)* can be a normal subgroup, i.e., as the group ofautomorphisms of 
GF(pn). This involved considering linear substitutions as generated by the two ana
lytic forms of cycles. 

14 As shall be seen in greater detail later, Moore's Galois fields were dejined as classes 
of equivalences of an irreducible polynomial P of degree n on F11 = Z/pZ, i.e., 
Fp[X]l(P). This definition was not directly related to Galois's works and had becn 
inspired by [Serret 1866]. As any finite field of pn elements can be represented as the 

splitting field of P(X) = xtl' -X on Fp, every fini te field can be represented as a Galois 
field. But such a splitting field was not considered as a Galois extension of Fp: there 
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Moreover, the Jordan-Galois relation has often been presented as an ex
clusive relation between the one (Jordan) and the ideas of the other. But 
this relation has never been equitable. Usually, in fact, it has been con
nected to the celebration of the Great Mathematician Galois. Further, im
plicit collective epistemic and moral values accompanied the fulsome ex
pression of Galois's grandeur. As a matter of fact, after Galois's ascension 
to the mathematical pantheon at the turn of the 20th century, some au
thoritative figures in French mathematics appealed to the Jordan-Galois 
relation to successively advance two daims: one for the universality of the 
French style of thinking in Analysis as opposed to the specialization of Ger
man arithmetic and algebra (1900-1930); and a second daim, symmetri
cally, that celebrated German conceptual algebra as opposed to the older 
French computational approaches (1930-1970). Let compare the intro
duction of the 1897 reprinting ofGalois's works to that in Robert Bourgne 
and Jean-Pierre Azra's 1962 critical extended edition. The authors, Émile 
Picard and Jean Dieudonné, both celebrated Galois for his introduction of 
the notion of group. But while the former insisted on the analysis of groups 
of operations, the latter cele brated ideas that lie at the roots of modern al
gebra. 

The 1897 reprinting was published two years after Sophus Lie had been 
invited to lecture on "Galois's influence on mathematics" at the celebra
tions of the centenary of the École normale supérieure [Ehrhardt 2007, p. 628-
649]. Picard's 1897 account followed the role Lie had attributed to Jor
dan, namely as the one who had "clarified, developed, and applied" sub
stitution groups in regard to the solvability of equations [Lie 1895, p. 4] .15 

Jordan was thus presented as the immediate follower, the one who had 
generalized Galois's distinction between simple and compound groups to 
the notion of composition series (Picard in [Galois 1897, p. viii]). Picard's 
daims were to circulate at an international level, and played a key role in 
the consideration of Galois as the main founder of group theory.16 Previ
ous works on the history of the theory of equations had highlighted other 
aspects such as effective methods of solution [Aubry 1894] or Charles Her
mite, Leopold Kronecker and Francesco Brioschi's approaches to the gen
eral quintic [Pierpont 1895]. But, after 1897, histories of the theory of 

was no concern for the interplay between groups and fields which is characteristic of 
Galois theory. 

15 [Ehrhardt 2007, p. 1-45] has historicised the category of the "intelligibility" of 
Galois's writings. 

l6 As will be seen later, Klein had already played an important role in the presenta
tion of Galois as one of the founders of group theory. 
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equations would usually adopta three-act structure: before Galois, Galois, 
and how Jordan had made Galois theory "become public" [Pierpont 1897, 
p.340]. 

But in addition to his clarification of Galois theory, the role of the re
searcher who closed the algebraic issue of the solvability of equations was 
also, somewhat incidentally, assigned to Jordan. Lie and Picard indeed 
bath claimed that, unlike the previous works of Joseph-Louis Lagrange 
and Augustin-Louis Cauchy, Galois groups had exceeded the boundaries 
of algebra in introducing ideas whose "far reaching impact appears tous 
more and more every day" [Fehr 1897, p.756]. The seeds Galois had sown 
in the special case of equations were ta blossom into a general notion of 
analysis. This daim should nevertheless not only be considered as having 
aimed at promoting Picard's or Lie's contributions ta continuons group 
theory and differential equations. Picard, in particular, clearly took on the 
role of an official public authority on mathematics. Recall that, in France, 
the mathematical sciences were mainly divided between analysis, geome
try and applications. At the turn of the century, several authorities such 
as Jules Tannery, Picard, Henri Poincaré, Jacques Hadamard contrasted 
the "richness" of the power of unification of analysis with the "poverty" of 
considering algebra and/ or arithmetic as autonomous disciplines. 

These official lines of discourse usually pointed ta recent develop
ments in Germany in the legacies of Kronecker or Richard Dedekind.17 

Promptly following Picard [Galois 1897, p. x], a review of Heinrich We
ber's 1895 Lehrbuch der Algebra highlighted how Galois had introduced 
the "fondamental ideas" of Algebra as it was practiced in Germany; had 
he lived longer, all "French Science" would have had a different orien
tation [D'Esclaybes 1898, p. 416]. The celebration of the centenary of 
the École normale had aggrandized Galois's reputation, to the level of one 
who merited entry into the pantheon of Science, as we have mentioned 
above. Like other grands savants, Galois became involved in nationalistic 
ant.i-German discourse. 18 In the early 1920s, his image would be one of 

17 See [Brechenmacher 20l?b]. Picard's Traité d'analyse proposed an exposition of 
Galois's theory very faithful to the original Mémoire. But although Picard appealed to 
the main notions introduced by Kronecker, algebraic Galois theory was not treated as 
an autonomous topic but as a first step toward differential Galois theory. 

18 On the recurrent media depiction of Galois as a hero of French science, see [Pi
card 1900, p. 63], [Picard 1902, p. 124-125], [Picard 1914, p. 98-99], [Picard 1916, 
p. 12], [Picard 1922, p. 281-283]. Picard's views were reproduced in variousjournals 
and monographs. The future President of the French Republic Paul Deschanel ap
pealed to Picard's Galois in his 1916 "Les Allemands et la science" which would be 
reprinted in La France victorieuse. Paroles de guerre [Deschanel 1919, p. 122]. 
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the icons of post-war discussions on the universality of the French style 
of thinking. In an issue of the journal france et monde devoted to the 
topic of "the great ideas of mankind and the French style of thinking," 
Hadamard would daim: "Thanks to Galois's method, which might be the 
deepest thing a human being ever conceived in mathematics, the general 
problem of algebra-to which one can reduce almost everything that was 
studied during antiguity-is (theoretically) solved as much as it can be 
[ ... ]" [Hadamard 1923, p. 339].19 

Depending on their editorîal orientations, the media reacted more 
or less positively to official expressions of the grandeur savante. But even 
though Galois may have been discussed with irony [Chevreuse 1912, p.l] 
and even mocked on some occasions [Beaunier 1908, p.3], he does not 
seem to have ever been seriously discredited. Recall that Galois had be
corne a public figure early on in the 1830s. By the turn of the century, his 
image was already multifaceted and had an extended historical dimen
sion. It transcended a number of categories, including the one ofhero of 
national science. For instance, in 1923, a paper of the communist daily 
L'Humanité reported on a group of pupils of the École Normale Supérieure 
who had commemorated the 1871 Commune de Paris. The students were 
presented as followers of the revolutionary Galois who the paper opposed 
to "official science," especially "the French [ official science]" [L'humanité 
1923, p. 4]. 

At the turn of the 1930s-l 940s, the founders of the Bourbaki group sym
metrically reversed the previous categories of the official history of Galois 
as an icon of mathematical Frenchness. The latter's works came to be cele
brated for having paved the way to algebraic number theory. The public to 
whomJordan had mediated Galois's ideas changed, in this account: it now 
involved the genealogy Dedekind, David Hilbert, Emmy Noether, and Emil 
Artin. But the relation Galois-:Jordan was not affected by the inversion of 
the roles attributed to analysis, algebra, France, and Germany. \Vhen he 
wrote the introduction to the 1962 edition of Galois's works, Dieudonné 

19 See also [France et Monde 1922], [Adhemard 1922]. Moreover, Picard would 
present Galois as a hero of the "universality of French mathematies" at the occasion 
of the celebration of the fifty years of the Société mathématique de France [Picard 1924a, 
p. 31] (see also [Picard 1924b; 1925]). In 1923 the name of Galois had also appeared 
in the jonrnal "La pensée française, libre organe de propagation nationale et d'expansion 
française," which was published in Strasbourg. The front page of the journal repre
sented the French "Marianne" with storks wings (the symbol of Alsace), sitting on 
the globe of the world, with the notice "La pensée française reigne sur le monde comme 
l'expression même de la liberté féconde et généreuse." Galois had been referred to at the oc
casion of a discussion on the masterpieces of French literature [Dunand 1923, p. 18]. 
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was also involved in the edition of Jordan's works. Gaston Julia's Préface 
would once again presentJordan as the immediate follower of Galois, the 
one who was in direct contact with the latter's ideas Uordan 1961-1964, 
p. vi]. 

In a word, the Jordan-Galois relation in official discourse on mathemat
ics was ultimately quite stable for the long;ue durée of the 20th century. It 
was one of the main elements of epistemic continuity in the three-act story 
of the "predecessors," the "origins," and the "influence" of"Galois's ideas" 
[van der Waerden 1985, p. 76-133]. But as we have seen, despite the bi
lateral appearance of the relation Jordan-Galois, the actual meanings at
tached to this relation depended on third parties and resorted to implicit 
collective dimensions. 

It is the aim of this paper to investigate some of these collective dimen
sions by considering various "portraits" of mathematicians with Galois. 
The metaphor of the self-portrait highlights the relational nature of math
ematics. It suggests that the actors who referred to Galois throughJordan 
were also portraying certain individual and collective dimensions of their 
own mathematics. 

The period under consideration is 1830-1914, with a focus on 1860-
1900. On the one hand, Galois published his first papers in 1830 and Jor
dan defended his thesis in 1860. On the other hand, the mathematical 
apotheosis of Galois partially changes the nature of the corpus to be in
vestigated for post-1900 investigations. The constitution of a corpus is nev
ertheless problematic even before the turn of the century. The opposing 
collective dimensions put to the fore by Picard and the Bourbaki group 
illustrate that neither national nor theoretical identities should be taken 
for granted when dealing with the Jordan-Galois relation. Selecting some 
texts because of their group-theoretical nature would imply resorting to 
the canonical role devoted to Jordan; while considering together some au
thors because theywere French or German would prevent questioning the 
actual roles played by national dimensions. 

The constitution of a corpus for the period of time preceding the Traité, 
to which the first section of this paper is devoted, is less problematic than 
the-post 1870 investigations developed in the second and third sections. 
Indeed, consideringJordan as a reader of Galois makes it possible to in
vestigate the direct textual references of the one to the other,20 while the 

20 On the historical notion ofreaders ofa text, see [Goldstein 1995}. 
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inverse problem ofintertcxtual relations is much more difficult. This prob
lem has been tackled by systematic investigations of the refercnccs to Ga
lois and Jordan in the reviews of the Jahrbuch über die .Fortschritte der Mathe
matik between 1870 and 1914. A first global corpus has been constituted 
by these texts, and then completed by their implicit and explicit web of 
references. Investigations of intertextual connections have then aimed at 
decomposing the global corpus into networks of texts. 21 Most of the pa
pers can be organized into three main networks. As we shall see, a specific 
reference to Jordan-Galois lies beneath the identity of each group. More
over, in each group the intertextual references converge to an individual 
whose name I shall use for designating the whole collective: Klein, Kro
necker, and Leonard Dickson. Finally, each network was mostly active dur
ing a single ten-year period, while making references on a scale of half a 
century. 

The second section of this paper investigates Dickson's network, which 
is mainly constituted of texts that have been published by French and 
American authors between 1893 and 1907. The main shared references 
are Moore's introduction of Galois fields in 1893, and Dickson's 1901 
Linear gmups with an exposition of the Galois field theory. 22 We shall see that 
the coherence of the collection of texts is based on specific roles devoted 
to both linear groups and Galois fields in the legacy of Jordan's Traité, 
but with no interest in Galois Theory. Another main characteristic of the 
Dickson network is that certain papers of the 1860s of Hermite, Joseph
Alfred Serret, Émile Mathieu, and Jordan are shared references for the 
whole network. These references were not exclusive of others, such as 
those to more recent works of Georg Frobenius, Alfred Loewy, or Klein, 
whose influence in the U.S.A has been well documented [Parshall & Rowe 
1994, p. 147-455]. But none of these played as important arole for the 
collective identity of the network as the works of the 1860s. Dickson's 
network thus revolved around a two-fold periodization. We shall see that 
the two times and spaces involved were articulated by the Traité: Dickson's 
network can actually be understood as the space of circulation of a specific 
relation Jordan had established to the works of Galois in the 1860s. 

21 These networks are detailed in [Brechenmacher 2012a]. On methodological is
sues related to the use of networks, see [Goldstein 1999, p. 204-212], [Goldstein & 
Schappacher 2007b, p. 72-75], and [Brechenmacher 2007a;b; 2010]. 

22 As will be seen in greater detail later, Dickson's monograph had followed the the
sis the latter had completed un der the supervision of Moore [Pars hall 1991]. 
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The two other networks will be considered in the third section of this 
paper. They had developed in the interval of the above-mentioned two
fold periodization. They revolved around Kronecker's 1882 Grundzüge 
einer arithrnetischen Theorie der algebraischen ()rossen, and Klein's 1884 Vor
lesungen über das Ikosaeder und die A uflosung der Gleichungen vorn Jünften 
Grade. Here, the references to Galois were usually not directly connected 
to Jordan's Traité. On the one hand, Kronecker and his followers were 
mainly referring to Galois's general approach to equations (but not in 
the perspective of Jordan's Livre III) .23 On the other hand, Klein and his 
followers followed Hermite in focusing on the three special Galois groups 
of modular equations. In both networks, numerous references were nev
ertheless made to Jordan 's works. It must therefore be pointed out that 
the problem of the collective dimensions of the relation Jordan-Galois is 
not equivalent to the one of the reception of the Traité. 

Croups of texts such as the ones mentioned above should nevertheless 
not be considered as constellations in an empty sky. First, each author 
potentially belonged to several networks, which pointed to various topics, 
times and spaces. Second, in laying the emphasis on textual interrelations, 
this paper does not aim at discussing the main collective dimensions in 
which the actors were involved, such as the emergence of an American 
research community or the institutionalization of finite group theory. 
Third, some collective references to Jordan-Galois will not be in the scope 
of the present investigation. Either they did not lay much emphasis on 
Jordan (as for the case of differential Galois theory), or they lay outside 
the period considered here, as in the case of Dedekind's Galois. Even 
though Dedekind had lectured on Galois's works in Gôttingen in the 
mid-1850s, his perspective remained disconnected from Jordan's Galois 
before the turn of the 20th century.24 

But this investigation of the circulations ofJordan's Galois in networks 
of texts nevertheless aims to shed light on the identities that were collec
tively attributed to Galois's works in the 19th century. Galois's works have 

23 In short, Kronecker had developed a constructive presentation of finite field ex
tensions of certain ground fields. See [Petri & Schappacher 2007], [Goldstein & 
Schappacher 2007b, p. 81-88]. 

24 Even though Dedekind would inspire [Bachmann 1881] and [Weber 1893b; 
1895-1896], he would not publish his ideas on Galois theory until 1894. Before the 
mid-1890s, Kronecker's theory of algebraic quantities as a theory of forms (i.e., func
tions of n variables) was much more influential than Dedekind's fields and ideals. On 
Dedekind's Galois, see [Kiernan 1971, p. 129-133], [Edwards et al. 1982], [Scharlau 
1981; 1982], [Corry 1996, p. 7.5-80, 110-112, 129-130], [Ehrhardt 2007, p. 470-504], 
[Goldstein & Schappacher 2007b, p. 78-81]. 
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often been commented on with reference to a long-term history of alge
bra. 25 But algebra has taken on changing and complex identities that can
not be reduced to a changing focus from equations to algebraic structures. 
The question especially arises as to the relation ofJordan's Galois to the 
field of research of arithmetic algebraic analysis that developed between 
the 1820s and the late 1850s [Goldstein & Schappacher 2007a;b], or to 
more local theoretical and disciplinary organizations such as the several 
lines of development of group theory or the theory of equations as it was 
taught in varions time periods and social spaces [Ehrhardt 2007]. 

This paper might not open the "book with seven seals" as Klein called 
the Traité when recalling his time with Lie in Paris in 1870 [Klein 1921-
1923, p. 51]. But at least two facets of the book have to be distinguishcd. 
On the one hand, the Traité's Galois has often been considered as a "mas
terpiece ofmathematical architecture. The beauty of the edifice erected by 
Jordan is admirable" [ van der Waerden 1985, p. 117]. On the other hand 
the Traité as a whole has also been described as a "a note-worthy event. 
[It] collects and unifies the results ofhis predecessors and contains an im
mense amount ofnew matter" [Pierpont 1904, p. 143]. The Traitéwas nei
ther a textbook (like [Serret 1866] or [Netto 1882]) nor a compilation of 
papers (like [Hermite 1859]). It presented both an original structure and 
a synthesis in continuity with previous works. Both facets were articulated 
by the daim that: 

Le but de cet Ouvrage est de développer les méthodes de Galois et de les con

stituer en corps de doctrine, en montrant avec quelle facilité elles permettent 
de résoudre tous les principaux problèmes de la théorie des équations Uordan 
1870, p. VII]. 

As we shall see, we shall have to distinguish between two different images 
of Galois in the Traité. The first one issues fromJordan's specific approach 
to Galois, and ran through the book as a chain of generalizations from cy
clotomy to the analytic representation of linear substitutions and eventu
ally to the "essential method of reduction" of a group. The second Galois in 
the Traité was to be found in Livre III There, Galois Theory attachedJor
dan's Galois to some parts of the book that were either in continuity with 
some previous works that had not previously been directly related to Galois 
(such as the general developments on substitution groups in Livre II and 

25 See, among others, [Aubry 1894], [Pierpont 1897], [Kiernan 1971], [Dieudonné 
1978], [van der Waerden 1985], [Toti Rigatelli 1996). Galois was already presented 
as the conclusion of a genealogy ofworks on the "theory of equations" in the context 
of the delimitation of algebra in [Serret 1849, p. 1-4). 
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most applications of Livre III) or were specific to Jordan but disconnected 
from Galois (such as the classification of solvable groups in Livre IV). 

The structure given to this paper aims at echoing the diff'erences be
tween these two images of Galois. This paper will therefore deal with the 
time periods 1830-1870 and 1890-1900 related to the first Galois in the 
Traité, before considering the period 1870-1890 and the second image of 
Galois in Jordan's book. The first section of this paper aims at identify
ing the specific character ofJordan's Galois as compared to the image in 
other collective references to Galois's works. The second section of this 
paper will investigate the discontinuous circulation of the first Galois of 
the Traité by a micro-historical analysis of the small-scale development of 
Dickson network after 1890. Finally, the third section of this paper will 
question the second image of Galois with regard to its circulation and non
circulation in the Klein and Kronecker networks between 1870 and 1890. 

1. THE ANALYTIC REPRESENTATION OF SUBSTITUTIONS (1830-1870) 

1.1. Analytic representations and applications in Galois's works 

This section aims at discussing the retrospective point of view of Jor
dan's early works on Galois's works and their circulations between 1830 
and 1870. I will therefore limit my attention to the papers of the 1846 
edition of Galois's works to which Jordan appealed. Recall that because 
the Mémoire was lost twice, its last version is more recent than most of 
Galois's writings. These are, then: 

- April 1830. "Analyse d'un Mémoire sur la résolution algébrique des 
équations" published in the Bulletin de Ferrusac (Analyse, for short). 

- ... 1830. The fragment of the second Mémoire "Des équations primitives 
qui sont solubles par radicaux" as it was edited by Joseph Liouville. 

- July 1830. "Note sur la théorie des nombres," published in the Bulletin 
des Ferrusac. (Note, for short). 

- 1831. Last version of the Mémoire. 
- May 1832. Letter to Auguste Chevalier, published in the Revue ency-

clopédique (Letter, for short). 

It is well known that the introduction of Galois's Mémoire had laid the 
emphasis on a distinction between the "general principles" of a theory and 
its three "applications" [Galois 1846, p. 417]. The first application was also 
the concluding theorem of the Mémoire, i.e., the criterion that: "in order that 
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an equation of prime degree be solvable by radicals, it is necessary and suf
ficient that, if two of its roots are known, the others can be expressed ra
tionally" [Galois 1846, p. 432]. Details on the two other applications had 
been given in the Analyse, the second Mémoire, the Note, and the Letter. What 
I shall designate as the second application was the characterization of solv
able primitive equations of degree pn. The third application was relative 
to modular equations. 

1.1.1. Primitive equations of prime power degrees 

The Analyse started with the introduction of the distinction between 
primitive and imprimitive equations: a "non-primitive equation of degree 
mn is an equation that can be decomposed into m factors of degree n, 
by appealing to a single equation of degree m" [ Galois 1830a, p. 395]. 
These equations were also designated as Carl Friedrich Gauss's equations. 
In the second Mémoire Galois indeed appealed to "M. Gauss's mcthod of 
decomposition" for reducing the problem of finding solvable irreducible 
equations of composite degree to the one of finding solvable primitive 
equations ofdegree pn [Galois 1846, p. 434]. 

Unlike Alexandre Théophile Vandermonde (1774) and Lagrange's 
(1771) approaches to the special cases x·" - 1 = 0 and x11 - l = 0, Gauss 
had introduced a general method of successive factorizations for proving 
the solvability by radicals of (irreducible) cyclotomie equations of degree 
p- 1. The factorizations resorted to organizations of the roots in a specific 
order by appealing to the two indexings provided by a pth primitive root of 
unity ç and by a primitive root g mod p. For any factorization p - 1 = ef, 
let h = ge, and consider the equation of degree e whose roots correspond 
to the following e "periods" of sums off terms: 

Y); = ç i + ç ih + ... + çihi ~ 
1 ( l S: i S: e) . 

Such decompositions of the roots into periods allows factorizing the initial 
(imprimitive) cyclotomie equation into e factors of degree f. 

In 1808, Lagrange had given a new proof of the solvability of cyclotomie 
equations. The successive auxiliary equations attached to Gauss's periods 
were replaced by the direct consideration of an auxiliary fonction of the 
coefficients and of roots of unity, i.e., the Lagrangian resolvent ; + ixçg + 
ix2çg2 + ... + ixP-lçgP-2 (with ix a primitive pth root ofunity).26 In the con
text of his review of [Lagrange 1808], Louis Poinsot commented on the 

26 The Lagrangian resolvent line of development of Galois theory has been well doc
umented. See [Kiernan 1971, p. 103-110], [van der Waerden 1985, p. 76-88], [Neu
mann 2007, p. 112], [Ehrhardt 2007, p. 78-103]. 
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two approaches of Gauss and Lagrange. At this occasion, he had desig
nated Gauss's periods as "groups" in a sense Galois would also use later on 
[Boucard 2011, p. 59-62]. Groups in this sense involved bath partitions of 
"permutations ofletters" (i.e., arrangements of the roots or indexing lists) 
and decompositions of "systems of substitutions" ( the operations from one 
permutation to another) .27 Even though there might not have been any di
rect connection between Poinsot and Galois,Jordan deduced conclusions 
identical to those of Galois's early works from Poinsot's approach. 

