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FACTOR TABLES 1657–1817,

WITH NOTES ON THE BIRTH OF NUMBER THEORY

Maarten Bullynck

Abstract. — The history of the construction, organisation and publication of
factor tables from 1657 to 1817, in itself a fascinating story, also touches upon
many topics of general interest for the history of mathematics. The consider-
able labour involved in constructing and correcting these tables has pushed
mathematicians and calculators to organise themselves in networks. Around
1660 J. Pell was the first to motivate others to calculate a large factor table, for
which he saw many applications, from Diophantine analysis and arithmetic
to philosophy. About a century later (1770), J.H. Lambert launched a table
project that was to engage many (human) computers and mathematicians in
the (re)production and extension of Pell’s table. Lambert also pointed out
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that a theory of numbers, of divisors and factoring methods was still lacking.
Lambert’s ideas were taken up by his colleagues at the Berlin Academy, and
indirectly by L. Euler in St. Petersburg. Finally, the many number-theoretical
essays that were written in the context of Lambert’s table project contributed
significantly to the birth of higher arithmetic around 1800, soon to be marked
by the works of A.-M. Legendre and C.F. Gauss.

Résumé (Tables des diviseurs 1657–1817, avec des notes sur la naissance de la
théorie des nombres)

La fabrication, l’organisation et la publication des tables de diviseurs, de
1657 à 1817, constitue non seulement une histoire fascinante en soi, mais sou-
lève en même temps des enjeux plus généraux de l’histoire des mathématiques.
Le travail considérable que demande la fabrication et la correction de ces tables
a poussé les mathématiciens et calculateurs à s’organiser en réseau scientifique.
John Pell a été ait le premier qui incita, autour de 1660, d’autres mathémati-
ciens à produire une grande table de diviseurs. Il en vantait l’utilité, non seule-
ment pour l’analyse diophantienne, mais aussi pour l’arithmétique et même
pour la philosophie. Un siècle plus tard, en 1770, Jean Henri Lambert lança
un vaste projet, engageant beaucoup de calculateurs et mathématiciens, pour
(re)construire et étendre la table de Pell. Ce faisant Lambert insistait sur le fait
qu’une théorie des nombres, des diviseurs et des méthodes de factorisation fai-
sait toujours défaut. Ces idées étaient reprises par les collègues de Lambert à
l’Académie de Berlin et indirectment par Leonhard Euler à St. Petersbourg.
Les nombreaux textes sur la théorie des nombres écrits dans le cadre de ce pro-
jet de Lambert contribuaient de manière importante à la naissance de l’arith-
métique supérieure aux alentours de 1800 dans les travaux de A.-M. Legendre
et C.F. Gauss.

1. INTRODUCTION

The aim of the present paper is a historiographical appraisal of the con-
struction of factor tables as a proper part of the scientific and social history
of mathematics and as an important chapter or tradition within the his-
tory of number theory. Of course, like other scientific experts, the makers
of tables which list prime numbers or factors of positive integers have, at
least since the 18th–19th century, duly cultivated the memory of the work
of their forerunners. In fact, in the case of factor tables, there was also a
more specific reason to document and consult older tables. Since the en-
tries in a factor table can neither be approximated nor interpolated with
the help of the surrounding values, comparison with already existing ta-
bles was and is essential to test a new table. The most complete list of prime
and/or factor tables compiled before the twentieth century can be found
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in Lehmer [1909, i–vii] and Dickson [1919–1927, I, pp. 347–356]; the most
extensive commentary on and analysis of factor and prime tables was pro-
vided by Glaisher [1878], in a companion essay to his Factor Table for the
Fourth Million.

A topic closely connected with the construction of factor tables is the
development of primality tests and factoring algorithms. Especially since
the advent of the digital computer and still more since the invention of
RSA-encryption, primality tests and factoring algorithms are considered as
an important research field for mathematics and its applications. Before
1945, however, the topic figured mainly in research on and construction
of tables in number theory. The history of primality tests and factoring
algorithms has already been well documented by Dickson [1919–1927, I,
pp. 357–374] and more recently been reappraised by Williams & Shallit
[1994] and Mollin [2002].

This paper wants to go beyond the mere chronological list of tables and
factoring methods and embed them into their proper historical context,
scientifically, socially and philosophically. We will show that the circum-
stances of production of the earliest prime and factor tables provide
insight into the way in which mathematicians and calculators organised
themselves in communities or networks in the 17th and 18th centuries.
Further, it will be demonstrated that the use and production of factor
tables brought up specific problems, questions and viewpoints. Condi-
tioned by the peculiarities of factor and prime tables, a particular frame
of reference with its own concepts and partial theories came, in time, to
be articulated, and was eventually to have rather an important impact
on the emergence of number theory. Indeed, it is claimed here that the
theories and methods that provide the theoretical background for factor
tables constitute one of the contexts that should complement the classical
story told about the formation of number theory; viz. the Greek heritage
of Pythagoras and Diophantus, its transformation in the hands of Bachet,
Fermat and Euler, finally culminating in A.-M. Legendre’s Essai (1798)
and C.F. Gauss’ Disquisitiones Arithmeticae (1801). 1

1 On the role of the Pythagorean, Diophantine and Fermatian problems for the for-
mation of number theory, see e.g. [Weil 1984, Chap. IV] and [Shanks 1993, Chap. 1].
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The paper consists of three main parts. The first and second part are de-
voted to the big table projects of the 17th and 18th centuries respectively.
In the first part, the project instigated by John Pell around 1660 and its im-
pact is analysed. The second part is the story of Johann Heinrich Lambert’s
table project around 1770. Finally, the third part shows how the impetus of
Lambert’s project added coherence to the seemingly unorganised mass of
mathematical publications on numbers and their properties that appeared
in the last third of the 18th century, as well as how these, in their turn, pro-
vided the immediate background for Legendre’s and Gauss’ books.