From the retrospective point ofview ofjordan's 1860 thesis, the Gauss
Poinsot method consisted in dividing the letters into groups, each of the 
same cardinal, while systems of substitutions were simultaneously parti
tioned into a "combination of displacements between the groups and of 
permutations of the letters within each of the groups" Qordan 1860, p. 5]. 
From a modern perspective, the "groups of permutations" correspond to 
a decomposition of the field into blocks of imprimitivity un der the action 
of an imprimitive substitution group, 28 which is itself decomposed into a 
primitive quotient group. 

Gauss's decomposition resorted to a single kind of substitution (i.e., 
cycles). But two forms of actions had to be distinguished depending on 
whether the cycles were acting within the groups or between the groups. 
Poinsot had discussed these two forms of actions from a geometric perspec
tive. The mots generated by a primitive root ofunity could be represented 
"as if they were in a circle" [Boucard 2011, p. 68]. They could then be 
made to move forward by translations, i.e., by the operation (i i + l) on 
their indices. But they could also be made to move by rotations of the full 
circle i.e., (i gi). In 1815, Cauchy introduced cycles by appealing to a 
similar circular representation [Cauchy 1815a, p. 75-81] even though he 
did not consider the analytic representations induced by the two forms 
of actions of cycles ( i i + l) and ( i gi). On the con trary, the analytic 

27 The ambivalence of the terminology "group" as regard to the distinction between 
the "permutations of the roots" and the "substitutions" has often been considered 
as a limitation of Galois's approach (e.g. [Dahan-Dalmedico 1980, p. 282]. [Radloff 
2002]). But it should be pointed out that this ambivalence was the very nature of 
"groups" as they originated from the decomposition of imprimitive groups by the con
sideration of blocks of imprimitivity of letters. 

28 Let G be a transitive group operating on a set f!. A subset r off! is called a block 
of imprimitivity if r f 0 and for every g E G, either fg = r or rg n r = 0. If r is 
such a block and r1, r2, ... , I'm are the distinct sets rg for g E G, then r1, r2, .... rm is 
a partition off!. Gis said to be imprimitive if there is a non-trivial proper block. G 
is primitive if it is not imprimitive. See [Neumann 2006] for a discussion on primi
tivity in Galois's works. On the roles played by primitivity inJordan's classification of 
solvable transitive groups, see [Brechenmacher 2006, p. 195-202]. 
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representation of substitutions played an important role in Galois's second 
memoir. 

The aim of the second memoir was to characterize solvable primitive 
equations by the general characteristic that their degree had to be a power 
of a prime. Galois had considered a primitive equation of degree N that 
turned into Q imprimitive equations by the adjunction of a radical of prime 
degree À. The group of the equation was then partitioned into À conju
gated imprimitive groups. Let H be one of these imprimitive groups; its 
letters were decomposed on the model of Gauss's method into a table of p 
columns whose rows correspond to systems of imprimitivity: 

ao, a1,a2, ... ,ap-I, 

bo,b1,b2, ... ,bp-1, 

co,c1,c2,••·,cp-l· 

Galois then argued that N = pn, p prime. More importantly, the above 
allowed the introduction of n series of p indices for the indexing of the 
letters, and thereby to give an analytic representation to substitutions on 
p11 letters: 29 

La forme générale des lettres sera 

ak,k,k, ... ,k 
l 2 3 µ 

1• t i ... , ~ étant des indices qui peuvent prendre chacun les P valeurs 

0, 1, 2, 3, ... P - 1. [ ... ] dans le groupe H, toutes les substitutions seront 
de la forme 

[ak, k, k, ... , k aq;(k), <J;(k), x(k), ... , a(k) l [Galois 1846, p. 436]. 
1 2 3 µ 1 2 3 µ 

Galois then investigated further the case of primitive equations of de
gree p2 . A cycle, or a "circular substitution" as he said following Cauchy, 
would have the following form: 

( a k, k ' a k + Cl., k + Cl. ) • 

12 l 12 2 

But then, Galois argued, because the substitutions of the group have to 
transfonn cycles into cycles, they must have a "linear form" [Galois 1846, 
p. 439]: 

( a k, k , am k + n, m k + n ) · 
12 li 122 2 

29 Modern formulations ofthis result resort to the notion ofvector space, i.e., a field 
of pn letters can be considered as a n dimensional vector space over Fp. 
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As will be seen in greater detail la ter, this argument would play a key role in 
the proof of the criterion and would circulate throughout the 19th century. 
It would be later understood as the statement that the maximal group in 
which a direct product of cyclic groups is a normal subgroup is the general 
linear group or that the group of automorphisms of an abelian group of 
type (1, 1, ... , 1) is a linear group. 

Galois then successively computed the number of linear substitutions 
on p2 letters and looked for solvable "divisors" (i.e., subgroups) of the 
group by investigating substitutions of the following form: 

In the Analyse, Galois had already made it clear that the groups formed by 
the above substitutions were related to the modular equations of elliptic 
fonctions. 

1.1.2. Number-theoretic imagi,naries 

The analytic representation of substitutions of primitive groups of pn let
ters was improved by the introduction of number-theoretic imaginaries. 

Let f ( x) = 0 ( mod p) be an irreducible higher congruence of degree n. 
As was common at the time, Galois legitimized the introduction of imagi
nary roots j by appealing to the analogy carried on by the process ( of fac
torization) used for the case of ordinary equations.30 He expressed the ra
tional fonctions of the roots as "general expressions" ap-1 +bp-2 + • • • + 1 
(with a, b, ... mod p) and first proved that these pn "algebraic quantities" 
could be considered as the roots of xPn = x ( mod p). Reciprocally, he ar
gued that the roots of the latter equation "all depend on one congruence 
of degree n" [Galois 1830b, p. 399-402]. 

But the aim of the Note was actually to show that any system of pn indices 
could be reindexed "in analogy with" the indexing of p letters li, l2, ... , lp, 
by the roots of Gauss's congruence xP = x (mod p) ,31 i.e., by the iter
ated powers of a primitive root j of xr = x (modp) .32 Galois later pre
sented his note as a lemma for the investigation of primitive substitutions 

30 On these issues, see [Durand-Richard 1996; 2008]. Jordan would still resort to 
such an analogy in 1870. 

31 On Gauss's proofofthe existence of primitive roots of cyclotomie equations, see 
[Neumann 2007). 

32 In modern parlance, a Galois field GF (pn) is both an additive group, which can 
be represented as an n-dimensional vector space on f't,, and a multiplicative cyclic 

group of pn-l elements. Before Galois, higher congruences had been considered in 
the "missing section eight" of Gauss's Disquitiones Arithrneticae [Frei 2007] as well as by 
Poinsot [Boucard 2011]. 
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[Galois 1832, p. 410]. Indeed, the conclusion of the Note was devoted to 
the characterization of solvable primitive equations [ Galois 1830b, p. 405]. 
The roots x; of a primitive equation of degree pn could now be indexed 
by the solutions of the congruence iP" = i (mod p). Galois then claimed 
that if any fonction of the roots invariable by the substitutions of the form 
( i (ai+ b )P') has a rational value, then the equation is solvable, and recip
rocally. The proofwas presented as a direct consequence of the decompo
sition of linear substitutions into a product of the two forms of cycles, i.e., 
in the form a1 (i + b')Pr: "those who are accustomed to the theory of equa
tions will have no trouble seeing this" [Galois 1846, p. 406]. 

1.1.3. The criterion and the last version of the Mémoire 

The proof Galois alluded to in the Note was given in the Mémoire for 
the case n = 1 corresponding to the criterion of solvability of irreducible 
equations of prime degree, which Galois presented as an application 
of his general principles. This application followed proposition V, which 
presented the problem of the solvability by radicals as resorting to the 
interplay between successive adjunctions of roots and successive decom
positions of a group.33 For the case of prime degree equations, the key 
argument was that the smallest non-trivial group in the successive redue
tians had to be generated by a cycle. Here, Galois explicitly referred to 
Cauchy even though he did not appeal to the latter's representation of 
substitutions as products of cycles [Dahan-Dalmedico 1980, p. 286-295] 
but to analytic representations. 

Galois looked for the penultimate group in the successive reductions of 
the given equation. He showed that if its substitutions are represented by 
(x;, Xj(i)), then f(i+a) = f(i) +A (i.e., the group is the maximal group in 
which the cyclic group ( i i +a) is a normal subgroup). Thus f ( i + 2a) = 
f(i) + 2A, ... ,J(i + ma) = f(i) + mA. If a= l, i = 0, then f(i) =ai+ b, 
from which Galois eventually deduced that: 

Ainsi, pour qu'une équation irréductible de degré premier soit soluble par 
radicaux, il faut et il suffit que toute fonction invariable par les substitutions 

soit rationnellement connue [Galois 1846, p. 431]. 

33 For some systematic comments on the general principles of Galois's Mémoire, see 
[Radloff 2002] and [Ehrhardt 2007, p. 55-77] 
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As will be seen later in greater detail, the introduction of the general 
linear group inJordan's Traité would "originate" from the exact same ar
gument. 

1.1.4. Modular equations 

The third application was relative to the modular equations of the trans
formations of elliptic fonctions. Let u -, q.i ( u, k) be the doubly periodic 
complex fonctions introduced as the inverse fonctions ofintegrals such as 

2 fcp dx 
u(q.i,k) = o J(I - x2)(1- k2x2). 

with periods K = u(l,k) and K' = u(l/k,k) (with k the modulus). The 
modular equation of order p (P prime) links ail those moduli k' to a given 
modulus k for which it is possible to write the transformation 

dy dx 

J (1 - y2) (1 - k'y2) pJ (l - x2)(I - k2x2) 

where y = U ( x) V ( x) ~ 1, with appropriate relatively prime polynomials 
[!,V. Let L, L' and K, K' be the respective periods attached to the moduli 
k' and k, then the above expression thus gives a transformation of order p 
of:, considered as a (modular) fonction of k: t, = p f,. This transforma

tion yields a polynomial relation between k2 and ), 2 of degree p + 1: the 
modular equation of p.34 As Catherine Goldstein discusses in forther de
tail in this volume, Galois stated in 1832 that the degree ofthose equations 
can be reduced top if and only if p = 5, 7, 11. 35 This statement was related 
to the investigation of the substitutions of the form ~I!! ( ad - be i- 0). 

I .1.5. Three applications and some general principles 

In sum, Galois's three applications were associated to three analytic 
"forms" of linear substitutions. First, the criterion for solvable equations 
of prime degree was associated to ( i ai+ b). Second, the investigation of 

34 The modular fonction is invariant by the group of unimodular linear fractional 
substitutions SL2(Z) and the rnodular equation can thus also be introduced as the 
transformation equation of elliptic integrals by such substitutions. See Houzel [1978; 
2007]. 

35 In 1830 he had first stated that p had to be equal to 5. In modern parlance, 
the problem consists in finding an irreducible equation of the smallest degree whose 
roots generate the splitting field of Fp. PSL2(P) can then be realized as a transitive 
subgroup of Sym(in) for in< p+ l. But the index ofa maximal subgroup of the group 
SL 2 (p) associated with a modular equation is p + 1 except for p = 5, 7, 11 when it is p. 
This subgroup is nota normal subgroup (recall that PSL2 (p) is simple for /1 > 3), i.e., 
it gives rise to a non-proper decomposition in Galois's vocabulary. 
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solvable equations of composite degree involved considering linear sub
stitutions on pn number-theoretic imaginaries. Third, modular equations 
of the transformations of elliptic fonctions were associated with binary 
fractional linear substitutions. 

But we have secn also that the three applications wcre intrinsically in
terlaced with one another in the evolution of Galois 's investigations. They 
were not limited to applications but played also the role of special rnodel cases 
for the general principles of the Mêrnoire. Each application modeled a spe
cial form of decomposition of a group. 

First, as Galois would make it clear in the Letter, the "simplest decom
positions are the ones of M. Gauss" by which the investigation of solvable 
transitive equations of composite degree was reduced to the one of solv
able primitive equations of prime power degree. But, wondered Galois, 
"what are the decompositions that can be practiced on an equation that 
Gauss's method would not simplify?" [Galois 1832, p. 409]. A5 has been 
seen above, the dccomposition of primitive equations of pn or p degrees 
was modeled on the decomposition of linear substitutions into the two 
forms of representation of cycles. Recall that there was no clear concept of 
factor group yet. In the reduction of (ai+ b) into two cyclic substitutions, 
the two analytic forms ( i i + l) and ( i gi) provided a mode! for the 
operations involved in composition series. It was on this model that Galois 
stated that the substitutions of primitive solvable equations of degree pn 
had to have the linear form Xk,l,m, ... 1 Xak+bl+cm+-+h,a'k+b'l+c'm+••+h',a"k+•·· 

[Galois 1832, p. 410]. 
Moreover, the reduction of the degree of the modular equation gave 

an example of improper decomposition, i.e., of non-normal subgroups of 
a group. In the Letter, Galois had distinguished this type of decomposition 
from the "proper decomposition": 

[ ... ] on voit une grande différence entre adjoindre à une équation une des 
racines d'une équation auxiliaire ou les adjoindre toutes. Dans les deux cas, le 
groupe de l'équation se partage par l'adjonction en groupes tels que l'on passe 
de l'un à l'autre par une même substitution, mais la condition que ces groupes 
aient les mêmes substitutions n'a lieu que dans le second cas. Cela s'appelle la 
décomposition propre. [ ... ] En d'autres termes, quand un groupe G en contient 
un autre H, le groupe G peut se partager en groupes, que l'on obtient chacun 
en opérant sur les permutations de H une même substitution ; en sorte que 

G = H + HS + HS' + .. · 
Et aussi, il peut se décomposer en groupes qui ont tous les mêmes substitu

tions, en sorte que 

G=H+TH+T'H+··· 
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Ces deux genres de décompositions ne coïncident pas ordinairement. 
Quand ils coïncident, la décomposition est dite propre. [Galois 1832, p. 408-
409). 

According to Galois, the difference between improper and proper de
compositions36 was the difference between adjoining one root or all the 
roots of an auxiliary equation to an equation. Galois's auxiliary equations 
could involve non-solvable equations on the model of the reduced mod
ular equations. In 1832 Galois indeed claimed he had not focused all his 
attention on solvability by radicals but had also investigated "all possible 
transformation on an equation, whether it is solvable by radicals or not" 
[Galois 1832, p. 408]. 

The "proper decomposition" had been modeled on the traditional use 
of auxiliary equations xP = a in issues of solvability by radicals (and there
fore of the binomial equation xn -1 = 0). This situation may be illustrated 
by propositions II and III of the Mémoire. The first described the proper de
composition of a group relative to the adjunction of a root to an equation. 
The second stated that if "one adjoins to an equation all the roots of an 
auxiliary equation, the groups of Theorem II would have the additional 
property of possessing the same substitutions" [ Galois 1846, p. 423-425]. 
But this proposition had been previously stated differently. Its original for
mulation was that if one considers all the pth roots ofunity to have been ad
joined to an equation, then the same decomposition of the original group 
would originate from the adjunction ofany of the roots of xP =a.In that 
case, the adjunction of a root would imply the adjunction of all roots, i.e., 
the situation to which the proposition III had been generalized afterward. 

The general quartic, and quintic had also played the role of model 
cases for Galois's investigations [Galois 1846, p. 428, 433]. But it must 
be pointed out that all the "applications" were pointing to the legacy of 
Gauss, while general equations were related to the legacy of Lagrange. 
The two legacies of Gauss and Lagrange did not play the same role in the 
Mémoire. In short, and on the one hand, three forms of decompositions 
had been modeled on Gauss's equations. On the other hand, Lagrange's 
legacywas related to the consideration of the number of values of rational 
fonctions of the roots under the action of substitutions, a problem that 
would become one of the main lines of development of the theory of 
substitutions. 37 

36 This difference corresponds to distinguishing between non-normal and normal 
subgroups respectively. 

37 This problem is tantamount to finding tbe possible orders for subgroups of 
the symmetric group. Given a function qi(x1,x2,, .. ,xn) of n "letters," a "value" of 
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1.2. The shadow of Poinsot onjordan's early works 

One of the two theses Jordan had defended in 1860 was devoted to the 
problem of the number of values offunctions. Its main resultwas the intro
duction of a type of "conjugate systems" (i.e., the equivalent of a group in 
[Cauchy 1844]) of n-ary linear substitutions (i.e., GLn (p)) by a "method of 
reduction" of a "permutation group." But Jordan had not studied Galois 
yet. A~ a matter of fact, he acknowledged in a footnote that he had "dis
covered recently in the works of Galois the statement of the theorem" that 
he had concluded his thesis with, i.e., the order ofGLn(P) .38 Jordan's no
tion of"permutation group" amounted to the simultaneous consideration 
ofblocks of imprimitivity and substitution groups. Unlike Galois, though, 
Jordan appealed to a precise distinction between permutation groups and 
conjugate systems of substitutions. 39 

Jordan had explicitly attributed the notion of group to Poinsot. When 
the number of values of a fonction was less than n!, he had considered 
that a "symmetry occurred within the fonction" as an application of "what 
Poinsot has distinguished from the rest of mathematics as the thcory of 
order" [Jordan 1860, p. 3]. According to Jordan, other examples of ap
plications of this thcory were Cauchy's determinants, Abel's works on the 
general quintic, as well as Galois's works on "the conditions of algebraic 
solvability, the whole theory of equations considered in its full gencrality, 
and the classification of algebraic irrationals" fJordan 1860, p. 3]. 

When he first referred to Galois, Jordan thus aimed at stressing the 
generality of the theory of order as opposed to "most geometers who have 
considered this question [ of the many valued fonctions] in the aim of ap
plying it to the theory of equations." Similar daims about the generality of 
a broad framework related to both symmctry and groups could be found 

cp was a function obtained by permuting the variables, i.e., for any r; E Sym(n), 
ipcr (xi, x2, ... , x,,) = rp(x1 a, x2 0 , ... , Xna) was a value of rp. If rp takes only one value, then 
it is symmetric and can therefore be expressed as a rational function of the elemen
tary symmetric functions. If XJ, ... , Xn are the roots ofan equation with coefficients on 
a given "rational domain," this means that rp can be expressed as a rational function 
on the rational domain. In general, rp can take up to n! distinct values and for inter
mediary cases between 1 and n!, normal subgroups of the symmetric group can po
tentially be associated to qi by considering the set of substitutions leaving qi invariant. 
If cp takes, for instance, p distinct values qi 1, 'P2, ... , 'Pp, these values can be considered 
as the roots ofan equation of degree p whose coefficients are the symmctric functions 
of the initial variables. 

38 The Traité did not attribute this theorem to Galois. But Netto, who systematically 
tracked down the results that could be considered to have been stated beforejordan, 
attributed this theorem to Galois [Netto 1882, p. 155]. 

39 On Poinsot's notion of group, see [Boucard 2011]. 
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in the contemporarywritings of Théodore Despeyrous [1861, p. 417], an
other follower of Poinsot. Unlike Jordan, Despeyrous nevertheless never 
attributed any role to Galois as regards permutation groups [Ehrhardt 
2007, p. 400-403]. 

Jordan's thesis was organized on a two-step reduction of the general 
problem of the number of values of fonctions. First, a general transitive 
system of substitutions was reduced to a system T of substitutions associ
ated with groups of pn letters (i.e., a primitive quotient group). Second, 
the substitutions of T were decomposed into substitutions "of the first and 
of the second species." This reduction was explicitly presented as mod
eled on Poinsot's reformulation of Gauss's decomposition. Each species 
of substitution corresponded to one of the two forms of representation 
of cycles. Their products generated linear substitutions; T was therefore 
whatJordan would designate later as a linear group. 

Even though he acknowledged his method was not efficient for applica
tions,Jordan claimed that in the aim of"studying the problem of the sym
metry in itself, the method is not only more direct, it is also more natural 
and is actually the only way that leads to the true principles" Uordan 1860, 
p. 4]. Jordan also highlighted the analogy between his method and the 
reduction of a helicoidal motion into motions of translation and rotation. 
This implicitly referred to Poinsot. Moreover, he eventually appealed to 
the legacies of Gauss and Abel to daim that what could be designated as the 
unscrewing of the method of reduction of groups was the "very essence" of 
the question: 

On pourrait voir une image de ce résultat dans le théorème de mécanique 
gui ramène le mouvement général d'un corps solide à un mouvement de trans
lation combiné avec une rotation autour du centre de gravité. Ce principe du 
classement des lettres en divers groupes est le même dont Gauss et Abel ont 
déjà montré la fécondité dans la théorie des équations: il me semble être dans 
l'essence même de la question, et sert de fondement à toute mon analyse. Uor
dan 1860, p.5 l. 

The question ofhow Jordan accessed Poinsot's theory of order is open. 
But the echoes between Galois's decomposition andJordan's early works 
might have been the consequence ofa perspective on Gauss and Lagrange 
that Poinsot, Galois, and Jordan had shared. It was indeed in the frame
work of the reduction of imprimitive groups to primitive groups on the 
model of Gauss's decomposition that the general linear group had orig
inated from the two forms of representations of cycles in the works of both 
Galois and Jordan. 
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Jordan first commented on Galois in the seven-page supplement he 
added to the memoir sent to the Académie for the Grand Prix of 1860 on the 
problem of the number of values offunctions. He immediately focused on 
Galois's distinction between imprimitive and primitive equations.40 More 
importantly, he began to consider later steps ofreduction that would thus 
resort to other forms of decomposition (i.e., into normal subgroups). 

In 1864,Jordan gave the exact opposite meanings to the terms "groups" 
and "systems" that they had had in the 1860 thesis. Croups were now substi
tution groups, while systems became partitions ofletters. This change of at
titude would go with the adoption of a symbolic representation for groups. 
But as will be seen later,Jordan did not attribute the move he (Jordan) had 
made from substitutions to groups to Galois. Moreover, the adoption of a 
symbolic representation was not intended to hide the parallel important 
use of the analytic representation oflinear substitutions. 

We have seen that Galois had made use of symbolic representations 
when he distinguished between the proper and improper decomposi
tions of a group [Galois 1832, p. 408-409]. This situation bas often been 
considered as an important step toward the consideration of groups as 
single abstract objects. But a completely opposite interpretation could be 
developed. It must indeed be pointed out that Galois's use of the symbolic 
notation was limited to the context of the description of the forms of 
decompositions of groups. As we have seen, Galois's (and later Jordan's) 
decompositions had been modeled on the analytic representations of two 
special forms of arithmetic actions of cycles, like an addition or a product. 
Galois's symbolic operations on the groups can therefore be understood 
in analogywith actual arithmetic operations. Resorting to such an analogy 
was quite normal in the 1820s-1830s. Gauss had already appealed toit to 
represent symbolically quadratic forms in 1801. Severa! works had devel
oped the analogies between iterated arithmetic powers and the symbolic 
law of exponents of differential operators ( [Koppelman 1971], [Durand
Richard 1996]). Moreover, Fourier and Cauchy had developed symbolic 
approaches to linear differential equations in the 1820s in analogy with 
algebraic equations [Dahan-Dalmedico 1992, p. 197]. 

In Galois's decomposition or Jordan's reduction, special analytic repre
sentations were not opposed to general symbolic presentations; each was 
both a special mode! case for, and an application of, the other. 

40 Jordan had aimed at providing a new pro of that solvable primitive equations have 
a degree of a power of a prime but the proof failed be cause groups had been parti
tioned on the model of blacks of imprimitivity [Neumann 2006, p. 413). 
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1.3. An overview on the long term circulation of Galois's applications 

Apart from Enrico Betti's andJordan's systematic comments on Galois's 
works,41 the three applications were not usually presented together in the 
framework of a comprehensive theory. This section aims at providing a 
brief overview of the different lines of development in which the applica
tions were involved. 

1.3.1. The criterion 

In the Avertissement to the 1846 edition of Galois's works, Liouville had 
claimed that Galois had laid the grounds for a "general" theory of the solv
ability of equations by radicals. It is well known that he did not comment 
further on the content of such a general theory. But Liouville had never
theless celebrated "Galois's method" through its "particular" use for the 
proof of the criterion. The presentation of the criterion as a particular ap
plication of a general theory of equations dominated public discourse on 
Galois's works until the mid-1890s (at which point it disappeared). Liou
ville's presentation of Galois was in fact reproduced word for word in publi
cations targeting larger audiences than specialized mathematicaljournals, 
e.g. the 1848 biography of Galois in the Magasin encyclopédique or the many 
notices that would be published in several encyclopedic dictionaries. 

But the citation of Liouville citing Galois could also be found in Ser
ret's Cours d'algèbre supérieure. Despite the fact that the first edition of 1849 
had made almost no use of Galois's works, its introduction presented 
Galois's criterion as the endpoint of a long;ue durée history of the "theory of 
equations" involving Cardano, Lagrange, Ruffini, and Abel among others 
[Serret 1849, p. 1-4]. In 1854, Serret's second edition included two addi
tional notes relative to the criterion. The first consisted of a translation 
of [Kronecker 1853] involving a discussion on Galois's theorem with re
gard to Abel's approach. The second was a new proof of the criterion by 
Hermite. 

Serret would indude a presentation of Galois's general theory of equa
tions in the third edition ofhis Cours in 1866. The criterion would then be 
presented as the conclusion of the theory. Apart fromJordan's Traité and 
Klein's Icosahedron, the solvable prime degree "Galois equations" or "meta
cyclic equations" would conclude most presentations of Galois theory until 
the turn of the century, e.g. [Netto ] 882, p. 278], [Bolza 1891], [Borel & 

41 On Betti's work, see [Ehrhardt 2007, p. 271-285), [Mammone 1989], [Wussing 
1984, p. 123-128], [Kiernan 1971, p. 103-110]. 
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Drach 1895, p. 334J, [Vogt 1895, p. 188], [Weber 1895-1896, p. 597,648], 
[Picard 1896, p. 481], [Pierpont 1900]. 

1.3.2. Modular equations and the three Galois groups 

Unlike textbooks, papers published in specialized journals rarely re
ferred to the criterion. When Hermite first referred to Galois publicly in 
1851, he already expressed his interest in the cases in which the degrees 
of the modular equations could be reduced, a problem Betti would inves
tigate in 1853 (cf. C. Goldstein's paper in this volume). In 1858-1859, 
Hermite would appeal to Galois's works again at the occasion of the series 
of papers he would devote to the modular equation of degree 5 and the 
general quintic. 

From this point on, Galois's third application was usually referred to in 
connection to the works of"Galois-Betti-Hermite." This became one of the 
main types of reference to Galois in the second half of the century, both 
in periodical publications and in treatises such as Qordan 1870], [Briot 
& Bouquet 1859], [Klein 1884], and [Klein & Fricke 1890] (as well as in 
other textbooks although implicitly as will be seen later). At the turn of 
the 1870s-1880s, the expression Galois groups was used in the Klein net
work for designating the groups associated to the three modular equations. 
Later on, at the Chicago congress of 1893, Joseph Perott still designated 
the group of order 660 of the modular equation of order 11 as the Galois 
group, while Moore aimed at generalizing the Galois groups by introduc
ing abstract Galois fields. 

1.3.3. Les imaginaires de Galois 

We have seen that even though number-theoretic imaginaries were 
tightly linked to substitutions, Galois presented his Note as an autonomous 
topic in number theory. In the 1854 edition of Serret's Algèbre, Galois's 
imaginaries were presented as the conclusion of a series of three lectures 
devoted to the theory of congruences. Unlike the notion of primitive root 
of binomial congruences, they were not connected to cyclotomie (and 
abelian) equations or to the additional notes of Hermite and Kronecker.42 

Apart from the short note of [Allegret 1856a],43 Galois imaginaries were 
not used again in connection with equations until the works of Jordan 
in the mid-1860s. When he started to develop his approach on higher 

42 For a detailed account of the refercnccs to Galois's "Mémoire" in the various edi
tions of Serret's Algèbre, sce [Ehrhardt 2007, p. 358-392]. 

43 To my knowledge, Alexandre Allégret's works have never been mentioned in con
nection to Galois before. 
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congruences m 1857, Dedekind alluded to both the presentations of 
Schërnemann in the legacy of Gauss and Abel, and those of Serret in the 
legacy of Galois. 

At the turn of the 1850s-1860s, Galois's imaginaries were used as a way to 
extend analytic forms of substitutions fi-om p top" variables. Most texts ac
tually dealt with binary linear fractional substitutions ( [Serret 1859; 1866], 
[Mathieu 1860; 186la;b]). Jordan would nevertheless investigate general 
linear substitutions on n variables, and Mathieu and Hermite would con
sider non-linear cases as will been seen in greater detail later. 

In the third edition of the Cours in 1866, Serret went further, inscribing 
number-theoretic imaginaries in a comprehensive theory of congruences. 
The presentation included a development on integer polynomials modulo 
a "modular fonction" [Serret 1865; 1866] .44 Serret's approach on Galois 
imaginaries was endorscd later by treatises such as Uordan 1870], [Borel 
& Drach 1895], and [Vogt 1895]. All these presentations nevertheless also 
systematically included Galois's original approach. Jordan in particular ap
pealed to a traditional way oflegitimizing the use of imaginaries by resort
ing to the analogies carried on by "instruments of computation." In 1867 
he insisted that: 

La considération des racines imaginaires des congruences irréductibles 
s'introduit d'elle même dans mon analyse, qui n'aurait certainement pas 
abouti si j'avais hésité à l'adopter. Je serais heureux d'avoir contribué par 
ces exemples à montrer la puissance de ce nouvel instrument d'analyse, que 
d'éminents géomètres paraissent regarder encore avec une certaine défiance 
[Jordan 1867a, p. 269]. 

But Kronecker's 1882 Grundzüge contested the legitimacy of traditional 
presen tations of irrationals such as algebraic imaginaries. La ter on, when 
algebraic number theory came to incorporate the legacy of Dedekind, 
number-theoretic imaginaries were presented as a special case of endlicher 
Korper: the Congruenzkorper [Weber 1893b, p. 534]. As will be seen in the 
next section, a traditional perspective on Galois imaginaries nevertheless 
circulated from Serret and Jordan to [Gierster 1881], [Klein & Fricke 
1890], [Moore 1893], and [Burnside 1894]. 

44 This presentation was therefore close to the ones of Schônemann and Dedekind, 
which were nevertheless not mentioned by Serret. 
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1.3.4. Jordan and the application ta primitive equations of degree pn 
The second application had had few echoes until the mid-1860s. Allé

gret had nevertheless published two notes in 1856 with the aim of general
izing Galois's criterion to equations of composite degree. Referring to the 
works of Kronecker, Betti, and Pierre-Laurent Wantzel, he had considered 
the "group oflinear substitutions defined by Galois" in connection to con
gruences and cyclotomie equations. The interest Allégret had for groups 
was nevertheless not shared by most of the authors who dealt with substi
tutions at the time. As has been pointed out before, when they referred 
to Galois in the context of substitutions, most authors pointed to number
theoretic imaginaries and not to groups.45 

In the first note related to Galois that.Jordan addressed to the Comptes 
rendus in 1864, he reactivated the issue of the determination of solvable 
equations of prime power degree. His aim was to lay the emphasis on his 
"method" whose "essence" was to "reduce" a group into a "chain" of sub
groups: 

Voici mon théorème fondamental: 
Pour qu'un groupe L appartienne à une équation résoluble par radicaux, 

il faut et il suffit qu'il soit le dernier terme d'une série de groupes partiels 
l, F, G, J-l,.. . jouissant des propriétés suivantes: 1 ° chacun de ces groupes 
contient le précédent; 2° ses substitutions sont échangeables entre elles, 
aux substitutions près du précédent; 3° toutes les substitutions de L lui sont 
permutables. 

L'essence de ma méthode consiste à déterminer successivement les groupes 
partiels F, G, H, ... Qordan 1864, p. 965]. 

Jordan argued that the problem had to be reduced further than Galois's 
two-step decomposition of solvable transitive equations to primitive equa
tions with linear substitutions. One thus had to devote specific attention 
to linear substitutions: 

Si l'on distingue les racines les unes des autres par n indices indépendants 
x, x1, x,11 • •• , variables chacun de O à p - l, le groupe [ of primitive equations of 
degree pn] dérive de la combinaison de deux sortes de substitutions: 

1° Celles qui remplacent la racine générale ax,x',x," ... par la suivante 

ax+o: mod p,x1 +oc' mod p,x11 +o:11 mod p, ... 

45 It may be added that most authors who were working on the theory of equations 
at the time did not mention Galois cither. For instance, Mathieu referred to Galois 
(imaginaries) for the first time in 1859 after he had already published a memoir on 
algebraic equations (1856) and three notes on multiply transitive substitutions acting 
on many valued fonctions (1858) [Ehrhardt 2007, p. 406]. 
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IJ., IJ.1, IJ.11 étant des entiers variables d'une substitutions à l'autre. 
2° Un certain nombre de substitutions remplaçant ax,x',x," ... par 

aax+bx'+cx,11 ... modp, a1x+l/x'+c'x,11 ... modp, a"x+b"x' +c"x,11 ... modp, ... 

[ ... ]. J'étudie à part ces dernières substitutions que je désigne par la notation 
suivante: 

x ax + bx1 + cx11 + ... 
x1 a1 x + b1 x1 + c' x11 + • • • 
x 11 a11 x + b11 x' + c11 x" + • • . Uordan 1864, p. 964]. 

In the following years,Jordan repeatedly pointed out the incorrectness 
of Galois's daim [1830b, p. 406] that the condition of linearity was suffi
cient for characterizing solvable primitive groups: 

Galois avait annoncé que les équations primitives et solubles par radicaux 
rentreraient dans un type unique, sauf pour le neuvième et le vingt-cinquième 
degré, qui présenteraient certains types exceptionnels. On voit par les énoncés 
qui précèdent qu'il faut prendre presque exactement le contre-pied de cette 
assertion Uordan 1868a, p. 113]. 

Later on, most of Livre II dealt with the problem of characterization and 
classification of subgroups of GLn (p), while most of Livre IV investigated 
the roles played by general linear groups in the chain reduction of solv
able transitive groups. But the n-variable generality ofJordan's approach 
on linear groups was not taken on by most later presentations of the the
ory of substitutions. [Netto 1882], [Klein 1884], [Klein & Fricke 1890], 
[Bolza 1891], [Borel & Drach 1895], [Weber 1895-1896], [Picard 1896], 
[Pierpont 1900] focused rather on the binary linear and fractional linear 
substitutions associated with solvable equations of prime degree and with 
modular equations. 

1.3.5. Galois's theory of general equations 

Let us now consider the interactions between Galois's general princi
ples and the three applications. After Betti's series ofmemoirs in the early 
1850s, Galois's theory of general equations was presented for the most part 
in textbooks and treatises. To begin with, in the 1866 edition of Serret's 
Algèbre, the second volume was divided into three sections. The first was 
devoted to properties of integers and was dominated by the theory of con
gruences. The second presented the theoryofsubstitutions. The third was 
devoted to the algebraic solution of equations. Its last chapter presented 
a commentary on Galois's Mémoire. 
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The theory of substitutions had three main interactions with reference 
to Galois. First, the notion of Galois resolvent connected substitutions to 
equations as will be seen in greater detail below. 46 Second, the problem of 
the analytic representation of substitutions connected number-theoretic 
imaginaries to substitutions as will be discussed in the next paragraph. 
Third, binary linear fractional substitutions were the only special type of 
substitutions to be considered. This focus implicitly pointed to modular 
equations. But the Cours considered neither Galois's application to primi
tive equations nor general linear groups. Until the mid 1890s, and apart 
fromJordan's Traité, most later treatises would follow both the separation 
between substitutions and equations and the above list of points of contact 
(e.g. [Netto 1882], [Bolza 1891], [Borel & Drach 1895], [Vogt 1895]). 

This situation can be understood in the light of one of the main roots 
of the theory of substitutions, i.e., the problem of the number of values 
of fonctions. Interest in the latter problem had originated in the 18th 
century, when the solvability by radicals of an nth degree equation had 
been connected to the number of values a resolvent fonction of n vari
ables could take. But even though such issues had originally been closely 
related to equations, they would give rise to autonomous developments 
on substitutions, permutations and arrangements, such as in [Cauchy 1815a;b; 
1844]. Joseph Bertrand, (1845) and Serret (1849), in particular, stated 
limits for the number of values offunctions. At the turn of the 1850s-1860s, 
substitutions themselves would become the main focus of the series of pa
pers published by authors such as Mathieu, Jordan, or Thomas Kirkman 
[Ehrhardt 2007, p. 291-393]. 

The main point of contact with Galois's Mémoire was also the unique as
pect of the latter Serret had already presented in the first edition of his 
Algèbre in 1849. There, it was designated as "Galois's equation in V." This 
designation would be used again by Hermite in 1851 and 1858-1859 and 
later by Jordan. It would eventually be replaced by the designation of "Ga
lois resolvent" Betti had used in 1852 on the model of the already tradi
tional Lagrangian resolvent. In most presentations of the second half of 
the 19th century, the notion of Galois resolvent was used for associating 
equations to systems of substitutions or groups. On the contrary,Jordan's 

46 A Galois resolvent is a function of n variables that takes n! values under the action 
of Sym ( n). In the sense of Lagrange 's 1 770 notion of similar function, a Galois resol
ven t is similar to any rational function of the roots of an equation of degree n and of 
its coefficients (recall that the roots are supposed to be distinct). 
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Livre III would hide the resolvent in the proof ofGalois's fundamental the
orem:47 

THÉORÈME FONDAMENTAL. -Théorème I. Soit F(x) = 0 une équation dont 
les racines x1, ... , Xm sont toutes inégales, et à laquelle on peut supposer qu'on 
ait adjoint certaines quantités auxiliaires y, z,... Il existera toujours entre les 
racines x1, ... , Xm un groupe de substitutions tel que toute fonction des racines, 
dont les substitutions de ce groupe n'altèrent pas la valeur numérique, soit ra
tionnellement exprimable, et réciproquement. Qordan 1870, p. 257]. 

Let F be an irreducible equation of degree n with simple roots 
x1, ... , Xn. A Galois resolvent is a function 'l' that takes exactly n! distinct 
values un der the action of all the substitutions leaving the roots (Xi) glob
ally invariant [Galois 1846, p. 419]. All the roots can then be expressed as 
rational functions of 'l' [Galois 1846, p. 420].48 Consider u1, ... , Un "gen
eral" values so that u1 x1 + · · · + UnXn takes n! distinct values 'l' 1, ... , 'l' n! 

bytheactionofSym(n). Then 'l'(v) = (v-'P1)(v-'Pn) •·· (v-'Yn1) isa 
Galois resolvent of the equation F. Now, consider a maximal irreducible 
factor rp(v) of 'l'(v) and the group G leaving rp globally invariant; then 
"adjoin" a rational function of the roots (f)l ( x1, ... , Xn) so that the resolvent 
'l' would break up into smaller degrees. The substitutions of G leaving 
(f)l globally invariant form a normal subgroup of G corresponding to the 
reduction of the equation by the adjunction of (f)l [Galois 1846, p. 424]. 

Despite Jordan's emphasis on the notion of group of an equation, the 
notion of Galois resolvent continued to be widely used in the following 
decades. As will be seen in greater detail later, Kronecker's reworking of 
the notion of resolvent on a rational domain laid the ground for most pre
sentations of Galois groups of equations in the 1890s, such as the ones of 
[Bolza 1891], [Borel & Drach 1895], [Picard 1896], [Vogt 1895], [Hôlder 
1899], [Pierpont 1900]. 

Kronecker's legacy was nevertheless challenged in the mid-1890s. In 
1893, Oskar Bolza openly discussed the respective merits of Jordan's 
and Kronecker's definitions of Galois groups, while [Weber 1893b] and 
[Hilbert 1894] appealed to the legacy of Dedekind. In Weber's 1895 
Lehrbuch der Algebra, Galois theory resorted to the consideration of how 

47 Compare to [Galois 1846, p. 421, trans. Van der Waerden, 1985, p. 107]: 
PROPOSITION 1. - There is a group of permutations of the letters a, b, c, ... such that 
every fonction of the roots, invariable under the substitutions of the group is ratio
nally known. 
Conversely, every fonction of the roots rationally known is invariable un der the group. 

48 The theorem of the primitive element gives another formulation to this. See [Ed
wards 1984, p. 44-45], [van der Waerden 1985, p. 106]. 
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"Korper" could be obtained one from another by the adjunction of a 
quantity, while the the group which left the inititial Korper invariant was 
divided into normal subgroups. But the constructive character of the 
Galois resolvent would nevertheless still play an important role [Weber 
1895-1896, p. 467]. 

1.4. The problem of the analytic representation of substitutions 

The analytic representation of substitutions had circulated with both 
Galois's applications and general principles. Even in Weber's Lehrbuch the 
two analytic forms of cycles still played a key role in the conclusion of the 
presentation of Galois theory (i.e., the criterion of solvability for prime de
gree metacyclic equations) [Weber 1895-1896, p. 637]. 

In 1852, Betti had begun his commentary on Galois with representing 
substitutions ( Xi Xqi(i)) by a bijective fonction ? (with the indices i either 
integer mod p or Galois imaginaries). Fin ding all the possible expressions 
of such fonctions was later identified as the problem of the analytic rep
resentation of substitutions. Betti had nevertheless not given any specific 
expression to cp until he had discussed Galois's notion of decomposition of 
a group. Following Galois in 1830 and precedingJordan in 1860, Betti had 
then raised the issue of determining the "maximal multiplier of a group," 
i.e., the last step ofa decomposition [Betti 1852, p. 45]. For the case ofa 
prime number ofletters, this group was generated by (i i + 1) or (i gi) 
while the composition of both forms generated the substitutions ( i ai + 
b). Following Galois, Betti also extended his investigations to groups of 
prime power order and therefore to n-ary linear substitutions. 

In comparison to Cauchy's 1844-1846 papers on substitutions,49 the fo
cus on the decomposition of analytic representations was specific to works 
which referred to Galois, such as Betti's or [Hermite 1851]. The latter pa
per succeeded Puiseux's 1850 "Recherches sur les fonctions algébriques." 
In both the framework of Cauchy's complex analysis and of Hermite's 
1844 investigations of the division equation of abelian functions, Puiseux 

49 See [Dahan-Dalmedico 1980, p. 296-310]. Even though in 1844 Cauchy also 
presented the two forms of analytic representation of cycles, which he had called 
"arithmetic and geometric substitutions" [Cauchy 1844, p. 178], he had favored other 
modes of representations of substitutions such as products of cycles, the two lin es no
tation, the symbolic notation, and some tabular representations. Moreover, unlike 
Betti's decompositions, he composed the "conjugated system" of substitutions by the 
two forms of cycles (i.e., the linear group) but for the sole purpose of computing its 
order and with no interest in the analytic form of the resulting substitutions. 
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had considered algebraic fonctions f ( z, w) = 0 on the complex plane. 50 

He had shown that in the neighborhood of any point zo which is not a 
branch point, the roots w1, w2, ... , Wn can be expanded as convergent 
power series in z - zo. If one makes z move on a closed circuit avoiding 
the branch points, the roots are permuted by a system of substitutions, 
which Puiseux had investigated by appealing to Cauchy's representation 
of cycles [Puiseux 1850, p. 384]. In 1851, Hermite responded to Puiseux 
by representing analytically the substitutions involved for stating a crite
rion of the solvability for equations with parameters, analogous to Galois's 
criterion. Hermite indeed stated that for equations of a prime degree, 
"the necessary and sufficient condition for the solvability by radicals is 
that all the fonctions of the roots invariant for the substitutions of the 
following special form ( u;~b) [ ... ] are rationally known" [Hermite 1851, 
p. 461]. The proof was based on the decomposition of the above form 
into products of ( u:!1 ) and ( :::k), with p a primitive root mod p. 

When Hermite referred to Galois again in 1858-1859, he appealed to 
the analytic representation of linear fractional substitutions. The reduc
tion of the degree of modular equations, as he said, "depends on a deeper 
investigation of the substitutions ~f!~" [Hermite 1859, p. 58]. Following 
Hermite, Serret and Mathieu considered linear fractional substitutions 
with number-theoretic imaginaries as variables in 1859. 

In 1863, Hermite eventually stated a necessary and sufficient condition 
for an analytic fonction to represent a substitution on pn letters. Moreover, 
he systematically stated all the reduced forms of analytic expressions of sub
stitutions on 3, 5, and 7 letters. This approach laid the groundwork for 
most later presentations of the problem until the turn of the century ( e.g. 
[Serret 1866, p. 383], Uordan 1870, p.88], [Netto 1882, p. 140], [Borel & 
Drach 1895, p. 306], [Dickson 1901, p. 59]).51 

Given a substitution S operating on p-1 letters l1, l2, ... , lp-l, the prob
lem is to find an analytic fonction cp ofwhich a finite number of values cor
respond to the values of S, i.e., S (lz) = lrp(z). Such a fonction can be found 
by the use ofLagrange's interpolation formula. Given two fonctions cp and 
'I' of degree p - l associated to two substitutions S and T on p - l letters, 
the substitution ST is then associated with the fonction cp"I'. Now, in order 
to keep the degree of cp"I' equal to p - 1, it is necessary to consider both 
the indices of the p - l letters and the coefficients of cp and 'I' modulo p. 