2. JOHN PELL’S TABLE PROJECT

2.1. The state of the art in prime and factor tables anno 1660

Some smaller prime and/or factor tables were calculated and printed
before the mid-17th century, before John Pell would advocate that numer-
ical tables in general and the table of divisors in particular are important
means and tools for doing mathematics and solving Diophantine prob-
lems, transcending their mere role as a collection of data. These smaller
lists and tables served mainly as auxiliaries for factoring larger numbers
that appear either in the determination of perfect or amicable numbers,
or as the constant and last coefficient of an equation. 2

The oldest extant prime and factor tables, within the Western tradition
at least, were actually rather lists than tables, i.e., rather an enumeration
one after the other (a linear order) than a formatted display of numbers
that uses two dimensions for ordering its items. In the explanation of divi-
sion and of numbers that measure only themselves (i.e. what we now call
primes) Leonardo Pisano gave a list of the primes up to 97 in his Liber Abaci
[Pisano 1202, p. 57]. Some four centuries later, Pietro Antonio Cataldi
(1548–1626) gave a list of all primes up to 741, and a list displaying all divi-
sors (except 1, but including composite divisors e.g. 2, 3, 4 and 6 for 12) of

On the shaping of this discipline after the publications of Gauss and Legendre refer
to the rewarding collection of essays in [Goldstein et al. 2007].
2 The factorisation of the constant of an equation helps, of course, to determine the
roots of the equation: (x� a1)(x� a2) � � � (x� an) = xn + � � � � a1a2 : : : an .
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the numbers up to 750 [Cataldi 1603, pp. 28–40]. As the title of Cataldi’s
treatise, Trattato de Numeri Perfetti, indicates the list was used in connection
with perfect numbers, i.e., numbers that are equal to the sum of their divi-
sors (including 1 but excluding the number itself). By dividing the tested
number by the successive primes of his list, Cataldi proved that 217�1 and
219 � 1 (known as Mersenne numbers) were prime, hence 216(217 � 1)
and 218(219 � 1) were perfect numbers. Cataldi’s claim to the effect that
the exponents 23, 29, 31, 37 also generate perfect numbers, could not be
checked against his small list and was later proven false, except for 31, by
Fermat and Euler [Dickson 1919–1927, I, pp. 10–19].

The tables published by Paul Guldin around 1640, and the lists pub-
lished by Frans van Schooten in 1657 were the immediate context of Pell’s
project, rather than the earlier lists. Both appeared at a time when the logis-
tica speciosa, symbolic algebra, was starting to spread within Europe. In fact,
all factor tables of the 17th century appear in the company of combinato-
rial tables and problems. Tables giving all combinations of n letters, thus
exploring the possibilities of the new algebra, are in a sense the specious
equivalent of the factor tables. Using both kind of tables, one could try
to identify a number n of the general algebraic form aab appearing in an
equation with the help of a factor table, checking on all numbers that fac-
tor as a square of primes multiplied by another prime. Thus, factor tables
could provide a way to pass from a general problem in the logistica speciosa
to a specific problem (one with concrete numbers) in the logistica numerosa.
This link between arithmetic and combinatorics, between factor tables and
combinatorial tables, is specific to the 17th century and disappeared in the
18th century. 3

The first genuine factor table may have been published by the Jesuit
mathematician Paul Guldin (1577–1643). 4 Guldin was no amateur when
it came to tables. In the first book of his series De Centro Gravitatis, Guldin
[1635, post p. 228] added a hundred pages tabulating all squares and cubes
of the numbers from 1 up to 10000. Similarly, at the end of the fourth and

3 Although C. F. Hindenburg “rediscovered” the link, passing from factor tables to
combinatorial analysis, cf. p. 180.
4 Guldin’s table is missing in [Dickson 1919–1927] and seems so far to have escaped
scholarly scrutiny.
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last book of the series (and after tables of combinations of letters, of �, of
segments of spirals, ellipses and circles) Guldin [1641, pp. 383–401], in-
cluded one more table, the Tabula ultima, giving all prime factors (except
5) for all odd numbers up to 9999. As Guldin recounts in the second book
of his series:

to know whether a given number is one that is prime and incomposite, we ex-
hibit a catalogue of them, from 1 to 10000, later on. We once constructed this
catalogue for our private use and we call it the Ultimate Table, because it has the
last position amidst the tables we display at the end of these books, so that you
can find it almost at a glance. 5

At the end of the table, Guldin added, as a kind of conclusion, that, be-
tween 1 and 9999, there were 1226 primes and 8773 composites, or about 7
times more composites than primes [Guldin 1641, pp. 401, cf. Figure 1]. 6

Some fifteen years after Guldin, the Dutch mathematician Frans van
Schooten (1615–1660), best known as friend, translator and editor of
René Descartes, published a list of all primes up to 9973 [Schooten 1657,
pp. 393–403]. 7 The list appeared in Van Schooten’s Exercitationes Math-
ematicae, which consisted of five books. The first four books contained
geometrical problems, problems from Euclid’s Elements, from Apollonius’
works, and showed how Descartes’ calculus geometricus could be applied
to these. The fifth and last book contained “Miscellaneous Problems”
and may be situated in the then newly emerging tradition of books on