50 The polynomial f (z, w) in w is irreducible in the field of rational fonctions of z. 
51 ln the introduction ofhis 1882 thesis, Edmond Maillet attributed to Hermite the 
introduction of the analytical notation (x; Xq,(i)) itself [Maillet 1892, p. 2]. 



308 F. BRECHENMACHER 

In case of substitutions acting on pn letters, one has to consider Galois's 
number-theoretic imaginaries. 

Most treatises presented the problem of the analytic representation of 
substitutions just before they introduced linear substitutions (i.e., the form 
generated by the two forms of cycles). Moreover, this presentation usually 
played the role of an intermediary between substitutions and equations. 
Most au th ors therefore limited themselves to the considerations of the sub
stitutions ( i ai+b) and ~!!~ related to solvable equations of prime degree 
and to modular equations. 

ButJordan's Traité assigned a different role to the analytic representa
tion of substitutions. This problem gave rise to the investigations on the 
general linear group, which was presen ted as originating from direct prod
ucts of cyclic groups as in Galois's and Betti's approaches Uordan 1870, 
p. 88-92]. On this occasion, Jordan insisted that, in modern parlance, 

GF(pn) could either be represented as Fp(j) with j a root of xPn-l = 0 
or as a direct product of copies of Fp (i.e., as a vector space over Fp). 
In the first case, GF(pn) is immediately associated to a multiplicative 
cyclic group generated by the substitution (i,ji). In the second case, it 
is associated to an additive cyclic group generated by (i(k),i(k) + 1), i.e., 
li, i', ... , i + c.c, i' + c.c', ••• !- The linear group GLn (p) then originates from 
the problem of finding the maximal group in which the above group 
is a normal subgroup. Its substitutions were shown to have the form 
1 
.. , . b·1 '. b' ., 1 z, z, ••• , az + z + • • • , a z + z + • • • . 

The higher level of generality of Jordan's groups of n-ary substitu
tions was nevertheless problematic. A "general" development was indeed 
supposed to be valid for all the objects under consideration, such as in 
Cauchy's theory of substitutions. But Jordan's n-ary linear substitutions 
did not provide any general solution to the problem of the number of 
values of fonctions for which they had been introduced. In a sense, they 
had missed their object. As was alluded to above, Hermite approached the 
problem very differently in 1863 when he both stated a truly general result 
and investigated systematically some special cases. 52 As Jules Drach would 
point it out in 1895, unlike the binary fractional linear substitutions asso
ciated to Galois's first and third applications, the application to equations 
of composite degree pointed to substitutions that cannot be represented 
analytically in general: 

52 For instance, for p = 5, the reduced forms of analytic substitutions were x, x2, x3 + 
ax. 
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L'étude des equations de degré composé est beaucoup plus difficile, car la 
representation analytique des substitutions, qui nous a été si utile, devient moins 
simple; on est en effet obligé dans le cas le plus simple où le degré de l'équation 
est une puissance pv d'un nombre premier, soit de prendre pour indices les 
pv valeurs incongrues d'une imaginaire de Galois [ ... ] soit d'affecter chaque 
racine de v indices, dont chacun prend p valeurs incongrues (mod p). [ ... ] 
Aussi n'entrerons-nous pas dans cette etude, nous contentant de renvoyer aux 
savantes recherches de M.Jordan. [Borel & Drach 1895, p. 311). 

In the 1870s,Jordan's general linear groups were explicitly criticized by 
Kronecker for their false generality and formai nature [Brechenmacher 
2007a]. Indeed, Kronecker accusedJordan ofhaving mixed up tools rela
tive to the orientation he had given to his investigations (i.e., n-ary linear 
substitutions) with the inherent significations of "objects of investigation." 
In the introduction of his 1882 treatise on substitutions, Eugen Netto, a 
former student of Kronecker, insisted that: 

It is unqucstionable that the sphere of application of an Algorithm is ex
tended by eliminating from its fondamental principles and its general structure 
al! mattcrs and suppositions not absolutely essential to its nature, and that 
through the general character of the objects with which it deals, the possibility 
of its employment in the most varied directions is secured. [ ... ] If, on the other 
hand, it is a question of the application of an auxiliary method to a definitely 
prescribed and limited problem, the elaboration of the method will have to 
take into account only this one purpose. The exclusion of al! superfluous ele
ments and the increased usefulness of the method is a sufficient compensation 
for the lacking, but not defective, generality. A greatcr efficicncy is attached in 
a smaller sphere of action. [Netto 1882, transi. Cole in Netto, 1892, p. iii]. 

In contrast with cyclic, abelian, metacyclic, and modular groups, linear 
groups were not considered by Netto as a special type of group: they were 
limited to the object of investigation of the problem of the analytic repre
sentation of substitutions [Netto 1882, p. 128-139]. 

Before analyzing further the specificity of Jordan's general linear 
groups, it is therefore customary to investigate first the status taken on by 
substitutions in the 1850s-1860s. 

1.5. The general, the special, and the status of substitutions 

It must first be pointed out that while Jordan's focus on n-ary linear 
groups was specific, it was on the contrary normal in the mid-19th century 
to deal with n-ary linear substitutions as processes of changes of variables. 
But the generality of the approach had to be adapted to its object. 
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Although "substitution" was a generic expression used for designating 
various procedures of transformations of variables, special types of substi
tutions were nevertheless related to special abjects of investigations. Such 
objects could be quite complex and were usually not limited to a single 
notion. Let us consider the example of the "equation of the secular in
equalities in planetary theory" [Brechenmacher 2007b]. Most of the many 
texts that were published on this topic were not concemed at all with celes
tial mechanics. Their object of investigation was on the contrary identified 
by the reference to the special equation. First, this reference delimitated 
a corpus of previous works mostly published in periodical joumals, i.e., a 
network of texts. Second it pointed to problems shared throughout the 
network, such as proving that the roots are real or dealing with multiple 
roots. Third, the reference to the special equation was the mode of circu
lation of a practice that involved n-ary linear orthogonal substitutions with 
real coefficients. 

In the 18th century, the special equation had originated from investi
gations on the small oscillations of a string loaded with n weights or of n 

planets on their orbits. The mathematisation of these problems involved 
symmetric linear systems of n differential equations with constant coef
ficient. Specific processes had been developed for "transforming" such 
systems into an integrable form (i.e., a diagonal matrix). These processes 
were eventually identified with the special equation they involved (the 
characteristic equation of the system) and had then circulated with the 
latter equation between varions domains of the mathematical sciences, e.g. 
differential equations, celestial mechanics, analytic geometry, quadratic 
forms, the theory of invariants etc. 

As an abject of investigation, the "equation of the secular etc." was at
tached to a certain form of generality in which it was legitimate to deal with 
n variables. For instance, Cauchy had appealed toit in 1830 for generaliz
ing to n-ary quadratic forms his geometric method for finding the princi
pal axis of conics or quadrics. Later on in the 1850s, Hermite generalized 
Cauchy's approach to n-ary Hermitian forms. The homogenous expres
sion Weierstrass gave in 1858 to the roots of this equation whatever their 
multiplicity were later celebrated by Kronecker as a model of "truc gener
ality" [Brechenmacher 20l?a]. 

But in contrast to the general linear substitutions associated with this 
equation, the problem with .Jordan's n-ary linear group was that its form 
of generality was neither truly general nor adapted to contemporary works 
on the number of values of fonctions or on the solvability of equations. 
The latter issue was indeed considered by Hermite and Kronecker in the 
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1850s as related to the special irrationalities defined by general equations 
of a given degree. The issue was thus of a different nature than the general 
properties of eguations of degree n that were given by invariant theory, i.e., 
the investigations of n-ary algebraic forms that "reproduced themselves" by 
linear transformations that had been especially developed by Cayley and 
Sylvester. 53 

The series of papers Hermite published in 1858-1859 is discussed by 
C. Goldstein in this volume. Hermite considered that the impossibility of 
solving the general quintic by radicals raised the issue of expressing the 
roots by "uniform and distinct fonctions" of auxiliary variables. Because 
the roots of the modular equations were associated with substitutions hav

ing the analytic form ~f:t, they could be used to express analytically the 
roots of the general quartic or guintic by elliptic fonctions. 

The aim, Hermite insisted, was to develop some knowledge about the 
"special nature" of the quantities defined by the general quintic in Jer
rard's reduced form x5 - x - a= 0, to "grasp what is proper and essential 
to the mode of existence of these quantities about which all we know is 
that they are not expressed by radicals" [Hermite 1859, p. l]. This special 
nature was discussed in connection to the general framework of invariant 
theory.54 The invariants, Hermite argued, provide the "elements that 
characterise the essential properties of the roots of algebraic eguations, 
i.e., those that remain the same through the varions transformations" 
[Hermite 1859, p. 19]. Hermite especially mentioned the example of 
Sturm's theorem. Sylvester had shown that the number of distinct roots 
of the "equation of the secular inequalities of planetary theory" was given 
by the invariant-the "inertia"-of a quadratic form for n-ary real linear 
substitutions [Sinaccur 1991, p. 124-132]. Hermite then introduced a dis
tinction between two classes of equivalences of quadratic forms: while the 
"arithmetic equivalence" referred to the traditional number-theoretic con
text of a guadratic form with integer coefficients, n-ary linear substitutions 
with real coefficients had been associated to the "algebraic equivalence" 
of forms in reference to the algebraic nature of Sturm's theorem. 

But in 1858-1859, Hermite showed that the investigation of general 
quartic and quintic equations made it compulsory to consider forms and 
substitutions of a special type. His analysis was based on the consideration 
of the discriminant, i.e., the algebraic form D given by the product of all 

53 See [ Grilly 1986] and [Parshall 1989]. 

54 This problem was typically presented as a generalization of the solution of the 
general eu bic by trigonometric fonctions. See Qordan 1870, p. 366-378]. 
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the differences of the roots of the equation. He first highlighted the role 
played by D in the "affinities" and "analogies" he had discovered between 
the modular equation of degree 3 and various other special quartics related 
to the ternary cubic forms involved in geometric problems of contact. In 
general, D is a two valued fonction under the action of substitutions on 
the roots (while D2 is a symmetric fonction of the roots). 55 But Hermite 
pointed out that, in various special cases of quartics, D was a single-valucd 
fonction, and was therefore a rational fonction of the coefficient~. All 
these special equations could be transformed into a modular equation. As 
for the general quartic, the adjunction of a square root of D would split 
its 24th degree Galois resolvent into an equation of the 2nd degree and 
an equation of the 12th degree. The solutions of the quartic could thus 
be expressed as rational fonctions of vJ5 and of the roots of the modular 
equation of degree 3. 

Hermite then generalized his approach to the general quintic. Unlike 
the groups Betti had used for reducing the degree of the modular equa
tion of degree 5, Hermite appealed to the framework ofLagrange's "simi
lar forms," i.e., forms invariant by substitutions [Hermite 1859, p. 62]. He 
proved Galois's daim that the fonctions invariant under the substitutions 
~f:i with ad- be = l provide rational non-symmetric fonctions of the roots 
of the reduced modular equation of degree 5. Moreover, he insisted that 
this property is a consequence of the fact that the Galois resolvent of the 
equation split into irreducible factors of degree less than 5! = 120. Be
cause this specificity was shared by the reduced modular equations of 5, 
7, and Il, Hermite argued that these "equations with affects" constituted 
special "orders of irrationalities":56 

Les équations du septième et du onzième degré présentant cette propriété 
que les fonctions non symétriques de leurs racines invariables par les substi
tutions ainsi définies ont une valeur rationnelle, constituent un ordre spécial 
d'irrationnalité qui les distingue nettement des équations les plus générales 
de ces degrés. Ce sont, suivant l'espression de M. Kronecker, des équations 

55 Ruffini and Cauchy had shown that the number of values that a non-symmetric 
rational function of 5 variables attains cannot be lesser than 5 unless it is 2. 

56 The Galois group of the reduced modular equation of order 5 is PSL 2 (5); it is 
isomorphic to A(5), which can be understood as the reduction of Sym(5) by the ad
junction of the discriminant of the general quintic. In short, an equation with affect 
is an equation whose Galois group is smaller than the symmetric group. The notion 
was introduced by Kronecker for equations of degree 7: while al! equations of degree 
5 can be solved by eliiptic fonctions, an analytical solutions of equations of degree 7 
is only possible in the case of equations with affects. 
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douées d'affections, et qu'il sera sans doute possible de ramener analytique
ment à celles dont la théorie des fonctions analytiques a donné la première 
notion [Hermite 1859, p. 64]. 

Conclusion 

Let us corne to some conclusions about the two examples of substitu
tions given by the equation of the secular inequalities in planetary theory, 
and by modular equations. First, both were attached to two forms of ana
lytic representations (i.e., n-ary linear substitutions with real coefficients 
and unimodular binary fractional linear substitutions (in Fp)). Second, 
both were associated to classes of forms (i.e., to algebraic and arithmetic 
equivalences respectively). Third, both left invariant some fonctions and 
forms (i.e., Sturm's fonctions and quadratic forms, elliptic fonctions and 
discriminants). Fourth, both were related to the nature of the roots of the 
attached special equations. 

But unlike the general linear n-ary substitutions and algebraic forms in
volved in invariant theory, Hermite considered that the extension of the 
problem of the solvability by radicals to equations of degrees higher than 
four involved identifying special "orders of irrationalities" attached to spe
cial algebraic forms and special forms of substitutions. He thus concluded 
his investigations on the general quintic by listing all the possible forms of 
analytic representation of substitutions on 5 or 7 letters, i.e., the issue he 
later developed in his influential 1863 memoir. 

On the contrary, the n-ary linear substitutions Jordan introduced in 
1860 originated without a clear object of investigation. They provided 
neither special nor general solutions to the problem of the number of val
ues of fonctions. Recall thatJordan placed the emphasis on the essential 
nature of the relations given by his method of reduction, not on specific 
objects. Galois's second application would nevertheless provide an object 
for Jordan's reduction of n-ary linear substitutions. As Jordan claimed 
in the introduction to the supplement to his thesis: "the definitions and 
the theorems given in the memoir [i.e.,Jordan's thesis] are really getting 
into the heart of the matter, the distinctions I have introduced are truly 
fondamental" because they show "some essential property of the equation 
associated with the system of substitutions under consideration" Uordan 
1861, p. 187], i.e., that primitive solvable equations correspond to linear 
groups on pn letters. 

As will be seen in the two following sections of this paper, for decades 
Galois's legacy opposed two approaches which both aimed at reaching the 



314 F. BRECHENMACHER 

"essence" of mathematics. On the one hand, some texts aimed at charac
terizing the special nature of general equations of a given degree. On the 
other hand, other texts focused on the relations between classes of solvable 
equations (or groups) of a general degree n. The two approaches were nev
ertheless bath presented in Jordan's Traité. The first went with Jordan's 
specific practice of reduction. It structured the Traité in a complex chain of 
generalizations of special model cases. As we shall see in the next section, 
this approach had almost no circulation until it was developed in Dickson 's 
network in the 1890s. The second approach was not specific to Jordan but 
was nevertheless presented in the synthesis of the Traité's Livre III. As will 
be seen in the third section of this paper, it was either rejected or partially 
adopted in the 1870s-1880s in the Kronecker and Klein networks. 

2. LINEAR GROUPS IN GALOIS FIELDS (1890-1900) 

We now change perspective, and consider the collective dimensions of 
networks of texts that referred to Jordan and Galois after the publication 
of the Traité. As has been alluded to above, two images of Galois in the 
Traité have to be distinguished. We shall begin by considering the circula
tion ofJordan's Galois in the Dickson network. First, we shall discuss the 
identity of this group of texts in connection with other collective dimen
sions of larger scale. Second we shall question further the first Galois of 
the Traité from the perspective of some of its readers in the mid-1890s. 

2.1. A space of circulation of algebraic practices 

Recall that the designation 'Dickson's network' points to a group 
mainly constituted of texts that have been published between 1893-1907 
by French and American authors. This group initially involved actors 
in Chicago (Moore, Dickson, Ida May Schottenfels, Joseph H. Wedder
burn, William Bussey, Robert Borger) and in Paris Qordan, Émile Borel 
and Jules Drach, Raymond Le Vavasseur, Jean-Armand de Séguier, Léon 
Au tonne) but quickly extended to actors in Stanford ( George A. Miller, 
William A. Manning, Hans Blichfeldt), and to other individuals such as 
William. L. Putnam, Edward V. Huntington, or Lewis Neikirk.57 

The institutionalization of fini te group theory is an important collective 
trend in which the Dickson network participated. Most texts were indeed 

57 A finer characterization of the Dickson network will be given in [Brechenmacher 
2012a]. 
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classified in the jahrbuch's subsection "substitutions and group theory." 
Moreover, reports were produced ([Miller 1898; 1902; 1907], [Dickson 
1899]), monographs were published ([Burnside 1897], [Dickson 1901], 
[Séguier 1904a], [Le Vavasseur 1904]), and discussions were developed 
on issues related to the teaching and the history offinite groups [Ehrhardt 
2007, p. 628-648]. 

Dickson's network originated between Otto Hôlder's abstract formula
tion of the notion of quotient group [Hôlder 1889a] and the emergence of 
group representation theory.58 The determination of all groups of a given 
order was often proclaimed as a general goal. This question had already 
been presented as the "general problem" of substitutions in the third edi
tion of Serret's Algèbre [Serret 1866, p. 283]. But the texts of the Dickson 
network usually pointed to the "abstract" formulation Cayley had given to 
the "general problem of groups" in the first volume of the American jour
nal of Mathematics [Cayley 1878, p. 50]. The use of the composition series 
ofthejordan-Hôlder theorem potentially reduced the general problem to 
the one of the determination of all simple groups. 

The latter problem was much related to the development of abstract 
group theory (i.e., groups defincd by symbolic, and later axiomatic, opera
tions). First, the use of the .J ordan-Hôlder theorem required the consider
ation of quotient groups that were not introduced by substitutions but by 
symbolic laws of operations [Nicholson 1993, p.81-85]. Second, Hôlder's 
use of Sylow's theorems for determining simple groups of order less than 
200 [Hôlder 1892], or groups of orders p3 , pq2 , pqr, p4 [Hôlder 1893], was 
based on the identification of abstract groups up to isomorphism.59 The 
identification of classes of simple groups therefore raised difficult issues 
related to the various concrete forms of representations of abstract groups 
such as substitutions groups or collineation groups [Silvestri 1979, p. 338]. 

58 For a comparison between Jordan and Hôlder's approaches on Jordan-Hôlder 
theorem, see [Nicholson 1993) and [Corry 1996, p. 24-34]. 

59 In the mid-1860s, the use ofJordan's "method ofreduction" ofgroups into com
position series had raised representation issues Uordan 1867b, p. 108]. The notion 
of isomorphism had been appropriated by Jordan from the framework of crystallogra
phy Scholz [ 1989] and had been presented as a general notion of the theory of substi
tutions Uordan 1870, p. 56). It would play a key role in the connections Klein would 
develop between varions types of groups in the late 1870s and would become "abun
dant" in the 1890s [Frobenius 1895a, p. 168]. First, Hôlder's introduction ofabstract 
quotient groups would point to the isomorphism theorems [Frobenius 1895b]. Sec
ond, the actual composition of groups from factor-groups could not be undertaken 
unless al! the automorphisms of the groups involved would be known [Hôlder 1893, 
p. 313], [Hôlder 1895a, p. 340]. 
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In this context, the analytic representation of substitutions played an im
portant role in Dickson's reading of the Traité. The latter's thesis was in
deed entitled "The Analytic Representation of Substitutions on a Power of 
a Prime Number ofLetters with a Discussion of the Linear Group." It pro
vided a synthesis between the approaches of Hermite and Jordan to substi
tutions. 

Holder's approach to abstract groups was a shared reference in the 
Dickson network. ln his paper of 1889, Holder initially appealed to the 
abstract approach developed by [Dyck 1882] in the legacy of Cayley. A 
symbolic approach was nevertheless developed earlier in 1877-1878 by 
Frobenius, partly in the legacy of Cayley as well as [Hawkins 2008]. After 
Hôlder eventually appealed to Frobenius's approach in 1892, the two 
mathematicians would publish a series of papers on topics closely related 
one to the other (Sylow theorem, composition series, solvable groups 
etc.). But unlike Holder's, Frobenius's works did not become a shared 
referencc in the Dickson network until 1901. 

The variety of attitudes to Frobenius shows that the category of "ab
stract finite group theory" is not appropriate for identifying members of 
the Dickson network. For instance, Moore did not refer to Frobenius 
in the 1890s even though [Burnside 1896] pointed out that [Frobenius 
1893 J had already made use of the notion of the group of automorphisms 
of a group that [Moore 1894] had claimed to introduce. Severa! authors 
actually claimed independently to have abstractly identified the group 
of automorphisms of abelian groups of type (1, 1, ... , l) (i.e., Frobenius, 
Hôlder, Moore, Burnside, Le Vavasseur, and Miller), a problem that 
pointed to the traditional introduction of the general linear group in the 
legacies of Galois and Jordan as will be seen in greater detail later. 

Moreover, that issues related to abstract groups circulated in Dickson's 
network did not imply a shared approach toward abstraction. Unlike 
Moore, other key authors followed Frobenius's works closely. But, on 
the one hand, Bumside's 1897 Theory of groups of finite order indicated 
the longstanding concerns for symbolic laws of combination which had 
circulated from Cambridge to other academic contexts in Great Britain 
and the United States. On the other hand, it was on Cantor's set theory 
that Séguier had grounded his 1904 Théorie des groupes finis. Éléments de la 
théorie des groupes abstraits. 

National categories were no more relevant than theories for identifying 
the Dickson network. For instance, the works of the Americans Frank N. 
Cole and John W. Young were frequently referred to by Frobenius. Recip
rocally, Miller appealed to Frobenius's works early on in the mid-1890s. In 
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his first &port on recent progress in the theory of the groups of jinite order, he put 
to the fore Frobenius's representation theory when he acknowledged the 
growing importance of linear groups [Miller 1898, p. 248]. But Dickson 
nevertheless mentioned Frobenius neither in his 1899 &port on the recent 
progress in the theory of linear groups, nor in his 1901 monograph. The situa
tion did not change until 1901, when a review of Loewy criticized Dickson's 
restatement of some of Frobenius's results. 

The category of local research school is not directly useful either. 
Most of the texts of the Dickson network were involved in the emerg
ing "Chicago research school," whose role in the development of the 
"American mathematical research community" is analyzed in [Parshall 
& Rowe 1994, p. 261-455]. But while this school has been characterized 
by its "abstract and structural" approach to algebra, which was called 
a "characteristic of trendsetting German mathematics" [Parshall 2004, 
p. 264-265], Moore's Galois fields were collectively described as having 
given an "abstract fonn" to previous works by Serret,Jordan, and Mathieu. 
Moreover, a similar abstract formulation was often attributed to [Borel & 
Drach 1895].60 

The growing importance oflinear groups was another large-scale trend 
in the 1890s. Here, the important role many of the texts devoted to 'Jor
dan's linear groups" was specific. In the early 1890s, linear groups usually 
designated the groups of binary or temary unimodular fractional linear 
substitutions Klein and his followers had investigated (i.e., PSL2 (p) and 
PSL3(p) ). Even though Klein's linear groups would still play an impor
tant role at the turn of the century [Wiman 1900], some collective interest 
injordan's general linear groups in Galois fields emerged by that tirne. A 
telling example is the adoption of the tenn "special linear groups" for des
ignating what used to be "linear groups" in the early 1890s. 

The problem of the status of n-ary linear groups was nevertheless not 
an issue any more. Among others, Weber's Lehrbuch introduced homoge
neous linear groups of n variables by appealing to the analytic form of n-ary 
linear substitutions. But it nevertheless only stated a few general properties 
before focusing on special groups such as PSL2 (p). On the contrary, Dick
son's 1896 thesis followed Jordan in introducing GLn (p) as the maximal 
group in which an abelian group of type (1, l, ... , 1) would be a normal 
subgroup. The second part of the thesis was then devoted to generaliza
tions ofjordan's results from Fp to GF(pn). 

60 Compare for instance the introductions of [Dickson 1896) and [Schottenfels 
1900]. 
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The label linear groups was thus far from painting to a unified cate
gory. Recall that various ways of dealing with linear substitutions had par
allel circulations until the constitution of linear algebra as a discipline in 
the l 930s [Brechenmacher 2010]. Amongst these, the most influential ap
proach was based on Frobenius's 1877-1879 presentation of the theory of 
bilinear forms. This approach appealed to symbolic methods and to com
putations of invariants by determinants such as Weierstrass's elementary di
visors [Hawkins 1977]. It incorporated the notion of matrix in the 1890s, 
and played a key role in Frobenius's representation theory. 

But the main protagonists of the Dickson network shared an alterna
tive approach based on Jordan's reduction of a linear substitution to its 
canonical form. 61 This collective attitude bas to be regarded as an impor
tant specific feature of the Dickson network. Jordan's canonical form the
orem had indeed almost disappeared from the public scene since it had 
been strongly criticized by Kronecker a few years after it had been stated 
[Brechenmacher 2007a]. Kronecker not only rejected the formal gener
ality ofJordan's linear groups, but also criticized the non-effectiveness of 
the canonical reduction, which required the determination of the mots of 
arbitrary algebraic equations. Moreover, Frobenius not only presentedjor
dan's canonical formas a corollary ofWeierstrass's elementary divisor the
orem, but also insisted that the validity ofJordan's form was limited to the 
case when one would allow the use of "irrationals" such as "Galois's imag
inary numbers" [Frobenius 1879, p. 544). In contrast, the reformulation 
Kronecker had given to Weierstrass's theorem in 1874 was based on a ra
tional method of computations of invariants in any "domain of rationality" 
(i.e., the invariant factors of matrices in a principal ideal domain). 

During the 1880s and 1890s, Jordan's canonical form had an under
ground circulation in the works of authors such as Poincaré or Élie Cartan, 
where it was neither considered as a theorem nor attributed to Jordan 
[Brechenmacher 2012b]. On the contrary, it circulated in plain sight 
at the turn of the century.62 Much work would be devoted to making 
some procedures of matrix decomposition explicit that had never been 
considered as mathematical methods perse until then ( [Burnside 1899), 
[Dickson 1901], [Antonne 1905], [Séguier 1907]). Moreover, Séguier 
and Dickson would both publicly challenge the traditional structure of 

61 This theorem had been stated at first for linear substitutions in Galois fields Qor
dan 1868a; 1870], and later for linear transformations (operating implicitly on an al
gebraically closed field) Qordan 1870]. See [Brechenmacher 2006; 2007a]. 

62 See [Moore 1898], [Maschke 1898] for the case of periodic substitutions, and 
[Burnside 1899], [Dickson 1901], (Séguier 1902; 1907] for the general case. 
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the theory of bilinear forms ( [Séguier 1907], [Dickson 1924/1928]). 
Later on in the l 930s, decompositions to canonical forms would lay the 
ground for expositions of the theory of matrices, such as the ones of Cyrus 
Colton Mac Duffee-a student ofDickson. 

In a word, the Dickson network can be considered as a space of circu
lation of key algebraic practices of the Traité. The use of the terminology 
"practice" here aims at highlighting the fact that reducing a substitution 
toits canonical form was not limited to a computational process. Unlike 
the static nature of the invariants of the Frobenius theory, this approach 
was based on dynamic decompositions of the analytic representations of 
matrices ( or "Tableaux" as the French used to say at the time). Moreover, 
Kronecker's criticisms of canonical forms in 1874 resorted to issues involv
ing the nature of the essence of mathematics, which the latter had laid on 
the special abjects of investigations of arithmetic (forms, especially) as op
posed to the general relations shown by groups in algebra. 

Jordan's canonical form did indeed embody the method of reduction 
we have seen to be specific to Jordan's Galois. It especially resorted to the 
unscrewing into the two forms of actions of cycles (i gi) and (i i + a) 
which it assimilated to issues involving n variables. The canonical form was 
first stated for reducing primitive groups on p2 letters to composition series 
Uordan 1868a], a problem to which the end of Galois's second memoir 
had been devoted [Galois 1846, p. 436-444]. It was then generalized to 
n variables in Livre II and was used in Livre IV for reducing n-ary linear 
groups on the model of the groups of order n = p2 . Later on,Jordan would 
appeal frequently to reductions of substitutions (in GF(pn) or(('.) in his 
works on groups, differential equations, algebraic forms, etc. 

The extent of the space of circulation of algebraic practices such as 
Jordan's was usually not directly the consequence of the efficiency of the 
underlying procedures. 63 Such spaces of circulation can actually be under
stood as shared algebraic cultures. But the collective dimension attached 
to such an algebraic culture is nevertheless difficult to identify precisely. 
On the one hand, there is no evidence that any sociological dimension Jay 
behind the Dickson network. Consider for instance two authors such as de 
Séguier, ajesuit ab bot aristocrat, and Ida May Schottenfels, one of the first 
women to graduate in mathematics at Chicago [Fenster & Parshall 1990]. 

63 For instance, Georg Scheffers [1891], despite his close reading of [Poincaré 
1884], did not adopt the practice of reduction the latter had dealt with for investigat
ing continuons groups (i.e., Lie groups and Lie algebras). This practice would never
theless play a key role in Cartan's groundbreaking approach to Lie algebras as well as 
in Dickson's works on this topic. 
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On the other hand, the 1896 discussion between Miller and Le Vavasseur 
about groups of operations and Galois îmaginaries is one amongst the 
many examples that point to existing spaces of circulations between ac
tors who did not have key positions in the main centers of production of 
mathematics ( even though mathematics would play a key role at Chicago, 
recall that the university had opened its doors in 1892) .64 It is therefore 
difficult to determine the respective roles played by shared perspectives 
on the Traité on the one hand, and preexisting spaces of circulation on 
the other hand. 

In any case, specîfying the Dickson network's space of circulation would 
require further investigations on algebra and number theory at the turn of 
the 20th century.65 The question of the time-period duringwhich the Dick
son network functioned will also be left open in this paper. To begin with, 
the fact that the expression "champs de Galois" was used for a long time in 
France in parallel to the use of the term "corps fini" should be studied fur
ther.66 Second, the linear algebraic identity of the network is associated 
with other developments over the course of 19th century. For instance, 
some of the procedures of decomposition underlyingJordan's canonical 
form circulated from Cauchy's "calcul des Tableaux" to Cambridge in the 
1840s, were incorporated into Cayley and Sylvester's matrices in the 1850s, 
and circulated with matrices to the U.S.A. where they would meet agaîn 
with the "Tableaux" in the Dickson network [Brechenmacher 2010]. 

In the next sections, I will focus on the following, narrower, question: 
how didJordan's specific reference to Galois circulate to Dickson between 

64 In 1896, Le Vavasseur had published a note in which he had used Galois imagi
naries to express the "group of isomorphisms of the finite abelian group generated 
by independent opcrators each of period a prime number p" (i.e., the linear group). 
This note had prompted a quick response by Miller and the discussion between the 
two went on with two other notes. As has been seen before, the issue at stakc had a 
long background in the context of the problem of the number of values of functions; 
Burnside, Moore, and Dickson would also tackle it. 

65 Very little is known about the complex situation in France [Goldstein 1999]. Such 
issues are at the core of the collective ANR project CaaFÉ. 

66 After 1905 the intertextual relationships seemed to change as well as the topics 
studied. On the one hand, the use of the reference to Galois field would be more 
widely used in the U.S.A. On the other hand, the works ofDickson as well as the ones 
of Séguier would focus on the invariants of quadratic forms and their geometric in
terpretations. 
The network seems nevertheless to have kept some identity on the long run as is il
lustrated by the fact that in the l 950s it was through the Americans A.H. Clifford and 
G.B. Preston that M. Teissicr and P. Dubreil learned about the works of Séguier and 
how they were related to the theory of demi-groups they were developing [Dubreil 
1981, p. 59]. 
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1893 and 1896? The small-scale query under consideration will neverthe
less have to be investigated in the perspective of the larger scale implied 
by the references to the works of Hermite, Mathieu, Serret, and.Jordan in 
the 1850s-1860s. 

2.2. Every Galois field is a Galois field ( 1893) 

Let us now take a doser look at Moore's lecture at the 1893 Mathematical 
Congress of the World 's Columbian Exposition [Parshall & Rowe 1994, p. 296-
330]. The issues the author tackled were those associated with the con
tinuation of the lists of simple groups that had been established succes
sively by [Hôlder 1892] up to order 200 and by [Cole 1892] up to the order 
500.67 For the purpose of continuing the list up to 600, Cole had putto 
the fore a simple group of order 504 (i.e., PSL2 (23)). Moore showed that 
Cole 's group-as well as a simple group of order 360 he had introduced in 
1892-belonged to a "new doubly infinite" system of simple groups (i.e., 
PSL2 (pn)) [Parshall 2004, p. 264]. This new class was introduced as a gen
eralization of the class of groups of unimodular binary linear fractional 
substitutions mod p (i.e., PSL2 (p)) :68 

., ai+ b . . 
z = -- w1th ad - be = l. 

ci+ d 

The extension of the system of indices from p elements to pn elements was 
based on the introduction of the notion ofa "field" as a "system ofsymbols" 
defined by "abstract operational identities" of addition and multiplication. 
Moore then pointed out that Galois had "discovered an important gener
alization" of the field of "incongruous classes" of integers mod p, i.e., the 
"Galois field" of incongruous classes of polynomials F modulo p and mod
ulo a given irreducible integral polynomial f of degree n. 

A first version of Moore's lecture was published in 1893. A second 
revised version would be published in 1896 in the proceedings of the 
congress. In the first version, Moore had noted that: "it should be re
marked further that every field of order s is in fact abstractly considered 
as a Galois field of order s" [Moore 1893, p. 75]. Moore provided nei
ther any proof nor any further details about this remark until the second 
version he completed in autumn 1895 [Moore 1896, p. 242]. But in 
the meantime, Burnside dealt in 1894 with exactly the same issue of the 

67 Except for the orders 360 and 432 which Frobenius dealt with in 1893. 

68 PSL2 (p''), p prime. 
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simplicity of PSL2 (pn). Drach gave an abstract definition to "Galois imag
inaries" [Borel & Drach 1895, p. 343-349]. Moreover, [Weber 1893b; 
1895-1896] and [Hilbert 1894] claimed to lay new ground on Galois's 
theory of equations by appealing to Dedekind's concept ofKorper.69 

What was particular to Moore's congress paper? The focus of the first 
version was on the proof of the simplicity of PSL2 (p1') on the model of 
the case of PSL2(P) treated in [Klein & Fricke 1890, p. 419-450]. Along
side with [Holder 1889a], the textbook of Klein and Fricke was actually 
the main bibliographie reference ofMoore's paper. Not only had Cole au
thored the references to the simple groups investigated by.Jordan [Moore 
1893, p. 74], but most other references had been taken from the Klein
Fricke textbook.It is likely that Moore had not read [Gierster 1881] closcly, 
and had not read [Serret 1859; 1866] at all. Moore even suggested that 
both mathcmaticians dealt only with the case n = l, while in fact they used 
Galois imaginaries in some parts of their works [Moore 1893, p. 76]. 

Moreover, even though the relevant works of [Mathieu 1860, p. 38), 
[Mathieu 1861a, p. 261] on linear fractional substitutions and number
theoretic imaginaries were identified precisely by [Gierster 1881, p. 330], 
Moore did not mention Mathieu until 1895 when he would add a last
minute note to the revised version of his paper [Moore 1896, p. 242]. 
Mathieu had nevertheless investigated various aspects of PSL2 (pn), and 
had already introduced Cole's group of order 504 (with no concern about 
the issue of simplicity). 70 

Had Moore built his 1893 lecture on the four pages Klein and Fricke 
had devoted to Galois imaginaries? Actually, his use of the expression Ga
lois theory indicates that Moore had certainly read.Jordan's Livre L More
over, the formulation he gave of Galois fields pointed to the extensive de
velopment of [Serret 1866]. Indeed, both [Klein & Fricke 1890] and Uor
dan 1870] were faithful to Galois's original presentation in focusing on the 
fact that GF(pn) ~ Fp(j). In contrast, and as has been seen in the pre
vious section, Serret had developed an arithmetic approach to GF (pn) as 
Fp (X)/ (f (x)). 

69 On Galois theory in Weber's Lehrbuch, see [Kiernan 1971, p. 137-141]. For a com
parative studywith [Weber 1893b], see [Corry 1996, p. 34-45]. 

70 In 1861, Mathieu had used the threefold transitive group PSL2 (pn) for introduc
ing a five fold transitive group on 12 letters. He had also announced the existence of 
a five fold transitive group on 24 letters which he would eventually introduce in 1873 
(i.e., the Mathieu groups M12 and M24). 
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Galois's (or Jordan's or Klein's and Fricke's) presentation was the one 
that was actually helpfol for the group-theoretical purpose of Moore 's pa
per. But Moore turned Galois upside down. On the one band, what he 
designated as a Galois field was Serret's concrete fonction field represen
tation. On the other band, the notion of abstract field was actually close 
to Galois's initial presentation. The statement that a finite field can be ab
stractly considered as a Galois field actually expressed the identity between 
two points ofviews on the same object, as had already been done by [Ser
ret 1866, p. 179-181]. It was quite close to stating that every Galois field 
(in the sense of Galois) is the abstract form of a Galois field (in the sense 
of Serret). 

The relation of abstract fields to number-theoretic imaginaries was anal
ogous to the relation between classes of abstract simple groups and the 
representation of a given simple group. On the one band, because irre
ducible polynomials mod p "do exist" as Moore claimed, Serret's approach 
provided a construction of a field of pn elements [Moore 1893, p. 75], i.e., 
"an existence proof' of the abstract field [Moore 1896, p. 212]. On the 
other band, the notion of abstract field was a normal interpretation of Ga
lois's 1830 Note in the context of the considerations on the symbolic laws of 
complex numbers and associative algebras that had been developed since 
the 1870s ([Hawkins 1971, p. 244-256], [Parshall 1989, p. 226-261]).71 

Klein-Fricke had indeed considered Galois imaginaries as complex num
bers ajn-I + bjn-2 + • • • + l. Commutative systems of hypercomplex num
bers were typically investigated by the consideration of the minimal poly
nomial of the system. In the case of finite fields, the minimal polynomial 

was of the form xPn-l - l = 0 as Moore would prove in 1896. 
In short, Moore had stated that finite abstract fields can be represented 

as fonction fields. In contrast, this statement had no relation with Galois 
fields in the sense of field extensions and Galois groups. In the framework 
ofWeber's presentation ofDedekind's Galois, Moore's "Galois fields" were 
both "Endlicher Kôrper" and "Congruenz Kôrper" but they were not "Ga
lois 'sche Kôrper." 

Recall that the introduction of abstract Galois fields was not the initial 
aim of the 1893 lecture. But as a result, Moore nevertheless established a 
direct relation between [Serret 1866] and [Klein & Fricke 1890]. In do
ing so, he had jumped over more than twenty years of the development 

71 ln the tradition of investigations on associative algebras, [Borel & Drach 1895, 
p. 343-350] and [Moore 1895a] both provided tables of compositions of number
theoretic imaginaries. 
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ofmathematics. In the framework ofKronecker's 1882 Grundzüge, Serret's 
"fonctions modulaires" should have been understood as "modular systems" 
on "domains of rationality" [Goldstein & Schappacher 2007b, p. 83]. For 
instance, [Holder 1893] resorted to Kronecker's framework to formulate 
Galois imaginaries. But Jordan seems to have been an alternative reference 
to Kronecker in the 1890s as is illustrated by the parallel evolution of the 
works of Moore (and later Dickson) and Burnside who would bath con
sider successively PSL2 (p), PSL3 (p), PSLin (p), and eventually GL,, (p). 

But unlike Burnside who mastered the relevant references to the works 
of Joseph Gierster, Serret,Jordan, and Mathieu, Moore seems to have been 
lost in a fog of old French works. What Mathieu had done exactly on Ga
lois fields was especially problematic.72 When Moore referred to the lat
ter for the first time, he promised he would devote a subsequent paper to 
"point[ing] out the exact point of contact [of his works] with Mathieu's 
results" [Moore 1895a, p. 38]. But no such paper was ever published and 
Moore eventually settled for the addition of a short allusive note to the re
vised edition of the congress paper. 

As will be seen in greater detail later, the main problem of Dickson' s 
thesis was to specify the relations between the works of Jordan and Math
ieu on linear groups in Galois fields. Dickson's close reading ofJordan's 
Traité thus eventually resulted from the investigation of the collective 
dimensions Moore's Galois fields had accidentally bumped into in 1893.73 

We have seen that Moore had indeed resorted to Klein's mediation of a 
longstanding French tradition. But as for the circulation of either linear 
fractional substitutions or number-theoretic imaginaries, Serret's Cours 

played a much more important role thanJordan's Traité. Moreover, Moore 
and Dickson initially appealed to the Traité as an element of continuity 
between the works of Mathieu and those of Klein and his followers. This 
situation provides the opportunity to question further how specific the 
Jordan-Galois relation had been considered to be, in the context of the 
institutionalization of group theory. 

72 The 1893 version of the congress lecture was supposed to be followed by a more 
complete publication in Mathematische Annalen. But this did not happen and Moore 
published instead a paper on triple systems. 
73 One of the main results of Dickson's thesis was to generalize Moore's doubly
infinite system of simple groups to the triply-infinite system SLm (pn)/Z with Z the cen
ter of SLm(Pn) and (in,n,p) cJ (2,1,2) or (2,1,3) [Parsha112004,p.265]. 
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2.3. jordan's Galois in a continuous line of development 

It must first be pointed out that the crucial role Hôlder gave to composi
tion series had not resorted to the specific features ofjordan's Galois. Fac
tor groups had been presented as fondamental notions of"pure group the
ory," i.e., as autonomous from their "applications" to the "algebra" of equa
tions [Hôlder 1889a, p. 28]. Such a distinction was actually traditional. 
Apart from Jordan 's Traité, a dear-cut separation between substitutions and 
equations had indeed structured most presentations of the theory of sub
stitutions sin ce th ose of Betti and Serret. 

Hôlder thus presented Jordan's composition series as an element of 
continuity between the longterm development of the theory of substitu
tions and theworks of [Kronecker 1882], [Netto 1882], [Klein 1884], and 
[Dyck 1882]. Moreover, he actually appealed to the relation Jordan-Galois 
to reorganize lines that had diverged in the 1880s. Hôlder began his paper 
by painting to those aspects of the works of Kronecker or Klein to which 
he would appeal for the legacies of Abel and Jordan. Pure group theory 
was developed by following Walther von Dyck or Klein. Galois theory was 
based on Kronecker's Grundzüge. 

In the 1890s, a recurrent discourse praised the "unity" and the "unify
ing force" of group theory. On the one hand, the landscape nevertheless 
remained fragmented, as is illustrated by the various approaches to groups 
presented at the 1893 Chicago congress [Parshall & Rowe 1994, p. 309-
331]. But on the other hand, the process of institutionalization of fini te 
group theory gave the actors a free hand in dealing with the legacies 
of prominent authors of the 1880s such as Kronecker, Klein, and Lie. 74 

Shared references concerning the roles of earlier actors such as Jordan 
and Galois were adopted on a global scale: to Galois was attributed the 
distinction between simple and compound groups, tojordan the general
ization to composition series. Even Frobenius, who had rarely referred to 
Galois until then, eventually attributed the classification of simple groups 
of order less than 60 to Galois [Frobenius 1893, p. 337]. 

74 For other examples of synthesis between the works of Kronecker, Klein andjor
dan's linear groups and congruences, see [Bolza 1891], [Borel & Drach 1895], [Vogt 
1895], [Pierpont 1897]. 
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The structure of this Galois-Jordan relation had been initially putto the 
fore byJordan himself Uordan 1870, p. vii]. As we said before, this Galois
Jordan relation presented the Traité as an element of continuity with pre
vious works on substitutions. Severa! aspects of the Traité were indeed in 
such a continuity, such as the descriptions of specific substitution groups.75 

But when Jordan dealt with Galois's second application, the classes of 
groups involved were always in relation with one another through the 
method of reduction. On the contrary, both Holder and Frobenius aimed 
at a systematic determination of groups of given orders, e.g. the groups of 
orders composed of distinct prime factors [Frobenius 1893], or groups of 
square free order [Holder 1895b]. Groups of more complex orders were 
composed of such special groups [Holder 1895a]. When they investigated 
solvable groups, they appealed to the Sylow theorems and not to Jordan's 
method of reduction [Frobenius 1893, p. 339]. Following Holder, Moore 
introduced his 1893 paper by presenting the composition series of ''.Jor
dan's decompositions of certain linear groups" as an important tool for 
finding simple groups "by the principle that the quotient-group of any two 
consecutive groups in the series of composition of any group is a simple 
group" [Moore 1893, p. 74]. 