5 Original: “Ut vero cognoscas an propositus numerus sit unus ex Primis & Incom-
positis, exhibemus infra eorundem Catalogum, ab unitate usq;ad 10000. quem olim
ad nostrum priuatum usum construximus, & hic Tabulam Ultimam vocamus, eo quod
locum ultimum inter Tabulas, in fine huius Operis positas obtineat, ex qua unico
quasi intuitu, tuum assequeris propositum.” [Guldin 1640, p. 15]
6 Guldin is three off, there are 1229 primes under 10000.
7 The Dutch version [Schooten 1659] of [Schooten 1657] was published two years
later (although van Schooten first wrote in Dutch and then translated it into Latin).
The syllabus numerorum primorum was reprinted there as Tafel der eerste getallen, with a
correction. In the table of the Latin version, 809 was dropped by accident in the pro-
cess of printing; this error is corrected in the Dutch version. Van Schooten has 1229
primes under 10000, the correct count. Later, Jacques Ozanam [1697, pp. 30–32] put
van Schooten’s table in another format and reprinted it (with the 809 error) in his
Récreations mathématiques et physiques. In discussing van Schooten’s Exercitationes math-
ematicae we will refer to the Dutch version.
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Figure 1. The last page of Guldin’s Tabula Ultima

recreational mathematics. Quite a lot of these miscellaneous problems
were problems in combinatorics and arithmetic. They were mainly de-
rived from Michael Stifel’s edition of Christoph Rudolff’s Coss [1553] and
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Claude-Gaspard Bachet de Méziriac’s edition of Diophantus’ arithmetic
books [1621]. Although the problems were seemingly disconnected, van
Schooten often inserted programmatic remarks on the excellence of al-
gebra and especially Descartes’ analysis for solving these problems. 8 The
Exercitationes Mathematicae may therefore be seen as an early attempt to
develop some general method(s) to attack problems with numbers.

In this Cartesian context we find the list of all primes up to 10000. The
list follows immediately after a table that solves the (combinatorial) prob-
lem of finding the forms of all numbers with the same number of divisors
[Schooten 1659, pp. 365–367]. 9 Van Schooten explains that the prime list
is useful for solving problems of parts and divisors, for avoiding fractions,
for finding the roots of equations, for calculating logarithms, and in fact
“helpful for nearly all sorts of calculations.” 10

2.2. John Pell’s Table of Incomposits

As his biography and correspondence [Malcolm & Stedall 2005] amply
show, the English scholar John Pell (1611–1685) was intimately acquainted
with the scientific thought and research of his times, especially in matters
mathematical. Pell travelled and lived for many years in the Protestant
parts of Europe, spending a decade in the Low Countries (1643–1652),
where he taught mathematics at the universities of Amsterdam and Breda.
He also served from 1654 to 1658 as Cromwell’s delegate at Zürich. Fol-
lowing his return to England after 1658, Pell became one of the founding
members of the Royal Society in London. Rather secretive about his dis-
coveries, and inclined to start many projects without finishing them, Pell

8 Van Schooten remarked for instance that, contrary to Stifel’s opinion, algebra is
useful for finding amicable numbers, i.e., pairs of numbers one of which equals the
sum of the divisors of the other, and vice versa [Schooten 1659, pp. 390–391]. Sim-
ilarly, van Schooten showed how a single algebraic trick could solve a rather discon-
nected collection of 15 problems [Schooten 1659, pp. 459–462]. Cf. also with [Bul-
lynck 2009a, p. 68]
9 E.g. a3b, abc and a7 all have 10 divisors.
10 Original full quote: “Hier by komt, dat dese getallen mede niet weynig tottet min-
deren der gebroocke getallen, in ’t delen der Æquatien of Vergelijckingen, en in hare
wortelen te soecken, gelijck oock in het vinden der Logarithmi of Reden-tallen, en
eyndelijck by-na in alle reeckeningen behulpsaem zijn.” [Schooten 1659, p. 365]
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attained a reputation among his contemporaries as a serious mathemati-
cian.

John Pell entertained particular ideas on mathematics and on the
organisation and transmission of knowledge. As his pamphlet Idea on
Mathematicks (1638) shows, Pell supported the kind of reorganisation of
knowledge professed in Samuel Hartlib’s circle, a reform inspired by (or
at least close to) Comenius’ ideas. 11 In the case of mathematical knowl-
edge, this reform entailed an altered presentation and a compression,
where in Pell’s view due place should be given to “the usefullest Tables
and the Precepts for their use, in solving all Problems” [Pell 1638/1650,
p. 40]. Among these was proposed a table of sines/logarithms to solve
higher equations that Pell often mentioned, but never published. Hartlib
had characterised Pell as a man who “vrges mainly a perfect Enumeration
of all things” (1639) 12 and the emphasis on complete enumeration is
indeed a recurring theme in Pell’s work. In his Idea of Mathematics, Pell
had announced that a mathematical-philosophical analogue of the book
catalogue 13 might be constructed:

And it may be som would like the Method of that work [the catalogue] so
vvell, as to extend it farther, and applie it to other studies; in speculation imitating
this my wariness, that no falsehood bee admitted, and no truth omitted; and for practice
ensuring themselves, anie subject being propounded, to determine the number
of all the Problemes that can bee conceived concerning it, and anie Probleme bee-
ing propounded, demonstratively to shew either all the means of it’s solution, or
the impossibilitie of it: and if so, then whether it bee not yet, or not at all possible.
[Pell 1638/1650, p. 45]

In this context of a table exhausting all possible true statements, Pell
happened upon the idea, a powerful metaphor, that knowledge could be
organised through combining “prime truths” [Malcolm & Stedall 2005,
pp. 263–5]. True statements would thus be certain combination of prime

11 See [Malcolm & Stedall 2005, Parts I and II]. Yates [1972, p. 233] also suspects a
strong influence of John Dee, and of course, the Hartlib project was close in time and
spirit to Bacon’s proposal for the advancement of science, and the foundation of the
Royal Society.
12 Quoted after [Malcolm & Stedall 2005, p. 63].
13 Pell writes of pandects, a kind of catalogue listing all books on a certain topic with
“orderly, rational and uniform completeness.”
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truths. This kind of connection between tables, and especially prime and
factor tables, and the (re)organisation of knowledge would prove to be a
powerful idea and persist all through the 18th century, although altering
its modes.