In a word, even thoughJordan's specific method ofreduction was ini
tially attached to Galois's second application, in the mid-1860s, it was no 
longer perceived that way in the 1890s. On the contrai-y, it was consid
ered as an element of continuity with other lines of development such as 
Cayley and Holder's abstract groups or the issue of the determination of 
groups of a given of order, which pointed to both the legacies of the prob
lem of the number of values of fonctions and to local approaches such 
as the path involving combinatorial tactics that had developed in Great 
Britain [Ehrhardt 2007, p. 329-352]. For instance, the Galois groups, i.e., 
the groups of the modular equations for transformations of order 5, 7, and 
11, were the simple groups of orders 60, 168, and 660. They fell into the 
class of groups of orders ½P(P2 - l) (p > 3). In 1893, Moore aimed to 

generalize them to the doubly infini te system ½Pn (p2n -1) (p > 2, (p, n) i= 
(3, l) ), or pn(p2n - l) (p = 2, n > 1). 

It is therefore necessary to establish a clear distinction between, on the 
one hand, the particular features ofJordan's approach to Galois's second 
application, and on the other the inscription of the Traité in the collective 

75 In the 1890sJordan would be presented as a specialist of primitive groups on the 
model of the descriptions that were given of the "contributions" of contemporary ac
tors by relating them to specific kinds of groups [Frobenius 1893, p. 337], [Miller 
1898, p. 238]. 



SELF-PORTRAITS WITH ÉVARISTE GALOIS 327 

genealogies of group theory. Jordan's Traité had two facets that did not 
have the same background and were not to have the same circulation. 

2.4. A specific image of Galois in Jordan: linear groups in Galois fields 

As we have seen, Moore first consideredJordan's Traité as an element 
of continuity in a line connecting Klein to Galois through Serret, Math
ieu, and Gierster. A second step was the discontinuous circulation of the 
specific features of the image of Galois presented by Jordan.76 

In 1894-1895, Moore published two papers closely related to his 1893 
lecture. The first connected the groups of automorphisms of an abelian 
group of order 23 and of type ( 1, 1, 1) to the simple linear group of 168 
elements, i.e., PSL3 (r2) [Moore 1894, p. 65]. As was already the case with 
Galois fields, Moore's approach can be understood as shedding new light 
on older works. We have indeed seen that linear groups had been pre
sented as originating from abelian groups of type (1, 1, ... , l) inJordan's 
Traité. This traditional dimension of the problem might actually be the rea
son why, about nine months earlier, Burnside proved the more general re
sult that the group of automorphisms of the abelian group of pn elements 
of type (1, l, ... , 1) is isomorphic to GL 11 (p) [Burnside 1894, p. 139].77 

Exactly the same theorem constituted the core of Moore's 1895 "Con
cerningJordan's Linear Croups." This paper was presented as a demon
stration of the efficiency of Galois fields in group theory; it concludcd with 
tables of primitive elements of Galois imaginaries that had been computed 
by Moore's students. Arnongst them, Dickson might have becn already in 
charge of investigating the works of Mathieu. He had indeed identified 
that a group of substitutions on p11 letters introduced in [Mathieu 1861 b] 
was isomorphic to GL 11 (p). Moore concluded that "this seems to be the 

76 Indeed, even though Dickson had met withJordan in person during his one-year 
student trip in Europe, such had been also the case of other actors who had not de
veloped any specific approach to the Traité, such as Miller. 

77 This notion would be investigated independently by [Burnside 1896]. Neither 
Moore nor Burnside referred to one another at that time and it is unclear if their 
works were independent or were actually competing. The introduction of [Burnside 
1896] seems to have aimed at contradicting [Moore 1894; 1895a] in claiming that the 
notion of the group of automorphisms of a group was not a new concept. In 1896 
Moore sent to the London mathematical society a paper on the abstract definition of 
the symmetric group. Burnside introduced the paper he published on the same topic 
by claiming he had asked the Council of the society permission to withdraw his com
munication given the "more complete"" results stated by Moore. Burnside would not 
refer to either Moore or Dickson in his 1897 treatise and the other way round with 
[Dickson 1901]. 
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source from which Mr Jordan's linear groups were drawn" [Moore 1895a, 
p. 39]. 

Dickson's thesis would then especially investigate the relations between 
the works of Mathieu and.Jordan. It ended with a proof that GLn(P) is 
isomorphic to the Betti-Mathieu group, i.e., the set of all "quantics" (poly
nomials) of an analytic form cp as follows that represent a substitution on 
GF (pmn) ( considered as a vector space over GF (pn)): 

n-1 k 

cp(i) = I: a1,iP , for each ak E GF(pn). 
k=O 

As a result, Dickson's investigations raised some new interest in Mathieu's 
works on multiply transitive groups on Galois fields. These groups indeed 
provided classes of simple groups and it was through their investigations 
that the notion of Galois field circulated to the works of Miller and, from 
there, to [Séguier 1902; 1904a;b] and [Frobenius 1902; 1904]. 

Moreover, Dickson's very close reading ofjordan's Traité resulted in a 
flood of papers that systematically generalized results from linear substitu
tions on Fp to GF (pn) [Parshall 2004, p. 265]. 78 In Dickson 's 1901 mono
graph on linear groups, the theorem on the Betti-Mathieu group was the 
hinge between the first section on Galois fields, based on Hermite's 1863 
approach on "substitution quantics," i.e., the investigation of the analytic 
representation of substitutions ofless than 11 variables, and the second sec
tion on Jordan's n-ary linear groups. This new synthesis between the ap
proaches of Hermite and Jordan acted as an impulse for the development 
of the Dickson network both within the framework of the Chicago school 
and for other close readers of the Traité. 

2.5. Jordan's linear groups and the Galois of the Traité 

We shall now question how Jordan's Traité could have supported the 
discontinuous circulation of specific practices attached to the analytic 
forms of n-ary linear substitutions from Paris in the late 1860s to Chicago 
or London in the 1890s. More precisely, this section aims at investigating 
the structure of the parts of the book that referred to Galois. As we shall 
see, the image of Galois in the Traité was structured by a chain of succes
sive generalizations of special model cases, which ended with the method of 
reduction of general linear groups. 

78 The very close reading of Jordan by Dickson is illustrated by the latter's adoption 
of terminologies which had already becn much criticized such as the one of "abelian 
group" for what Hermann Weyl would designate as "symplectic groups." 
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The "Théorie de Galois" in Livre 1 was modeled closely on the cyclotomy 
of the indexing of the primitive roots of Gauss's "binomial congruence". 
When they retumed in Livre li, Galois imaginaries played the role of a model 
case for later generalizations of the problem of the analytic representation 
of substitutions. As we saw above, the origin of the linear group was pre
sented as a generalization of the special type of substitution underlying the 
indexingmethodsofLivreJ,i.e., (*) (i i+ l) or(**) (i gi). Moreover, 
Jordan's first theorem on linear groups stated that all linear substitutions 
can be expressed as products of substitutions of the forms (*) (transvec
tions) and(**) (dilatations) Qordan 1870, p. 93). 

l shall not detail here the "general" part of Livre Ill. Des irrationelles, 
i.e., what would be nowadays considered as Galois Theory.79 This was 
indeed not the main issue at stake in the line of development I follow in 
this section, and I shall therefore focus for now on the sole chapter of 
application of Livre Ill that Jordan related to Galois, namely "algebraic 
applications." Jordan had first considered the "commutative groups" 
associated with Abel's equations, whose roots are rational functions of 
one of them. Primitive abelian equations actually corresponded to cyclic 
groups, and Jordan quickly focused on the binomial equations xn = l and 
the associated cyclotomie equation of degree n = pa (p an odd prime). 

Al! the roots can then be expressed by a primitive root ~, ~2 , ~3 , ... , ~p•- 1
• 

The group of the equation is thus cyclic and generated by ( i i + 1). But 
the roots can also be reordered by the use of a primitive root g mod p1'", 
i.e., by the following sequence corresponding to (i gi), ;o = ~' ;1 = ;g, 

Y(J'2 y gip-I 
~2 = ½ b , • • • , spoc- l = Ç 

Second, "Galois equations" were introduced as generalizing Abel's in 
three different ways.8° First, they were irreducible equations of prime de
gree p ail of whose roots could be expressed rationally by two of them, an 
obvious generalization of the equations considered by Abel. Second, their 
groups were constituted of substitutions of the form ji ai+ aj, i.e., those 
originating from the cycles of abelian equations. Third, a special case of 

79 For a comparison between the first chapter of Livre III and Galois's Mémoire, see 
[Ehrhardt 2007, p. 393-431]. 

80 Jordan's "Galois equations" would be criticized by Netto in 1882 because of the 
confusion with the Galois resolvent. After Netto, these equations would be tradition
ally identified as "metacyclic equations," i.e., as generalizations of Gauss's cyclic equa
tions. 
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Galois equation was given by xP - A= 0, i.e., an obvious generalization of 
binomial equations.81 

Galois equations could thus be understood as the result of a chain of 
generalizations based on the relations between number-theoretic imagi
naries, cyclic groups, and linear groups. But from the standpoint of Livre 
III, the chain could now be considered the other way round. Indeed, the 
relation between abelian and Galois equations provided an application of 
the reduction of a group by the "adjunction of irrationals to the [associ
ated] equation." Given a Galois equation, let r.p1 be a fonction of the roots 
invariant by li i + Oll. Recall that such substitutions form a normal sub
group of the group li ai+ Olj (origin of the linear group). Let then t.pJ 

be adjoined to the Galois equation: the group of the equation is then re
duced to a cyclic group and the equation itselfinto an abelian equation; as 
for the group of the equation in t.p1, it is composed of substitutions li ail 
and is then a commutative group too. The initial Galois equation has even
tually been reduced to two abelian equations and its linear groups to two 
commutative simple groups. 

But the general theory of Livre III was itself a special model case for the 
next step of generalization. Livre IV opened with two theorems, the first 
stating that abelian equations of prime degree are solvable by radicals, the 
second, that "an equation is solvable by radicals if and only if its solution 
can be reduced to the one of a sequence of abelian equatîons of prime 
degrees" Uordan 1870, p. 386). The reduction of Galois equations into 
abelian equations had thus incidentally proved Galois's criterion. But Jor
dan did not state the criterion explicitly. The special case of the reduction 
of linear groups to commutative groups did not aim at imitating Galois's 
criterion, but instead at the following theorem, whichJordan designated as 
"the criterion of solvability": 

THÉORÈME IX. - Pour qu'un groupe L soit résoluble, il faut et il suffit qu'on 
puisse former une suite de groupes 1, F, G, H, ... , L se terminant par L, et jouis
sant des propriétés suivantes : l O chacun de ces groupes est contenu dans le 
suivant, et permutable aux substitutions de L; 2° deux quelconque de ses sub
stitutions sont échangeables entre elles, aux substitutions près du groupe précé
dent. Uordan 1870, p. 395]. 

81 Equations xi' - A = 0 provide an example of the criterion stated by Galois for 
solvable equations of a prime degree that their mots should ail be rational fonctions 
of two of them: consider a root of the equation xo and a pth roots of unity y: x1 = 
yxo, x2 = /xo, ... , Xp-l = yP-l xo. It is then obvions that any root can be expressed 

rationally by two of the roots. For instance, x, = x1 xi--r. 
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This theorem concluded the general part of Livre Jî/ Jordan contrasted 
it with the following result he attributed to Galois: 

THÉORÈME IV. - Pour qu'une équation soit résoluble par radicaux, il faut et 
il suffit que son groupe puisse être considéré comme dérivant d'une échelle 
de substitutions l, a, b, . .. , J, g, telles: l O que chacune d'elles soit permutable 
au groupe dérivé des précédentes; 2° que la première de ses puissances succes
sives qui sont contenues dans le dit groupe soit de degré premier. Uordan 1870, 
p. 389]. 

No such theorem can be found in Galois's works, and Théorème IV ac
tually seems to be Jordan's interpretation of Galois's discussion of the re
duction of a group through the adjunction of roots to an equation [ Galois 
1846, p. 427]. But while Theorem IV resorted to substitutions and compo
sition series (with quotient groups that are abelian and simple, i.e., Fp), 
Theorem IX focused on groups and concerned any chain of normal sub
groups with quotient groups that are abelian. Jordan claimed his theorem 
laid the ground for a method by which one would "rise progressively to the 
knowledge of [solvable] groups," i.e., the problem to which all the rest of 
the treatise would be devoted.82 By the use ofthis method, "each new step 
toward the solution will make the field of research narrower. Such a sim
plification would not take place if one took as a starting point Theorem IV 
as Galois did" Uordan 1870, p. 396].83 

Let us now corne to some conclusions about the structure of the view 
of Galois provided by the Traité. Recall thatJordan introduced the linear 
group as a generalization of the special case of the cydic substitutions asso
ciated with number-theoretic imaginaries. Later on, when the notion of a 
group ofan equation had been introduced, the origin of the linear group 
could be considered as a model for the generalization of cyclotomie equa
tions to Galois equations. Special cases were both models for the general the
ory and applications of i t. Each link in the resul ting chain of generalizations 
was providing a "higher point ofview" toward the previous links. In Livre 
IV, the relation between linear substitutions (i ai+ b) on the one hand, 
and the two forms of representations of cycles (i i + I) and (i gi) on 
the other hand, would eventually provide a rnodel for Theorem IV. 

But the theoremJordan attributed to Galois was not the last step of the 
chain of generalizations. The last link consisted in turning substitutions 

82 Jordan distinguished between three types of problems: A. The reduction from 
maximal solvable transitive groups to maximal solvable primitive groups and thereby 
to B. Maximal solvable groups in GLn (p), which included the particular cases of C. 

Maximal solvable groups in Sp2n (p) or otn (2) and O2n+l (2). See [Dieudonné 1962]. 

83 See also (Jordan 1867a, p. 270] 
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into groups and Theorem IV into Theorem IX. In a sense, Theorem IX crystal
lized the chain structure of Galois in the Traité's. Its great generality was 
also legitimized by its application to an object of investigation. As Jordan 
claimed, :,pecial solvable equations were indeed considered as subclasses of 
general ones: 

Supposons que nous ayons formé, pour un degré donné, le tableau de 
tous les groupes résolubles et transitifs les plus généraux. Chacun d'eux 
caractérisera un type distinct d'équations irréductibles résolubles par radi
caux. Les groupes résolubles et transitifs, non généraux, caractériseront des 
types d'équations plus spéciaux, et contenus dans les précédents comme cas 
particuliers. Qordan 1870, p. 396]. 

The chain of generalizations which structured the Traité could thus be 
reversed in turning spccial model cases into applications. For instance, 
Livre IJ's origin of the linear group now appeared as a crucial step for 
the determination of solvable transitive groups. After having reduced 
the problem from solvable transitive groups to solvable primitive groups, 
Jordan indeed showed that a minimal normal subgroup A of a solvable 
primitive group G is commutative and isomorphic to sums of cyclic groups 
(i.e., of type (1, l, ... , l) ). But Gis actually acting on A by linear substi
tutions: it therefore corresponds to the general linear group, originating 
from A. 

Most of Litwe IV was actually devoted to the relations between the 
general linear group and its special subgroups, such as the symplectic 
group. Theorem IX thus eventually rendered legitimate a linear n-variable 
approach to traditional issues in the framework of the problem of the 
number of values offunctions, such as enumerating groups of given order 
Uordan 1870, p. 386], a claimJordan had already made in his thesis in 
1860 with no reference to Galois or to the problem of the solvability of 
equations. 

Conclusion 

We have seen that.Jordan started to work on Galois after he had intro
duced the general linear group in 1860. It was at least partly to legitimize 
his general approach to substitutions that he then commented on the Sec
ond memoir. After 1864,Jordan transferred the essential character that his 
thesis had attributed to the relations of Poinsot's theory of order to the re
duction of groups. The idea that the theory of order had a specific dimen
sion was originally based on the connections between algebra and number 
theory provided by cyclotomy [Boucard 2011, p. 71-99). But Poinsot also 
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characterized the theory of order as having a relation to algebra analogous 
to the relations between Gauss's higher arithmetic and usual arithmetic, 
or that between analysis situs and geometry. The issues Jordan tackled be
tween 1864 and 1868 remained very coherent with this framework. In ad
dition to the topics related to Galois, i.e., the groups of algebraic equa
tions, the classification of the irrationals, and higher congruences,Jordan 
published memoirs on the symmetries of polyhedra, crystallography, the 
"groups of motions" of solid bodies, and the analysis situs of the deforma
tion of surfaces. 

The core of the specificity of Jordan's method of reduction was the 
essential nature it attributed to the relations between classes of abjects 
(groups, linear groups, primitive groups, etc.). These classes formed 
chains from the general to the special such as the one that runs through 
the architecture of the Traité. We have seen that Jordan, unlike Serret, 
had focused on the relational nature of the Galois's imaginaries, i.e., on 
the cyclic groups CF (pn) *. The se groups were not only the smallest in 
the chain of reduction, but the reduction oflinear groups into two forms 
of cyclic groups also provided a model for the chain reduction itself. In 
the opening of the notice he wrote in 1881 for his application to the 
Académie, Jordan insisted that mathernatics is not limited to magnitudes 
or quantities but that it actually deals with "order" as well as "situation." 
Referring to Poinsot,.Jordan claimed that besicles "ordinary Algebra" one 
finds the "Algèbre supérieure" that is based on "the theory of order and of 
combinations" Qordan 1881, p. 7-8]. 

A5 we have seen, the attribution of an essential nature to relations un
derlying classes of abjects was nota perspective Jordan had taken directly 
from Galois. It was inscribed in a line of developments involving Poinsot 
and Gauss especially. Echoes of the longterm dimension of the cyr:lotomic 
relations underlying higher congruences still resounded at the turn of the 
century, for example when Paul Bachmann considered that "The theory 
of congruences bases itself substantially upon the fondamental concept 
of mathematics, which is already the foundation of Poinsot's method, the 
concept of group" [Bachmann 1892-1905, trans. Miller, 1903, p. 89]. 

We have seen also that.Jordan's image of Galois was notas connected to 
equations as Jordan had claimed it was. First, the 1860 thesis had originally 
been presented explicitly as more general than its application to equations. 
Second, Jordan actually applied his method of reduction of linear substi
tutions to several other contexts, e.g. differential equations, bilinear and 
quadratic forms etc. Moreover, we have seen that the later circulation of 
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Jordan's Galois in Dickson network was not connected to the solvability of 
equations. 

Let us conclude this section by returning to Chicago. The introduc
tion of Galois fields in 1893 might have appeared somewhat chaotic at first 
sight. But, on the one hand, Moore's approach was supported by a long 
tradition dealing with substitutions and number-theoretic imaginaries. On 
the other hand, Moore's move was coherent with the contemporary reor
ganizations of the legacies of Klein and Kronecker in fini te group theory. 
In that same year of 1893, Weber appealed to Dedekind's Kôrper to lay new 
grounds for "Galois's theory of general equations." In the 1896 edition of 
his congress paper, Moore noted the equivalence of the terms "Field" and 
"Endlichcr Kôrper." But we saw that the algebraic number aspect of Galois 
theory had not played any role in Moore's approach. Moreover, the notion 
of Galois field did not have the same evolution as that of Kôrper. Moore 
repeatedly insisted that the "purely abstract form" of Galois fields "would 
seem to fit best for immediate use wherever it can with advantage be in
troduced" [Moore 1896, p. 212], i.e., the investigation of ''.Jordan's linear 
groups" [Moore 1895a, p. 38]. As a result, he attributed to Jordan a more 
important role than Hôlder had in 1889. 

When Hôlder reorganized the legacies of Kronecker and Klein on be
half of Jordan-Galois, the Galois-theoretical part ofhis paper had remained 
faithful to Kronecker. But Moore's Galois field blurred Hôlder's distinc
tion between pure group theory and algebra. When he eventually referred 
to Kronecker in 1897 by appealing to [Molk 1885], Moore presented mod
ular systems as a "concrete purely arithmetic phrasing" of abstract Galois 
fields [Moore 1898, p.281]. In 1898, the bibliography of Dickson's Report 
included the works of Schônemann (as well as the ones of Pellet in the 
1880s), thereby illustrating the efforts that had been done for making the 
collective dimensions of both Galois fields and linear groups precise. But 
Dickson's Report insisted on the autonomy ofabstract Galois fields in linear 
group theory in connection with number theory. 

Linear groups in Galois fields eventually reorganized lines of devel
opment in a no less radical way than Weber and Hilbert did when they 
celebrated Dedekind's approach. References to Galois played a key role 
in the reorganizations based on the notions of field and Kôrper. Both had 
jumped over Kronecker on behalf of two alter egos, Jordan and Dedekind. 
In Moore's 1893 congress pape1~ Dickson's 1898 Report, or the latter's 
1901 Linear Croups, the reference to Jordan-Galois played a role analogous 
to the reference to Dedekind-Galois in Weber's 1893 "Die allgemeinen 
Grundlagen der Galois'schen Gleichungstheorie," the 1895 Lehrbuch, or 
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Hilbert's 1897 Zahlbericht. In the legacy of the essence of the theory of 
order, Galois fields came to represent an abstract algebraic alternative to 
Weber-Hilbert's arithmetic-algebraic Kôrper. 

On the contrary, authors such as Kronecker, Pellet, or Bachmann, who 
stressed the number-theoretic nature of the problem of Galois's theory of 
equations, actually rejectedJordan's Galois. As we shall see in the next sec
tion of this paper, the references to Galois that circulated in the 1870s and 
1880s in connection with Jordan's Traité had little relation to cyclotomy, 
number-theoretic imaginaries, or general linear groups: they mainly re
ferred to the second Traité's Galois that could be found in Livre III Des ir
rationelles. 

3. THE GALOIS OF UVRE m (1868-1890) 

We shall now turn our attention to the two groups oftexts in which one 
could find most references to Jordan and Galois between 1870 and 1890, 
i.e., the Klein and Kronecker networks. As we shall see, almost no refer
ence could be found in these groups to Jordan's image of Galois that we 
have seen in the two previous sections. On the contrary, most texts referred 
to a second Galois of the Traité, one developed by Jordan after 1867. 

This second Galois of Jordan was the result of a series of notes and mem
oirs thatJordan published between 1867 and 1870. Amongst these, some 
concerned general sections of the forthcoming Traité, such as the commen
taries on Galois's "Mémoire" that laid the ground for the general section of 
Livre III In his first commentaries,Jordan aimed at presenting the adjunc
tion of a root "to an equation" in the framework of his 1864 theorem on 
the chain reduction of solvable groups Qordan 1865, p. 774]. But in 1866, 
Jordan was more ambitious in arguing that his theorem could be "very use
fui for the classification of algebraic irrationals." This, he claimed, was be
cause the number oflinks in the reduction "gives a very distinct definition 
of the degree of irrationality of the roots of a given equation" Qordan 1866, 
p. 1064]. 