While Pell was reticent regarding his projects in mathematics, and only
seldom finished a project or published a result, his teaching in continental
Europe (Amsterdam and Zürich) spurred some enthusiasm and indirectly
revealed some of Pell’s mathematical occupations and ideas. For example,
Pell had been interested in Diophantine problems since the 1640s. He had
corresponded with Father Mersenne in 1639–40 ; had given lectures on
Diophantine problems in Amsterdam from 1644 to 1646, with Vossius in
the audience; and later in Zürich to J.H. Rahn (1622–1676) in the years
1654 to 1658. 14 Pell frequently announced or promised an edition of Dio-
phantus (in his own tri-column style) but nothing was ever published [Mal-
colm & Stedall 2005, p. 289–290 et passim], although Vossius announced
such a publication in his historical work De scientiis mathematicis of 1650. 15

More on Pell’s mathematics was intimated by Rahn, who published a
Teutsche Algebra in 1659. The provenance of the ideas and notations in
this book have been a matter of debate, but it has now been ascertained
that Rahn, regarding method, notation and presentation, heavily relied
on Pell’s lectures to write his book. 16 It is in this book that one can find
the first factor table that took more effort and time than a day well spent
on calculation [Rahn 1659, pp. 37–48]. It gives only the smallest factors
of the numbers less than 24,000 which are not divisible by 2 and 5. 17

14 See [Malcolm 2000, p. 276] on Mersenne plus the references there; [Vossius
1650, p. 37–38]; and [Malcolm 2004, p. 253] on Rahn, see also Malcolm & Stedall
[2005], keyword Diophantus.
15 Vossius [1650, p. 37–38] writes, regarding an expected edition of Diophantus:
“Longe tamen majora jamdiu expextamus a vir variae erudtionis, Mathematico acutis-
simo, Ioanne Pellio [...] in Amstelodamensi nostro, collega carissimo: ubi Diophan-
tum publice cum summa admiratione omnium enarrantem, ac intima & difficillima
quaeque penetrantem, saepius audivimus.”
16 Scriba [1974] and Malcolm [2000; 2004], on the basis of new unpublished corre-
spondence, have removed nearly any doubt that Rahn’s original text owes much, and
certainly its innovations, to Pell’s teachings.
17 According to [Malcolm & Stedall 2005, p. 200] it was a student of Pell, Balthasar
Keller, who calculated the table; Rahn only copied and published it.
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Through the initiative of John Collins, a member of the then newly-
founded Royal Society, Rahn’s book was translated into English by Thomas
Brancker (1633–1676) during the years 1665 to 1668. 18 Through Collins’
mediation, Pell was involved in reading, correcting and supplementing
the translation; in the end he replaced almost half of Rahn’s text with
his own [Malcolm 2004, pp. 250–252]. 19 For this translation, Brancker
calculated the factor table afresh up to 100,000, following Pell’s directions.
After the publication of the English translation in 1668, the book would be
generally known as Pell’s Algebra, and the Table of Incomposits as Pell’s Table,
although Keller and Brancker, independently, had calculated the table,
and Rahn wrote the original work. But indeed, both the Algebra and the
Table are products directly inspired by Pell’s particular mindset and the
details of their execution depended on Pell’s general philosophy. Also, as
we will show, Pell’s additions to the translation should be interpreted as a
kind of indirect dialogue with van Schooten’s Exercitationes. Pell’s factor
table and its importance to him has to be set within this philosophical
context and this particular dialogue.

Some general characteristics of Pell’s Algebra match up with Pell’s phi-
losophy of knowledge, where the “rationally organised library” aspect of
indexing, tabulating and enumeration is of paramount importance. Pell
had developed a “method” to present his algebra which an anonymous re-
viewer in the Philosophical Transactions 20 characterised as follows:

the Method is such, that most of the Book, if not all, may be understood by those
not vers’d in the English tongue, that are vers’d in Specious Algebra, most of
the Questions being propounded in Symbols, and the progress of the work so
described by the Marginal quotations, that for those exercised in Algebra, that
would transcribe a Problem in this Method, it were sufficient, only to take the
Margent, omitting the work it self, till farther leisure is afforded to perform it. 21

[Phil. Trans. 3 (1668), 689]

18 As H.M. Pycior [1997] showed, this English translation was one of the attempts
following the initiative of John Collins to provide Britain with an up-to-date algebra
book in English.
19 Pell added pages 79–82 and 100–192.
20 Actually Collins, according to Malcolm & Stedall [2005, p. 205].
21 Compare this description to Malcom’s: “a sequence of marginal annotations sum-
marizing the working out of the problem in the text“ [Malcolm 2000, p. 287].
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This is the essence of Pell’s tri-column method. From right to left one
had three columns per line: 1) the text and its algebraic transliteration; 2)
a numbering of the line; 3) a summary of the operations that led to that
line using the numberings, e.g., 3*7 means: line 3 times line 7. 22 The com-
plete and consecutive numbering of all lines in the Algebra impressed upon
the whole book a near tabular arrangement. This arrangement made the
book accessible to a variety of readers, such as those not fluent in English,
who could follow the argument by its numbers only. It had the additional
pedagogical advantage that one could choose one’s own style of reading,
choosing to follow primarily the algebra or the sequence of numbers, ac-
cording to preference.