Other papers, as well as most ofJordan's correspondence between 1867 
and 1870, were devoted to special equations such as modular equations or 
the equation of the 27 lines on a cubic.84 These equations were presented 

84 Jordan especially corresponded with Brioschi and Cremona about the relations 
between the equation of the 27 lines and the equation of the trisection of the periods 
of abelian functions. 
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as applications of Livre 1/J's "higher point ofview on the classification and 
the transformation of irrationals" Qordan 1870, p. V]. 

In Livre IJI,Jordan thus placed substitution groups in a framework com
pletely differcnt from that of the theory of ordcr to which he had originally 
appealed. While no consideration of polyhedra, crystallography, analysis 
situs, or groups of motions appeared in the Traité, Jordan's Livre III at
tributed an important role to Alfred Clebsch's geometric approach and 
to Hermite's works on modular equations. As we shall see,Jordan's daim 
to con tri bute to the development of a higher point of view on irrational 
numbers/functions aimed to situate the Traité in a preexisting collective 
interpretation of Galois's works. Therefore Livre 111's notion of irrational 
not only played a key role in the early circulation of the 1raité's image 
of Galois but also raised obstacles to that circulation, for example with 
Kronecker's hostility to Jordan's focus on substitution groups. 

3.1. Kronecker's anti-Galois: equations with affects 

The identity of the group of texts under consideration here is close to 
what one could designate as Kronecker's school in reference to the role 
the latter had played in Berlin from the end of the 1870s to his death in 
1891. Not only were the main authors of this network all former students 
of Kronecker, but most of the texts were published either in Crelle's (i.e., 
Kronecker's) Journal or at the Academy of Berlin. The specific relation 
to Galois that circulatcd on the local level of the Kronecker network was 
indeed not shared at the largcr scale of the Grundzüge's influence. Making 
little reference to Galois and only to specific aspects of the latter's work 
was one of the characteristics of the group. Frobenius, for instance, would 
make almost no reference to Galois until the beginning of the 1890s. As 
for Adolf Kneser and Kurt Hensel, they would adopt their master's notions 
of Galois genus, Galois equation, and "equations with affects." 

Since the early 1850s, Kronecker usually alluded to Galois by way of 
a generic reference to "Abel and Galois." But in his letter to Dirichlet 
of 31 January 1853, Kronecker claimed that it was impossible to fathorn 
the "truc nature" of solvable eguations "from Galois's investigations. For 
Galois only addresses the first task to find the 'conditions of solvability', 
whereas Abel also takes into account the other one, 'to find ail solvable 
equatîons' ." [Petri & Schappacher 2004, p. 233). A similar daim is made 
in the French translation of [Kronecker 1853] added to the second edition 
of Serret's Algèbre [Serret 1854, p. 561]. 
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One will thus investigate equations of a given degree on the model of 
the explicit expressions Abel had given to the roots of the quintic. But in
stead of looking for algebraic fonctions of the coefficients as in the special 
case of solvability by radicals, the general problem consisted in finding the 
"most general" fonction by which the roots of any equations of a given de
gree could be expressed. 

In 1853, Kronecker stated what is nowadays designated as the Kronecker
Weber theorem,85 i.e., that the roots of abelian equations with integer 
coefficients can be expressed as rational fonctions of the roots of unity. 
The theorem was explicitly presented as aiming at separating the domains 
of algebra and of number theory in the investigation of the essence of 
the quantities associated with algebraic equations. Later on, Kronecker 
appealed to the complex multiplication of elliptic fonctions for solving 
the general quintic. In 1858, he showed that the modular equation of de
gree 7 contained a polynomial fonction of degree 7 in 7 variables, which 
took only 30 values instead of 7! for a general equation of degree 7. This 
property was called the affect of the equations. As has been seen earlier, 
Hermite considered in 1858-1859 that the affect of modular equations 
characterized a specific order or irrationality. 

Kronecker's approach was therefore not very compatible withJordan's 
focus on non-effective procedures on classes of groups and on equations 
of arbitrary degree. Jordan's well-known qualification of Kronecker's re
sults on equations as "the envy and the despair" of other mathematicians 
might thus not have been the most challenging part of the Traité's Préface 
to Kronecker: 

Nous aurions désiré tirer un plus grand parti que nous ne l'avons fait des 
travaux de cet illustre auteur sur les équations. Diverses causes nous en ont 
empêché : la nature tout arithmétique de ses méthodes, si différentes de la 
nôtre ; la difficulté de reconstituer intégralement une suite de démonstrations 
le plus souvent à peine indiquées; enfin l'espérance de voir grouper un jour en 
un corps de doctrine suivi et complet ces beaux théorèmes qui font maintenant 
l'envie et le désespoir des géomètres Uordan 1870, p. VIII]. 

In 1874, a public controversy occurred between the two mathematicians 
on the status of substitution groups. This quarre! eventually turned into an 
opposition between the values Jordan and Kronecker attributed to arith
metic and algebra. Kronecker in particular argued that it was the duty of 
algebra to serve arithmetic [Brechenmacher 2007a]. 

85 On the developments of Abel's approach by Malmsten (1847), Luther (1847), 
Kronecker, Sylow and Weber, see [Garding & Skau 1994], [Petri & Schappacher 2004, 
p. 235-236], and [Edwards 2009]. 
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Kronecker and Netto were nevertheless close readers ofJordan's Traité. 
But unlike Jordan's Livre III, Kronecker clearly separated the arithmetic 
foundational issues on algebraic quantities he dealt with in his 1882 
Grundzüge from the substitutions to which Netto devoted a monograph 
in 1882. When they were dealing with substitutions, both Kronecker and 
Netto appealed to the traditional point of view of the problem of the 
number of values of fonctions, i.e, to substitutions acting on fonctions of 
n variables [Kronecker 1882, p. 34]. It was indeed to Cauchy that Netto 
attribued the first systematic investigation of the theory of substitutions. 
Moreover, the notion of Galois group of an equation was presented as 
a secondary notion as compared to Kronecker's "concrete" notions of 
Galois equation and affects. 

As opposed to the formai nature he ascribed to classes of objects such 
as groups of substitutions, Kronecker aimed at building a concrete, i.e., ef
fective, arithmetic theory of algebraic quantities. The emphasis was laid on 
Abel's considerations on rational fonctions with integer coefficients, from 
which Kronecker claimed he had extracted the notion of rational domain 
in 1853 [Kronecker 1882, p. 3]. Galois's approach was mostly discussed in 
relation to the notion of genus domain, i.e., the consideration of an alge
braic fonction on the natural rational domain. This notion could be un
derstood by appealing to Galois 's "technical expression of adjunction" the 
author noted [Kronecker 1882, p. 8]. But for Kronecker, the "algebraic 
principles of Galois" had to be grounded in an arithmetic reformulation 
of the traditional notion of Galois resolvent [Kronecker 1882, p. 32]. 

Let c1, c2, ... , Cn be some quantities in a rational domain (R', R,11 ••• ) 

and consider an "irrational equation" xn - c1xn-I + c2xn- 2 - · · · ± Cn = 
0, whose roots /;1, /;2, ... , i;n are thus algebraic fonctions of the quantities 
R. Let fi (x1, x2, ... , Xn), h (x1, x2, ... , Xn), •.. , fn (x1, x2, ... , Xn) be the ele
mentary symmetric fonctions. Then /;1, /;2, ... , i;n are the solutions of the 
n equations : 

(k=l,2, ... ,n) 

Consider F(x) = 0, the n!th degree resolvent obtained by elimina
tion on the latter system, and let x be a fonction of n indeterminates 
u1, ... , Un 86 x = u1x1 + u2x2 + · · · + UnXn, then 

86 The adjunction to a domain ofsuch a quantity x, which is a linear fonction of n 
indeterminates, is Kronecker's way of obtaining what he called a "Galois genus" [Kro
necker 1882, p.35] 
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where r1, ... , rn are permutations on 1, 2, ... , n. The function F, with 
n! values, was the traditional Galois resolvent. But what Kronecker des
ignated as the Galois equation was the expression of the resolvent as a 
fonction of x and of the syrnmetric fonctions G(x,!1,h, ... ,fn) = O. The 
coefficients of this equation of the n! th degree were therefore concretely 
given by en tire fonctions of x and of indeterminates Ui with coefficients 
in the rational domain ( R', R,11 ••• ) • The consideration of an irreducible 
factor g of the Galois equation on the latter domain, 

g(x, Ul, ••• , Un) = II (x - Uq Çr1 - Ur2çr2 - • · · - UrnÇrn) 

was then equivalent to the consideration of "certain designated permuta
tions" for which the fonction g would remain "unchanged":87 

This constitutes the tremendous importance ofGalois's algebraic principle, 
to place at the basis of the investigation not the single equation but rather 
the system of equations which also defines the conjugate roots. Galois himself 
has recognized clearly that his new way of seeing algebraic equation makes it 
possible to abstract from each numerical equation the properties which alone 
are essential, and he has further expounded on this method which leads to true 
insight by showing how each special equation is characterized by a property 
which is independent of the values of the coefficients or roots, via its so-called 
"group of substitutions." However, it seems to me that Galois's theory may 
be given a further formai development by the slight modification here pre
sented, by which the abstract substitutions and their groups are replaced by the 
concrete functions which are invariant under a given group of substitutions. 
[Kronecker 1882, p. 34]. 

Genus domains were then presented as domains of fonctions of n in
determinates. Specific domains corresponded to special equations, i.e., 
equations whose resolvents split up arithmetically in irreducible factors. 
These equations were designated as "equations with affects." 

87 Hierin liegt die grosse Bedeutung des Galoisschen algebraischen Princips, anstatt 
einer einzigen Gleichung das die conjugirten Wurzeln gleichzeitig definirende Glei
chungssystem der Untersuchung zu Grunde zu legen. Galois selbst hat es klar erkannt, 
dass seine neue Auffassung der algebraischen Gleichungen es môglich macht, von 
jeder Zahlengleichung, die für die algebraische Theorie einzig wesentlichen Eigen
schaften, zu abstrahiren, und er hat diese zur wahren Erkenntniss führende Methode 
dadurch vollstândig dargelegt, dass er gezeigt hat, wie jeder speciellen Gleichung 
eine von der Werth-Bedeutung der Coefficienten oder Wurzeln unabhângige Eigen
schaft in der von ihm so genannten "Gruppe der Substitutionen" zukommt. Nur 
scheint mir, dass der Galoisschen Theorie noch eine weiter /ormaie Ausbildung durch 
die leichte hier eingeführte Modification zu geben ist, bei welcher an Stelle der ab
stracten Substitutionen und deren Gruppen die concreten bei einer Gruppe von Per
mutationen unverânderlichen Functionen behandelt werden. 
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Kronecker then distinguished between the approaches of Abel and Ga
lois as in the two sidcs of the following expression:88 

(C) 

To explain the fondamental difference between Galois's and Abel's treat
ment of algebraic equations one may start from the peculiar, "separated 
form" of the equations ( C). In fact, Abel stays with those rational fonction 
R', R,11 R1,11 ••• given or to be found with respect to the particular equation, 
which figure on the right hand sicle of the system ( C). Galois however-at least 
implicitly when he forms the group-abstracts from the particular equation at 
stake, only the theoretically relevant fonctions on the left hand side of the sys
tem ( C). It is true that, precisely because of this total abstraction, Galois misses 
one of the most interesting problems which Abel found, and also treated, in 
the theory of algebraic equations. This is the problem to write clown ail the 
equations of a fixed class with respect to a given domain of rationality. I want to 

go into this in detail here since it brings out the arithmetic nature of algebraic 
questions. [Kronecker 1882, p. 38] 

The corpus we have considered in this section has shown in particular 
that the circulation of Galois's theory of general equations between 1870-
1890 was neither related in an obvious way to the reception of the Traité 
nor to group theory nor even to algebra. Actually, Netto and Kronecker 
carefully distinguished between groups and the arithmetic dimension un
derlying "Galois's algebraic principles." As we shall see in the next section, 
while irrationals would corne with groups in Klein's Galois, this approach 
would nevertheless not be directly related to Jordan's Traité. 

3.2. Klein's Galois 

Both the works of Galois and Jordan have often been associated to 
Klein's approach on groups of transformations. But even though Klein 

88 An die eigenthümliche "separirte Form" der Gleichungen (C) lasst sich die Dar
Jegung des principiellen Unterschiedes der Abelschen und Galoischen Behandlung 
der algebraischen Gleichungen am besten anknüpfen. Abel bleibt namlich bei den 
durch die specielle Gleichung gegebenen oder zu ermittelnden rationalen Functio
nen R1, R,11 R1,11 ••• stehen, welche in dem System (C) die rechte Seite bilden, wahrend 
Galois, wenigstens implicite durch die Aufstellung der Gruppe, von dem speciellen 
Gleichungsproblem die theoretisch allein wichtigen Functionen auf der linken Seite 
des Systems (C) abstrahirt. Freilich entgeht Galois eben durch diese vollstandige Ab
straction auch eines der interessantesten Probleme, welches Abel in der Theorie der 
algebraischen Gleichung findet und auch behandelt. Es ist das Problem der Aufstel
lung aller Gleichungen einer bestimmten Classe für eincn gegcbenen Rationalitats
Bereich, und ich will dasselbe hier auch desshalb naher darlegen, weil dabei die arith
metische Natur algebraischer Fragen deutlich hervortritt, 
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and Lie had visitedJordan in Paris in 1870, and although both ofthem had 
read the Traité early on, Klein would nevertheless not appeal to Jordan's 
Galois before 1876-77 and he would actually never adopt it. 

Two forms of references to Galois must be distinguished. The first is 
the kind of general reference that could be found in the so-called 1872 
Erlangen program: "in Galois theory as it is presented for instance in 
Serret's 'Cours d'Algèbre supérieure' or in C. Jordan's 'Traité des substi
tutions', the real subject of investigation is group theory or substitution 
theory itself from which the theory of equations results as an application. 
Similarly, we require a theory of transformations, a theory of the groups 
producible by transformations of any given characteristics" [Klein 1893, 
p. 242]. Here, the reference to Galois theory aimed at legitimizing trans
formation groups as an autonomous su~ject of investigation, one which 
was developed by Lie. A second type of reference to Galois can be found 
in Klein's researches; as will be seen below, it pointed to Hermite's Galois. 

Most of the papers of the Klein network were published in the Jvlathema
tische Annalen, i.e., Klein'sjournal. The main authors were Klein, Brioschi, 
Bachmann, Weber, and Heinrich Maschke, as well as most of Klein's doc
toral students in the early 1880s, e.g. Dyck, Gierster, Ernst Fiedler, Georg 
Friedrich, Robert Fricke, Adolf Hurwitz, and Cole. But the Klein network 
also induded more unexpected authors such as Georges Halphen and 
Poincaré. The latter's sole reference to "Gallois" (sic.) in the 1880s was 
indeed related to the use Klein had made of the Galois resolvent of the 
modular equations as ·will be seen in greater detail la ter [Poincaré 1883]. 

On the one band, most of the references to Galois in the Klein network 
revolved around the "fondamental problem," which consisted in showing 
that the essence of the "irrational quantity" of the general quintic was es
sentially represented by the "icosahedron."89 The latter could be consid
ered as a polyhedron, a Riemann surface ( through the pr~jection of the 
sicles of the polyhedron on the sphere in which it is inscribed), an alge
braic form, an equation, a transformation group, or a substitution group. 
What Klein referred to as Galois theory after 1877 was involved in the dis
cussion of the "algebraic character" of the fondamental problem: 

[We have seen in a previous chapter that] we can consider the solution of 
our fondamental equation, from a function-theory point of view, as a general
ization of the elementary problem; to extract the nth root from a magnitude Z. 

89 For more details on the mathematics involved, see [Serre 1980), and Slodowy's 
preface to [Klein 1993). 
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The algebraic reflexions of the present chapter have then shown us that the irra
tionalities which are introduced by the equations of the dihedron, tetrahedron, 
and octahedron can be computed by repeated extractions of roots. The ikosahe
dral irrationality, on the contrary, has maintained its individual imf,ortance. Hence an 
extension of the ordinary theory of equations seem to be indicated. In the latter 
we are generally restricted to the investigation of those problems which admit 
solution by repeated extraction of roots. We shall now adjoin, as a further possi
ble operation, the solution of the ikosahedral equation, and ask whether, among 
the problems which do not admit of solution by mere extraction of roots, there 
may not be some for which this can be effected by the help of the ikosahedral 
irrationality. [Klein 1884, p. 112], translated in [Klein 1888]. 

The explicit aim of connecting various parts of mathematics would play 
a key role in the structure of Klein 's 1884 monograph. The latter especially 
aimed at linking "geometrical results of group-theory [ ... J with a definit.e 
region of recent mathematics, namely, with the algebra of linear substitutions 
and the corresponding theory of invariants. [The following chapters are des
tined to] effect the connection with the two other disciplines. These are 
Riemann 's theory ojfunctions and Galois '.s theory of algebraic equations" [Klein 
1888, p. 61]. This aim echoed the transversal role elliptic and abelian fonc
tions had played between the 1830s and 1850s in the field of research of 
arithmetic algebraic analysis [Goldstein & Schappacher 2007a]. But vari
ous lines of development had diverged in the 1860s and Klein's approach 
was especially based on Clebsch's geometrîc approach to the theory of in
variants. 

3.2.1. Klein 's first Galois: resolvents and modular equations (1870-1875) 

While Jordan had laid the emphasis on equations and substitutions, 
Klein would focus on forms, invariants and covariants. The background of 
Clebsch's geometrical approach to invariant theory as well as the latter's 
joint work with Gordan on applications of abelian fonctions to geometry, 
were nevertheless not unknown to Jordan. On the contrary, Livre IJI's 
"geometric applications" were especially based on the formulations (and 
reformulations) Clebsch had given to some problems of contact which 
involved substitutions oflines (e.g. the 27 lines on a cubic surface which 
had been discovered by Cayley and Salmon and investigated by Steiner, 
the double tangents of a plane quartic curve without multiple point, the 16 
straight lines on a quartic surface having a double conic) and symmetries 
of configurations of points (e.g. Hesse's 9 inflection points on a plane 
cubic curve lying on twelve straight lines, the 16 singular points on the 
surface of Kummer). 
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In 1869,Jordan daimed that the substitution groups attached to the spe
cial equations of geometry supported "an investigation of the hidden prop
erties of the given equation" Uordan 1869b, p. 656). Here the groups were 
nevertheless not usually introduced as Galois groups but by the invariance 
of some algebraic forms, such as the symplectic group Sp2,, (p) introduced 
by Jordan in 1869 as leaving invariant a nondegenerate altemating bilinear 
form. But Jordan aimed at illustrating the efficiency of the theory of sub-
stitutions in showing how it could be used to deduce some (known) geo
metric connections between special configurations of lin es [ van der Waer
den 1985, p. 126-131). By successive adjunctions of roots, the group of the 
28 double tangents (Sp5(2)) could indeed be reduced successively to the 
groups of the 27 lines (Sp 4 (3)) and of the 16 lines (Sp2 (2)). 

In 1869, Jordan also investigated some cases of reduction of degree of 
equations on the mode! of Hermite's investigations on Galois modular 
equations. He discovered that the reduction of the 80th degree equation 
of the trisection of abelian fonctions of four periods led to a group he 
had recognized as the one of the equation of the 27 lines Uordan 1869c, 
p. 865). This result conduded the "geometric applications" of Livre III 
Uordan 1870, p. 333], which Jordan connected to the "applications to 
transcendental fonctions" Uordan 1870, p. 365). When Cremona con
gratulatedJordan for his Traité in 1870, his letter was all about the theorem 
on the 27 lines. This theorem was indeed one of the main original results 
of Livre III and therefore played a key role for the legitimacy of the Traité 
as a whole as well as for its early reception [Brechenmacher 2012a] .90 

It was nevertheless not necessary to appeal to the notion of adjunction 
of roots for the decomposition of the groups of the geometric equations 
Jordan considered. As has been said before, these groups were usually in
troduced by geometric permutations or symmetries in relation to the in
variance of an algebraic form. The reductions of the groups thus usually 
appealed to interplays between the consideration offixed points (or lines) 
and factorizations of algebraic forms. But Jordan systematically associated 
equations with the substitution groups involved. A fixed point then corre
sponded to a factorization of the equation by the adjunction of a root and 
to the corresponding reduction of its Galois group. 

By contrast, when Klein first mentioned the name of Galois in 1871, he 
aimed at laying the general theory of equations on geometrical grounds. 

90 A later echo of the fundamental role of this theorem can be seen in Dickson's 
Linear Croups: even though Dickson was not much interested in applications, he nev
ertheless ended his book by stating and provingJordan's theorem. 
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He insisted particularly on the tension between the "abstraction" ofJor
dan's theory and its "applications," and proposed to discuss further the re
lations between the general substitution groups attached to equations and 
the groups of linear transformations introduced by algebraic forms that he 
and Lie had investigated in three previous publications [Rowe 1989]. A~ a 
result, Klein eventually avoided equations and focused on the invariance 
of algebraic forms. His Galois was therefore more in the legacy of the tradi
tional approach to the problem of the number of values offunctions than 
in the legacy ofJordan's Livre III. 

Later, in 1875, when Klein started to investigate the connections be
tween the icosahedron and the modular equation of degree 5, he referred 
to Galois in the line of development of the third application, i.e., in 
reference to the works of Betti, Hermite, Kronecker, and Brioschi. His 
initial aim had been to investigate the binary forms left invariant by linear 
transformations through a classification of all binary linear groups [Gray 
2000, p. 83-87]. The classes of groups were attached to the regular poly
hedra they were leaving invariant (i.e., the cyclic, dihedral, tetrahedral, 
octahedral, and icosahedral groups). Klein was thus followingJordan's 
investigations of groups of motions. But recall thatJordan had not related 
this topic to Galois. Klein actually followed Hermite in considering the 
Galois group of the modular equation of degree 5, which he showed 
to be isomorphic to the group of binary unimodular linear fractional 
transformations that left the icosahedron invariant.91 

Given an nth degree equation, the n! values ofits Galois resolventcan be 
interpreted as n! points in the projective space (CJP'n-l. In general, a point of 
the projective sphere can thus be moved to n! distinct points by the "linear 
transformations on the continuous space" associated to the resolvent. But 
special points can have smaller orbits, i.e., smaller systems of linear trans
formations corresponding to irreducible factors of the Galois resolvent. In 
the case of the icosahedron, a general point of the sphere has an orbit of 
5 !/2=60 proper motions while the vertices of the icosahedron have an orbit 
of order 12, the midpoints of the faces an orbit of order 20, and the mid
point of the edge an orbit of order 30. Each of these orbits can be consid
ered as the zeros of a homogeneous algebraic form of appropriate degree; 

91 PSL2 ( 5) is, indeed, isomorphic to the group of the 60 ikosahedral rotations which 
is itself the group of even permutations of five elements (the 60 motions permute 
the 5 octahedrons inscribed in the icosahedron). It must be poin ted out that Kro
necker's approach to the quintic was especially influential on Klein [Petri & Schap
pacher 2007]. 
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this form is thus left invariant by the linear transformations corresponding 
to the orbit considered. 