If we now take a closer look at the specific material that Pell added to
Brancker’s translation (pp. 79–82 and 100–192), we see that Pell supplied
an additional layer of the book that had to do with indeterminate or Dio-
phantine analysis. It seems that Pell took advantage of the English transla-
tion of Rahn’s book to make up, at least in part, for the edition or commen-
tary of Diophantus he never got around to producing. Instead of attempt-
ing a general treatment of these topics, however, Pell expressed thoughts
that revolved around a particular set of problems. Thus problems XV and
XVI, which deal with Pythagorean triangles, allowed Pell to give a short ex-
position on what exactly constitutes an indeterminate problem. All further
problems (XXVII–XXXI) were problems which

Bachet [.. .] left obscure; and [...] the celebrated DesCartes and Van
Schooten have left doubtful, as not being by them throughly understood.
[Phil. Trans. 3 (1668), 689] 23

Indeed, Pell’s problems XXVII–XXVIII correspond to Diophantus V.19
and van Schooten’s Problem XIII; Pell’s XXIX–XXXI to van Schooten’s

22 More on the tri-column method may be found in [Stedall 2002, pp. 137–138] and
in general see her discussion of Pell’s mathematical style, characterized as being close
to “a mechanisation of unit steps”, [Malcolm & Stedall 2005, pp. 235–319].
23 Fermat’s work is not mentioned at all. However, the correspondence between
Pierre de Fermat and the English mathematicians Brouncker and Wallis during the
years 1657–1658 had been published by Wallis [1658]. Pell must have known about
the correspondence but does not seem to have engaged with it. Instead, his dialogue
is only with members of his “generation” like van Schooten.
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XII. 24 Likewise, the Table of Incomposits corresponds to van Schooten’s V
(the syllabus numerorum primorum) and pp. 194–195 (“XXIX different ex-
amples of a Composit”) to van Schooten’s III and IV.

From this list it seems that Pell was engaged in a discussion with van
Schooten’s Exercitationes mathematicae and its (Cartesian) style of attack on
Diophantine problems. Pell’s main criticism of the solutions presented
in van Schooten (solutions that were due to Bachet, van Ceulen and
Descartes) was that these mathematicians had failed to appreciate the
indeterminate nature of these problems. Namely, van Schooten’s sources
had given only one (or two) answer(s) to the problems, whereas they are
“capable of innumerable answers” [Rahn 1668, pp. 80; 116; 138]. Pell
adapted the methods so as to produce “innumerable” answers and then
added a “review” of the list of solutions. 25 This “review” is actually an
analysis of the order of presenting the solutions. For Problem XXVII this
“review” states:

this Pattern shews you a disorderly mixture of Answers in Great Numbers
amongst Smaller Numbers. [.. .] So that here is need of another Rule for the
orderly selecting of values of b and c, apt to lead us, in order, to Answers falling
under any prescribed limit [as for example 100,000] that so we may not be
cumbted with huge Numbers, when there are many smaller ones fit to answer
the Question. [Rahn 1668, p. 142]

This disorder displays “inverted repetitions” (i.e. (a; b; c) and (c; b; a))
and “confused Anticipations” (smaller hypotenuses before larger ones).
Near the end of the “review” Pell can say that

In the two preceding Pages you have some Solutions of Probl. XXIX pro-
posed p. 131, which was declared capable of innumerable Answers. And there-
fore I prescribed a Limit [No side greater than 100,000] Pag. 152, I required

24 Stedall’s essay on Pell’s mathematics [Malcolm & Stedall 2005, pp. 247–328] is
rather brief on Pell’s work on Diophantine problems. In the case of problem XXIX
the comment states only: “A further problem [...] fills most of the remaining sixty
pages” (p. 311). The sources and solutions to problem XXIX are discussed in [Costa-
bel 1950; Hofmann & Costabel 1952], but an analysis of Pell’s treatment is unfortu-
nately lacking, as Costabel [1986, p. 324] later acknowledged.
25 This “review” can be found on pp. 121–128 for Problem XXVII, pp. 142–174 for
Problem XXIX. The solutions are actually integer triangles and thus consist of three
numbers (a; b; c), Pell’s “review” focuses mainly on the hypotenuse of the triangle.
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that the Enumeration of them should be orderly, pag. 159. I declared that I
would have that Enumeration Complete, giving All the answers that do not ex-
ceed 100,000 in their greatest side. [Rahn 1668, p. 168]

This conclusion sums up the feature that is particular to Pell’s take on
Diophantine problems: he sought methods to generate an orderly and
complete enumeration of answers. 26 Finally, after the “review”, Pell gives
another method of solution where the disentanglement of the disorder in
the answers is easier. 27

The crucial tools in the “review” of van Schooten’s methods and the list
of solutions were tables. 28 For both Problems XXVII and XXIX Pell used
a table of squares 29 and the Table of Incomposits. 30 More specifically, the
Table of Incomposits was pivotal in establishing Pell’s orderly enumeration. It
was used to find the greatest common divisor of three numbers (this being
easier with the help of a table than with a repeated Euclidean algorithm).
Now, to avoid the “inverted repetition” it was mandatory to divide by the
greatest common divisor at a certain point in the solution process (p. 147).
In order to repair the “confused anticipation” one then had to reorder the
list of solutions according to their greatest common divisors (p. 152 ff.).

26 Two additional remarks may be added here. First, one can wonder if Pell’s “or-
derly and complete Enumeration” is connected in any way to Regula VII of Descartes’
Regulae ad directionem ingenii where a “sufficienti et ordinata enumeratione com-
plecti” [Descartes 1701, p. 18] is demanded. Although this requirement is absent in
Descartes’ Discours de la Méthode (1637) and the Regulae were only published posthu-
mously, Pell may have had knowledge of Descartes’ manuscript during his years in
the Low Countries. Second, in the analysis of the sources of Problem XXIX Pierre
Costabel and J. E. Hofmann both remarked that in the 17th century, with the notable
exception of Pierre de Fermat’s work, there is “une impuissance [...] à pousser les
questions de théorie des nombres jusqu’aux considérations exhaustives et au point
de vue existentiel” [Hofmann & Costabel 1952, p. 326]. One should add Pell as an
exception.
27 These are Problems XXVIII for XXVII and XXX for XXIX (pp. 131 and 174–188).
28 It is informative to compare Pell’s approach to number problems with Frenicle
de Bessy’s methods as analysed in [Goldstein 2001]. Frenicle used tables as a heuris-
tic tool, while Pell used them as a systematic instrument for generating and ordering
solutions.
29 See p. 130; 148. In 1668 Pell used Paul Guldin’s table of squares [Guldin 1635,
post p. 228], later he calculated a square table of his own [Pell 1672].
30 See pp. 129; 147; 152–153.
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It seems that Diophantine problems and specifically the generation of
solutions in the right order stimulated Pell to calculate auxiliary tables.
Both Brancker’s Table of Incomposits and Pell’s own Table of Squares are in-
stances of such auxiliary tools, directly linked with specific problems. Both
tables also have the same upper limit (100,000) and fulfill the condition
that all numbers in the table should be in natural order without gaps. This
substratum clarifies the philosophical importance Pell ascribed to a table
of “prime truths”. Such a table would not only combinatorially generate
all composed truths, but would also be able to generate them without
gaps, in the right order. Using such a table, one can prove or disprove a
composed statement. If the statement is in the table of calculated solu-
tions, it is true, if not, it is false; a “disorderly mixture of answers” does not
allow for such a verification of truth or falsehood. As a matter of fact, the
table of incomposites seems to have constituted, for Pell, the equivalent
of the book catalogue, as suggested in his Idea of Mathematics (cf. quote
p. 141 above). 31 Of course, as van Schooten had already pointed out, the
Table of Incomposits has many possible applications. The announcement of
Pell’s Algebra in the Philosophical Transactions listed some of these:

Thirdly, as to the Table of Incomposits, no Book but this extends it to above
Ten thousands, some of the uses whereof are declared in the Title [i.e. “factors
or coefficients”], others in the Book; and even in Common Arithmetick, it is of
excellent Use for the Abbreviation of Fractions, and for giving of all the aliquot
parts of a Number proposed, useful for the Depression and Resolution of Æqua-
tions, as is taught by Albert Gerard [sic], and van Schooten. [Phil. Trans. 3
(1668), p. 689]

The reduction of a fraction to its least denominator was indeed men-
tioned [p. 34] and taken up again in the explanation of the Table.

Pell’s Table was arranged in 21 columns and 40 rows, for the hundreds
and units respectively. These dimensions are a consequence of the fact that
numbers divisible by 2 and 5 (though not 3) are excluded and that only the
smallest factor is given. The result is:

31 This follows from a letter of Henry Oldenburg to Leibniz where Oldenburg re-
lates Pell’s discoveries following Pell’s own words [Gerhardt 1849–1863, I, p. 98]. In
this letter, the table is called “cribrum Erasthosthenis”, Erathosthenes’ sieve.
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a complete and orderly enumeration of all incomposits between 0 and 100000.
[Rahn 1668, p. 193]

Little is said of the actual calculation of this Table of Incomposits. Brancker
wrote that Pell had taught him methods of calculating and extending the
table, but no theoretical details are given. 32

He [Pell] shewed me the way of making the Table of Incomposits, of examining
it, and of continuing as far as I would. He encouraged me to extend it to 100
thousand. [Rahn 1668, non-pag. preface]

Moreover, Brancker himself nearly despaired at the state of correctness
of the table:

I was very sensible of the bad effects of perfunctoriness in Supputating, Tran-
scribing or Printing of it [the Table]. My care therefore was not small, yet pag.
198 is almost filled with Errata, and I dare not warrant that non have escaped
unseen. [Rahn 1668, non-pag. preface]

Page 198 contains a list of 96 errors, some of them printing errors. Dur-
ing the publication process of the Algebra (Jan.–Feb. 1667), John Collins
had written to John Wallis (1616–1703) regarding the translation. In a let-
ter to Collins that arrived after publication, Wallis gave a list of 145 errata in
the Table, at least 10 of which Brancker had not spotted. Collins communi-
cated the list to Pell, who in his turn communicated it to Brancker, who in
the meanwhile had found 19 additional errors. 33 This slow and inaccurate
process of control led Brancker to conclude: “I yet doubt its exactness”.

Wallis published his “Catalogue of Errors” some years later in A Discourse
on Combinations, Alternations and Aliquot Parts [Wallis 1685a, pp. 135–136]
appended to his Treatise of Algebra [Wallis 1685b]. 34 Wallis claimed to have
examined the whole table “in the same method and with the same pains as
if I were to Compute it anew”, and listed 30 additional errors or misprints.
More convinced than Brancker, Wallis added:

32 See, however, [Malcolm & Stedall 2005, pp. 256–7] for earlier work of Pell on fac-
toring, by way of summing up the digits.
33 All letters in July 1668, [Beeley & Scriba 2005, II, pp. 469–470; 525–528; 533–535].
34 This text, including the error list, is also reprinted in the Latin translation of the
Treatise in [Wallis 1693, p. 483ss.].
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Figure 2. A specimen of Brancker’s Table of Incomposits

the Table will then be very accurate; and (I think) without any Error. [Wallis
1685a, p. 135]

Wallis mentioned the table in connection with the problem of decom-
posing compound numbers into their aliquot parts, presenting the prob-
lem both in a numerical (1123) and a coefficient/literal (aabc) notation.
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This followed the approach of van Schooten’s Problems III and IV. His-
torically, Wallis’ Treatise and Discourse both helped to strengthen an “arith-
metic approach to algebra” [Pycior 1997, p. 125]. This approach had al-
ready been announced by Oughtred and Pell 35, but Wallis explictly advo-
cated the use of the more powerful and universal methods of algebra and
arithmetic in demonstrations over the geometric approach [Pycior 1997,
pp. 118–134].

The Table of Incomposits was often recycled. It was first reprinted by John
Harris in his Lexicon Technicum, following the entry Incomposite Numbers
[Harris 1707 & 1710, II, Incomposite]. Harris’ entry was almost a word
for word repetition of Brancker’s description of the Table (i.e., [Rahn
1668, pp. 193 and 196]) and gave the table, correcting the errors given by
Brancker but not those given by Wallis, exactly as printed in the Algebra. 36

Pell’s Table was also reprinted as an appendix to volume XIII (1765)
of the famous Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des
métiers. 37 The table is described under the rubric premiers, nombres.