The problem of finding the roots of the initial equation is thus turned 
into the one of finding the possible values Xi of a given system of some n-ary 
homogeneous forms invariant for a finite linear group, i.e., the Formenprob
lem of the theory of invariants ( and covariants) as developed especially by 
Gordan.92 In this framework, one had to look for some relations between 
the generators of such a system of forms. In the case of the icosahedron, 
the system was generated by the forms f, H, T, corresponding to the orders 
12, 20 and 30. Here, the three forms T2, H 3, / 5 of order 60 were linearly 
dependent (if the vertices of the icosahedron are given, so are the faces 
and the edges): T2 +H3 -1728/5 = O. In 1875, Klein connected the 60th 
degree "equation of the icosahedron" to the resolvent of the general quin
tic (i.e., corresponding to the alternating group of order 60 of the symmet
ric group of order 120). More precisely, he designated as the normal form 
of the resolvent the following rewriting of the equation of the icosahedron 

(with z = ~: ): T 2 - (1728 - z)f5 = O. The 60th roots of the equation 

can be expressed as fonctions of one of the roots îJ by expressions such as 

t~=i (AD - BC = 1) corresponding to the binary unimodular group of 
the modular equation of degree 5. 

After he had pointed out the connection between the icosahedron, the 
general quintic and the modular equation in 1875, Klein developed a com
plex theory articulating geometry, groups, invariants, Riemann surfaces, 
and linear différentiai equations. In the legacies of Betti, Hermite, and 
Kronecker, he insisted in presenting his approach as a natural generaliza
tion of the notion of algebraic solution by radicals. Klein argued that all 
the interpretations of the theory of the icosahedron, including conformai 
mapping, can be made to run parallel to the case of solvability by radicals: 
the only difference between solving an equation by radicals and solving the 
quintic by the irrationality of the icosahedron, is that in the first case the 
groups involved are linear in one variable, whereas in the second, they are 
linear in two variables [Klein 1894, p. 69]. 

Klein's approach to Galois had a complex legacy. Sorne authors focused 
on the problem of establishing the "normal forms" Klein had presented 
as defining the "irrationalities" attached to a given equation, i.e., what is 
now designated as the inverse Galois problem.93 Others, such as Moore, 
focused on the purely group-theoretical dimension of the special linear 

92 See [Gray 2000], [Petri & Schappacher 2004]. 

93 See [Hôlder 1899] and [Wiman 1900]. 
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groups involved in the theory of the icosahedron. In the following I shall 
focus on the group-theoretical dimension of Klein's works. 

3.2.2. Klein 's second reading ofjordan (1877-1879) 

As we shall see here, the classifications of binary linear groups given 
by Jordan and Klein between 1875 and 1877 highlight the different ap
proaches of the two mathematicians. Since 1873, Jordan applied his 
works on linear substitutions to the monodromy groups of linear differ
ential equations (in the complex plane). The problem of the algebraic 
integration oflinear differential equations of nth order reduced to the de
termination of a system of n linearly independent integrals (i.e., a vector 
space of solutions). Given a solution of the differential equation, a dosed 
circuit of the complex variable around a singular point would operate an 
n-ary linear substitution on the expression of the solution in the basis of 
the n integrals (i.e., a monodromy matrix). 

As we saw earlier, this approach was developed by Puiseux in 1850 for the 
problem raised by the determination of multi-valued abelian fonctions of 
one variable in the complex plane. Recall that it was on the occasion of a 
response to Puiseux that Hermite first publicly referred to Galois in 1851. 
Moreover,Jordan devoted his second thesis in 1860 to Puiseux's approach. 
fn 1870, the Traité presented monodromy groups as one of the general no
tions of the theory of substitutions, which were applied to transcendental 
fonctions, especially to elliptic and abelian fonctions. 

In 1876,Jordan aimed at enumerating the binary linear groups that ap
peared as monodromy groups in Fuchs's problem of algebraic integration 
of linear differential equations around a singular point. But his classifi
cation was not only incomplete; it had also already been given by Klein 
in 1875.94 The conncction between Klein's 1875 classification and mon
odromy groups played a key role in the reorientation of the latter's works 
toward the invariance of modular fonctions under linear fractional trans
formations. 

Recall that elliptic and abelian fonctions were introduced as the recip
rocal fonctions of the integrals of special classes of differential equations. 
Works on more general classes of linear differential equations thus aimed 
repeatedly at generalizing elliptic fonctions. In 1877, Lazarus Fuchs had 
especially considered the inverse fonctions to the quotient w = KI K' of 
the two periods of elliptic integrals, i.e., two independent solutions of a 

94 As had been readily pointed out by Klein, the fini te group of 168 elements of the 
modular equation of order 7 was missing, a mistake Jordan would correct before he 
would publish the complete version of his work. 
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differential equation.95 K and K1 were analytic functions of k (the modu
lus), and k = f(w) was asinglevalued (modular) function of w = x+iy for 
all positive x (i.e., on the upper halfplane) [Gray 2000, p. 101-104]. But 
in the analogous situation with the periods J and J' of elliptic integrals of 
the second order,96 

i l k2x2 dx I iî k2x2 dx 

]= o J(l-x2)(1-k2x2) and1 = o J(l-x2)(1-k2x2) 

one ceases to have single-valued functions. As Hermite emphasized, in 
both cases the modular fonctions were nevertheless invariant for binary 
unimodular linear fractional substitutions with integer coefficients. Ana
lytic continuations of J and J' could thus be investigated by considering 
the action of PSL2(Z) on the upper halfplane. 

The connection of this invariance interpretation of modular functions 
to Hermite's 1858-1859 works on the quintic was readily developed by 
[Dedekind 1877] into a presentation of the theory of modular functions 
almost independent of the framework of elliptic functions [Gray 2000, 
p. 107-115]. In parallel, [Gordan 1877] related the problem to Klein's 
classification of binary linear substitutions, to which he had given a new 
invariant-theoretical formulation [Gray 2000, p. 88]. On the other hand, 
Uordan 1878] had extended his classification to ternary linear transfor
mations with results on general linear groups.97 As was emphasized by 
[Fuchs 1878, p. 1], three formulations of the classification of binary linear 
groups had thus been stated by 1877. 

As a result, Klein's 1875 classification of transformation groups had 
been retrospectively connected to linear differential equations, and had 
thus met again with Jordan's substitution groups. But this second en
counter took place in a context where Jordan's linear groups were not 
the only issue at stake. On the contrary, as discussed in Tom Archibald's 
paper in this volume, various lines development on linear differential 
equations would be reorganized with the developments of Poincaré's 

95 Let k2 = 1/u and K = ½vïu1J1 and K 1 = ½v'u1J2, then 1) satisfies Legendre's equa

tion 2u(u- l) ~) +2(u- l)~ + ½î) = O. Aclosed circuit on the neighborhood of the 

singular points 0, 1, and oo transforms a solution according to monodromy matrices 

( ci ~) with ad+ be = 1. 

96 The two periods j,J' are two independent integrals of (1 - k2) ~ + 1--r *+y= O. 

97 Every linear group has an abelian subgroup which index does not exceed a bound 
depending only on the number of variables. As a lemma,Jordan had proved that every 
periodic linear substitution can be diagonalized, a result Moore and Mashke would 
generalize in 1898. 
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Fuchsian fonctions, Klein's automorphic fonctions, Lie's approach to 
partial differential equations through continuons groups, or Picard's first 
papers on differential Galois theory. 

Even though the status attributed to groups changed radically during 
this time-period, this evolution did not imply a radical rupture with older 
approaches. For instance, the generalization of elliptic fonctions to au
tomorphic fonctions could be understood as the extension of fonctions 
invariant under groups of translations (the double periodicity of elliptic 
fonctions) to fonctions invariant under binary linear fractional substitu
tion groups. This generalization was thus in continuitywith the traditional 
fonction-theoretic presentation of substitutions in the framework of the 
problem of the number of values of fonctions. The consideration of the 
algebraic solvability oflinear differential equations as resorting to the "vast 
region of single-valued transcendental fonctions with linear transforma
tions into thernselves" [Klein 1884, p. 127] was quite coherent with the tra
ditional definition of resolvents in the framework of algebraic solvability by 
radicals. 

Jordan's approach was thus only one amongst many developments of 
a group theoretical approach to linear differential equations. Moreover, 
the actors involved referred to varions parts of the Traité. For instance, 
Poincaré's success in developing Fuchsian fonctions theory was partly due 
to his appropriation of key algebraic practices of Jordan-such as the 
canonical form-that Klein would never use [Brechenmacher 2012b]. 
But Poincaré was nevertheless not much interested in Galois, whose name 
he would misspell on the rare occasion he would mention it in the 1880s.98 

As for Klein, even though he resorted to some of the general concepts 
prescnted in the Traité, such as the notion of isomorphism [Klein 1879b, 
p. 254], he would not appeal to Jordan's Galois. On the contrary, the 
context of linear differential equations consolidated Klein's reference to 
the modular group in the legacy ofHermite's Galois [Klein 1877b, p. 505]. 
First, the group of the modular equation of degree 5 was at the center of 
the varions interpretations of the icosahedron Klein developed in 1877 in 
connection with the general quintic and the invariance of binary forms 
[Gray 2000, p. 126-134]. Second, in 1878 Klein extcnded his approach 
to the two other Galois groups in connection to appropriate Riemann 
surfaces [Gray 2000, p. 152-161]. The group of the transformation of 
order 7 involved ternary linear substitutions (i.e., PSL2 (F7) is isomorphic 
to PSL3 (F2)), ternary forms and higher plane curves such as the plane 

98 See [Poincaré ]883] as well as [Perott 1887). 
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quartics and their 28 bitangents. After 1879 Klein would approach the 
group of the transformation of order 11 and Gierster would devote his 
thesis to modular groups of prime orders. 

In his review of the first edition ofKlein's 1884 Vorlesungen, Lampe high
lighted the role the book devoted to "the theory of Galois groups." The 
designation still implicitly pointed to the three modular groups. But Klein 
also presented a general exposition of "Galois groups of equations" of the 
nth degree. However, this presentation was not based onjordan's Livre III 
but on Kronecker's Grundzüge [Klein 1884, p. 86]. 

But unlike Kronecker, Klein attributed a fondamental status to the 
Galois groups and had adopted some terms that had been used by both 
Hermite and Jordan, such as "Galois's ideas," or "Galois's method" [Klein 
1879a, p. 418]. The extensive and various uses of Galois's name that 
developed in connection to Klein's work circulated quickly. This situation 
seems to have caused echoes and reactions in other contexts. It is likely 
that both Kronecker's 1882 discussion on the relative roles of affects and 
Galois groups, and Picard's 1883 note on differential Galois equations, 
had partially aimed at responding to an increasing number of references 
to Galois in connection with Klein. In any case, even though most later 
presentations of Galois's theory of equations would be based on Kro
necker's approach, they would nevertheless follow Klein in attributing to 
Galois groups a status Kronecker had denied them. 

In this situation, bits and pieces ofjordan's Livre III played the role of 
interfaces between Klein and Kronecker's approaches. For instance, when 
Weber investigated some issues related to the double points of an algebraic 
curve (a quartic) in 1883, he would present his paper as having to do with 
the "Galois group of an equation of the 28th degree" on the model of Livre 
III. Later on in 1889, Holder appealed to the Galois of Livre III to propose 
a synthesis of the works of Klein and Kronecker. 

Conclusion 

The global picture resulting from our collections of self-portraits with 
Galois is quite different from the role which has been often attributed to 
Jordan as the one who had unpacked the group-theoretical content ofGa
lois's works. Questions in the history of algebra are certainly not limited to 
problems of origins or diffusions of abstract notions: we have seen several 
examples of local circulations of algebraic practices at various scales of the 
collective dimensions associated to complex networks of texts. 
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The specificity ofjordan's Galois was that it attributed an essential na
ture to a method of reduction of classes of groups. That method had been 
modeled on the analytic linear forms provided by the decomposition of 
letters into blacks under the action of imprimitive groups. Linear groups 
could therefore not be disconnected from the underlying Galois fields, 
which were actually considered as groups themselves: the linear form 
(z az + b) was unscrewed into the two forms of actions ( z z + I) and 
( z gz) of the cycles of GF (pn) *. The general linear group then originated 
as the maximal group in which an elementary abelian group is a normal 
subgroup. 

The method ofreduction was the basis for several key results of Jordan, 
e.g., the introduction of the composition series of a group, the criterion of 
solvability, and the reduction of linear substitutions to a canonical form. 
But no explicit definition was given to the reduction itself as is illustrated 
by the crucial addition Hôlder later made through the concept of quo
tient group. The reduction was presented as the "essence of the question," 
something that expressed its presence by making "visible" unexpected re
lations between varions abjects and classes of abjects. Successive general
izations from special model cases were one of the modes of expression of 
such essential relations. Jordan developed a specific way to deal with the 
special and the general which he considered as successive links in a chain 
of reductions from the most general to the simplest. 

ButJordan's method ofreduction did not directly result from an appro
priation of Galois's decomposition. On the contrary, the reduction of im
primitive groups to primitive groups was a point of contact between Jordan 
and Galois. The fact thatJordan had presented his reduction in the frame
work of Poinsot's theory of order suggests thatJordan and Galois shared 
a specific perspective on the roles played by relations in both algebra and 
number theory. Little is nevertheless known about the role played by the 
thcory of order in the 19th century. Jordan's early works suggest that a 
specific approach to mathematics might have circulated within crystallog
raphy and mechanical investigations of motions of solid bodies (such as 
polyhedrons) [Brechenmacher 2012a]. Until the 1920s,Jordan and Ga
lois were often referred to in connection to the "science of order" or the 
"algebra of order."99 We have seen also that in the space of circulation of 

99 At the turn of the 20th century in France, discourses on rnathematics would 
often oppose the theory of order, considered as a part of Analysis, to algebraic
arithmetic approaches developed in Gerrnany (see [Couturat 1898]). In 1922, Robert 
d'Adhémar would designate as the "Algebra of order" the conceptual approach to 
mathernatics consisting in replacing computations by ideas. 
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the Dickson network,Jordan's linear groups supported an abstract notion 
of Galois field that focused on group-theoretic relations as opposed to the 
arithmetic-algebraic dimensions of the contemporary notion of Korper. 

Butjordan's Traité was not limited to Jordan's Galois. We have seen that 
between 1867 and 1870, Jordan had inscribed his works into preexisting 
collective references to Galois. It was on this occasion that he had focused 
on Galois 's fondamental theorem, which otherwise had not played any role 
in the reduction of linear groups. The groups associated with the process 
of adjunction of roots to an equation were presented as offering a higher 
point ofview on the "classification and the transformation of irrationals." 
Indeed, we have seen that, between the 1830s and 1850s, Galois's works 
had been collectively considered as relating to the special "orders of irra
tionalities" introduced by general equations of a given degree. In this con
text, the emphasis had been Iain on special abjects of investigation such 
as the equations of the division of periods of abelian fonctions or modular 
equations. 

What was then the connection between the "Théorie générale des 
irrationnelles" in which Jordan's Livre III had inscribed Galois's Mémoire 
and the "Théorie des équations" in which Serret's 1866 textbook had 
commented on Galois? 

Although it is not the place here to discuss in greater detail the public 
dimensions of the figures of Galois and Abel, it must be pointed out that 
the association of Galois's and Abel's works with the "theory of equations" 
cannot be dissociated from the role these questions traditionally played in 
public discourse [Brechenmacher 201 ?b]. It is therefore compulsory to 
distinguish different scales in the collective dimensions of Galois's math
ematical works. It was indeed mostly within discourses aiming at broader 
audiences than the Academy that Galois's works were presented within a 
longterm history of the solvability of equations by radicals. In contrast, the 
main characteristics of the emerging field of research of arithmetic alge
braic analysis were rarely mentioned in a large public sphere, i.e., the focus 
on the notion of congruence, the acceptance of complex numbers, and 
the investigations on the algebraic-arithmetic properties of elliptic fonc
tions [Goldstein & Schappacher 2007a, p. 26]. 

Unlike the public dimensions of the solvability of equations by radicals, 
we have seen that on the more local level of networks of texts, Galois's 
works were not much commented on in connection to the general theory 
of equations. Betti, Kronecker, Hermite, and Klein had all insisted that 
the problem of expressing roots as algebraic fonctions of coefficients had 
to be replaced by the one of associating adequate analytical expressions to 
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each "order of irrationalities" introduced by general equations of degrees 
higher than four. In Bertrand's 1867 report on the progress of mathemat
ics, Galois's works were clearly inscribed in a twofold collective dimension 
[Bertrand 1867, p. 3-17): first, the theory of equations as it was exposed 
in textbooks such as Serret's; second, the higher point ofview of analysis 
on the nature of the algebraic and transcendental irrationals related to 
elliptic and abelian fonctions and their related special equations. A later 
echo of the twofold collective dimension of Galois's works was heard in 
1898 when Paul Tannery discussed the works of Galois in connection to 
the approaches of Hermann Grassmann and William Rowan Hamilton on 
irrational numbers [Tannery 1898, p. 739]. 

Liouville's edition of Galois's works in the late 1840s was contemporary 
to the emergence of the Algèbre supérieure as an intermediate discipline be
tween elementary arithmetic and algebra and the "higher" domain of anal
ysis as it was taught at the École polytechnique [Ehrhardt 2007, p. 211-236]. 
The elementary and higher points of views were far from being discon
nected from each other. For instance, the new proof of the impossibility of 
solving the quintic that Hermite had published in the Nouvelles annales de 
mathématiques in 1842 when he was still in high school was followed in 1844 
by a memoir on the division of the periods of abelian fonctions. The paper 
on the quintic was introduced by Olry Terquem who also praised on this oc
casion both the classification of transcendental fonctions into species pur
sued by Liouville in 1837 and Wantzel's 1837 proof of impossibility of the 
antique problems of the duplication of the cube and of the trisection ofan 
angle. In doing so, Terquem explicitly alluded to the higher point ofview 
on equations provided by investigations on the nature of the "irrationals." 
Later publications on this tapie by Wantzel and Victor-Amédée Lebesgue 
would be the first to greet Liouville's project to edit Galois's works. 

The theory of equations was therefore no more an autonomous domain 
of research than algebra itselfwas an object-oriented discipline shared by 
a community of specialists [Brechenmacher & Ehrhardt 2010]. Recall that 
despite the fact that Galois's works were scarcely taken into account in the 
first edition of Serret's book, the figure of Galois was nevertheless already 
celebrated in the framework of a longue durée history of the "theory of equa
tions." This historical perspective clearly aimed at delimiting the domain 
of aigebra as it was taught. The crucial role attributed to the issue of solv
ability by radicals did not reflect contemporary research on equations. 

Moreover, the organization and the status of Serret's A~tsèbre were im
plicitly built on the higher point ofview of analysis. The issues related to 
Galois were first steps toward the higher point of view on transcendental 
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irrationals introduced by the inverse integrals of differential equations, 
and which involved complex analysis, arithmetic considerations on con
gruences or quadratic forms, the algebraic theory of invariants, etc. 

The interactions between Serret's textbooks and Hermite's researches 
especially illustrate the two levels of the Algèbre supérieure and of the field 
ofarithmetic algebraic analysis. As a matter offact, even in the 1866 two
volume edition of the Cours, Serret's considerations on linear substitutions 
were limited to the binary substitutions Hermite had investigated in con
nection to the modular equations. This approach was clearly much more 
suited to preparing the student for the theory of elliptic fonctions of [Briot 
& Bouquet 1859] than forjordan's forthcoming Traité. 

In the 1860s, there was thus already a twofold collective interpretation 
of the works of Galois. For this reason,Jordan's daim to deliver the com
mentaries on Galois that Liouville had promised is a telling illustration of 
the different autonomous developments that would tear apart the field of 
arithmetic algebraic analysis [ Goldstein & Schappacher 2007b, p. 97]. In 
the name of Galois,Jordan did indeed reorganize various results that had 
grown into an autonomous theory in the 1850s. Previous works that had 
made precise reference to Galois, such as th ose of Hermite, thus fell into 
the global legacy of Galois, in the company of works that used to be dis
connected from any reference to Galois, such as Cauchy's substitutions or 
Clebsch's problems of contacts. 

A few years later, Klein's Galois emerged from an interpretation of Her
mite's Galois in both the context of groups of geometric transformations 
and the traditional constructive invariant-functional approach of Galois re
solvent. Klein did not appeal to Jordan's n-ary linear groups but focused 
on the special linear fractional groups attached to the modular equations 
of order 5, 7, and 11, i.e., the Galois groups. Because these groups ap
peared at the core of Klein's various interpretations of the nature of the 
irrationality of the icosahedron, Klein celebrated Galois for the introduc
tion of a fully general notion of group in the special case of the theory of 
equations. 

In the 1880s, the question of the status of the notion of group with re
gard to arithmetic, algebra, and analysis was much debated. Kronecker re
jected Jordan's Galois and developed a constructive approach to the Galois 
resolvent in the framework of an influential comprehensive arithmetic the
ory of irrational quantities. His notion of equations with affect was never
theless replaced by the notion of Galois groups of an equation. 
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At the tum of the century, the disciplinary issues related to the nature 
of Galois groups would often have national, and in fa.et nationalistic, over
tones. In France, Galois would often be celebrated as the founder of the 
continuons groups involved in Analysis. For instance, while Drach's Algèbre 
supérieure had appealed to Kronecker for presenting the "fa.mous theory 
created by Galois" as an extension of arithmetic, Tannery's Préface explic
itly recalled that it was Analysis that provided a higher point of view on "the 
general irrationality" ofwhich "the algebraic number is nothing more than 
a particular case" [Borel & Drach 1895, p. iv]. 

As for Jordan's presentation of Galois's Mémoire, it eventually did not 
seem to have been much followed, in contrast to those of Serret or Kro
necker and also in contrast to other aspects ofJordan's book. 100 The cen
tral position of Livre III in the Traité nevertheless supported the daim Jor
dan had made in the Préface that his whole book was nothing more than a 
commentary on Galois. This daim played a role in the collective attribu
tion of an essential ontological value to "Galois's ideas" or "Galois method." 
But the Traité did not need to be read in order to play such arole (at least 
notas whole). The book expressed Galois's mathematical greatness by its 
very existence, or more precisely by recurrent references toits existence. 

l0O It cou Id nevertheless be studied directly in the Traité. For instance in 1913-1914, 
Georges Humbert gave to his lectures on the theory of substitutions at the Collège de 
France a structure very close to the one of the Traité. 
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