A l’occasion des nombres premiers, nous insérons, à la fin de ce volume,
une table qui nous paroı̂t assez bien étendue, & qui est tirée d’un livre anglois
d’algebre assez ancien & assez peu connu [Diderot & D’Alembert 1751–1765,
XIII, p. 289]

As in Harris’ Lexicon, the table was reprinted with Brancker’s correc-
tions, but not Wallis’. 38

35 On Pell’s influence on Wallis’ work see [Stedall 2002, pp. 141–153] and [Malcolm
& Stedall 2005, pp. 313–20].
36 The second edition of Harris’ Lexicon dropped the table but kept the description.
37 Dickson [1919–1927, I, p. 349] consulted a later edition of the Encyclopédie (1780,
vol. II) and failed to note that this is a reprint of Pell’s table.
38 For example, a superficial inspection revealed that the entry for 99443 is changed
to 77 in Harris’ table according to Brancker’s instructions. In the Encyclopédie, it has
been correctly changed to 277. However, it seems unlikely that a recalculation was
done, since the errors Wallis indicated went unnoticed and in 1770 Lambert found
60 more errors (see 3.1). It is more likely that Rallier des Ourmes contributed the
entry to the Encyclopédie; he published a small article on factor tables later that year
[Rallier des Ourmes 1768] and had perhaps corrected a few entries while adapting
the Lexicon-reprint of Pell’s table for inclusion in the Encyclopédie.
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2.3. German Reception in the early 18th Century

The endeavours of Brancker would remain unsurpassed for more a cen-
tury, but his table to 100,000 was also hard to get hold of. While, for in-
stance, Wallis’ Treatise on Algebra and its Latin translation were quite accessi-
ble in continental Europe, the book by Rahn, Brancker and Pell was not. 39

Only the inclusion of the table in the Encyclopédie in 1765 made it accessi-
ble to a larger public. However, many knew of Pell’s table, mainly through
the mediation of Wallis. The most ironic part then of the history of fac-
tor tables in the 18th century is that many interested in mathematics knew
that Pell’s table existed, but were unable to obtain a copy, and thus had to
calculate the table again. This was the case of Poetius and Lambert.

The reception of 17th century English algebra on the continent, and es-
pecially in the German-speaking, protestant countries, was a complex and
multi-faceted process in which many personalities and media figured, but
that process has so far not been adequately described or studied. Our treat-
ment will therefore be rather short and will focus mainly on some devel-
opments that are important for the history of factor tables. It is, however,
important to keep in mind that this history has to be situated in the more
general context of the transmission of ideas between England and protes-
tant Germany.

G.W. Leibniz (1646–1717) was one person who was rather well informed
of the doings of the British algebraists through his correspondence with
the secretary of the Royal Society, Henry Oldenburg, who was of Ger-
man origin. Oldenburg (and indirectly Collins, who composed drafts
of Oldenburg’s letters) had started the correspondence with Leibniz in
1670, a correspondence that lasted until 1679 [Gerhardt 1849–1863, I,
pp. 11–168]. In 1673 Leibniz also visited London and met with Hooke

39 E.g., Poetius, Lambert, Kästner and Lagrange knew the book by hearsay, but none
of them was ever able to inspect a copy. Rahn’s German version seems to have been
even rarer. All four, however, knew Wallis’ work, Poetius and Kästner often quoted
from it.
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and Boyle, but also Pell. 40 When Wallis’ Treatise on Algebra appeared in
1685, Leibniz reviewed it for the Acta Eruditorum [Leibniz 1686a]. 41 In
1695 Leibniz started a correspondence with Wallis that lasted until 1700
[Gerhardt 1849–1863, IV, pp. 1–82].

Through Leibniz’s mediation there was a considerable reception of En-
glish algebra in the German states. When Augustinus Vagetius sollicited
Leibniz’s opinion on how to write a textbook on algebra in 1696, Leibniz
[1923–2006, III, 6, pp. 780-81] replied that algebra and arithmetic (letters
and numbers) should best be explained at the same time, an idea rather
close to Wallis’. Following Leibniz’s recommendations, Johann Michael
Poetius was one of the writers who drew largely on Wallis in writing a text-
book, and Christian August Hausen (1693–1743), mathematics professor
in Leipzig, was one of the first to introduce the English style of algebra in
Germany, using Newton’s Universal Arithmetick in his courses [ADB 1875-
1912, 15, pp. 440–441]. One of Hausen’s students was Abraham Gotthelf
Kästner (1719–1800), who would later become professor of mathematics
at Göttingen and write influential textbooks that stressed the need to base
arithmetic on the concept of number [Kästner 1758, non-pag. Vorrede].
Thus, although Wallis’ arithmetic approach to mathematics was more or
less forgotten in Britain, or rather, was superseded by the mathematics of
Isaac Newton, who dominated the British mathematical scene throughout
the 18th century, the idea got ‘absorbed’ and transformed in 18th century
Germany.

40 In this context, consider Leibniz’s letter to Abbé Galloys from December 1678.
Leibniz claimed to have a method to resolve all Diophantine problems, giving all so-
lutions in proper order or showing its impossibility, after a discourse on the use of ta-
bles in literal algebra [Gerhardt 1849–1863, I, p. 185]. The words of this letter match
up very closely with Pell’s own statements, though Leibniz’s letter does not mention
Pell.
41 Later, Leibniz also reviewed I. Newton’s Arithmetica Universalis [Leibniz 1686b].
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As mentioned, one of Wallis’ readers was J.M. Poetius 42, who followed
Wallis’ work in writing his Anleitung zu[r] arithmetischen Wissenschaft, vermit-
telst einer parallelen Algebra (1728). 43 Poetius wrote this arithmetic and al-
gebra textbook following a suggestion by Leibniz. 44

I will in this book follow Mr. Leibniz’s proposition, and conjoin common
arithmetic as much as possible with literal calculus [i.e., algebra], but I will set
the latter apart in a smaller print, so that beginners (or also those who shy away
from Algebra) may skip it at first reading according to their preference. In this
way, one will have on the one hand the main rules and examples of the oper-
ations, on the other hand one will comprehend the reasons from which these
rules spring, and consequently learn to understand the method of proceeding
through demonstrations. [Poetius 1728 & 1738, p. 54] 45

This explanation of the different levels of reading is somewhat remi-
niscent of Pell, but, in fact, Poetius here subscribes to a method and pro-
gramme Christian Wolff (1679–1754) had started. In the introduction to
Auszug aus den Anfangs=Gründen aller mathematischen Wissenschaften, Wolff
[1717] had argued for the introduction of arithmetic into general educa-
tion, on the one hand because of its practical use, on the other because
of its logical order and structure, both aspects working together for the
enlightenment of common sense. 46 Methodologically, this implied two

42 Unfortunately, we have been unable to find any biographical information on Po-
etius so far.
43 The dependence is clear from the content, but also shows through the numerous
references. Poetius does, however, quote also many other authors such as Oughtred,
French textbooks and, of course, many German writers.
44 The reference is to Leibniz’s letter to Vagetius.
45 Original: “Ich werde hierinne dem Vorschlag des Herrn von Leibniz folgen, und
die Buchstaben=Rechnung mit der gemeinen Rechnung so viel möglich conjungiren,
jedoch jene bey dieser vermittelst des kleinern Drucks a parte setzen, damit die An-
fänger, oder auch diejenige, so sich vor der Algebra scheuen, sie nach Gefallen im er-
sten Durchlesen auch übergehen können. denn also wird man dennoch eines Theils
die Haupt=Reguln und Exempel zu denen Operationen haben, andern Theils aber
wird man die Gründe, woraus dieselben Reguln entsprungen, verstehen, und einfol-
glich den Modum procedendi per Demonstrationes begreiffen lernen.”
46 We should add that Erhard Weigel (1625–1699), professor in Jena, was the first
to launch these ideas and that he had a direct impact on both Leibniz and Wolff, see
also [Vleeschauwer 1932]. See also [Bullynck 2008, pp. 565–567].
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changes to the standard style of arithmetic book then prevalent in Ger-
many. First, a multi-layered text was given, appealing to both beginning
and advanced students, often even distinguishing this in print, with a big
font for the main concepts and rules and a small font for the advanced
comments and proofs. Second, all rules were proven and all words or con-
cepts neatly defined to emphasize the order and structure. Poetius imple-
mented both requirements. However, contrary to Wolff, he did not rely
on Euclidean proofs with definitions and logical deductions, but endorsed
the development started by the British authors of algebra texts, using alge-
braic demonstrations. This is the meaning of arithmetic in parallel with
algebra: Poetius gives the demonstration of an arithmetic rule by translit-
erating the rule into algebra. For example, to show that 5-3 gives 2 because
3 plus 2 makes 5, Poetius would use c� b = a and convert it into c = b+ a.

The construction and structure of signs and numbers was an important
topic in Poetius’ book, in line not only with the English tradition, but
also with Leibniz’s and Wolff’s philosophy of cognitia symbolica, knowing
through signs. Knowledge of how (numerical) signs are structured en-
hances the use of these signs to know and investigate the world. 47 In
an introductory chapter Poetius stressed the Indian provenance of the
Hindu-Arabic numerals 48, and devoted four pages to the explication of
non-decimal positional systems. 49 The conclusion of this introductory
chapter was:

47 For a good introduction into 18th century semiotics see [Meier-Oeser 1998];
more specifically for semiotics within mathematics see [Knobloch 1998].
48 This was a matter of dispute between Wallis and Vossius. See the Treatise by Wallis
[1685b, p. 8] and De scientiis mathematicis by Johan Gerard Vossius [1650].
49 We list the references mentioned by Poetius to show the popularity of the topic
in Germany at the time. The Tetractys of Erhard Weigel [1672] was a positional num-
ber system to base four. After Weigel, G.W. Leibniz published his idea of a dyadic (i.e.
binary) number system in 1703. Leibniz [1703/1720, p. 226] thought that the binary
system might provide a way to find a law behind the progression of prime numbers,
see [Mahnke 1912/13; Zacher 1973]. Leibniz’s idea was followed and expanded upon
by Dangicoure in the Misc. Berol. (1710), Pelecanus (1712) and Wiedeburg (1718).
These last two give an introduction to calculating with binary numbers (including di-
vision). Both Weigel and Leibniz regarded their invention of a non-decimal numer-
ation system (with the four basic arithmetic operations included) as a philosophical
tool, reflecting and representing some intrinsic quality or structure of reality in terms
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In this way, one needs but few signs and names to designate expressions of
both the largest and smallest numbers. [Poetius 1728 & 1738, p. 13] 50

This remark, pertaining to the semiotics of signs (to use a contempo-
rary way of describing this), is typical for the context in which the first Ger-
man factor table appeared. Using another analogy from medicine, Poet-
ius would call his factor table an Anatomia Numerorum, Oder Zergliederung der
Zahlen Von 1 bis 10000. It lists all factors of all numbers to 1,000, and of all
odd numbers not divisible by 5 and 3 between 1,000 and 10,000.

In the introduction, Poetius referred to Pell’s table to 100,000, men-
tioned in Wallis. Since Poetius had been unable to find a copy, he had
calculated a (smaller) table by himself up to 10,000 [Poetius 1728 & 1738,
pp. 39–40]. This anatomy of numbers was followed by a Practicam, a sec-
tion on the advantages and uses of the table, such as the manipulation of
fractions, arithmetic and geometric series. Diophantine problems are not
mentioned. As far as the construction of the table is concerned, Poetius
referred back to the main text on arithmetic, where he had explained
the “Kenn-Zeichen” of the prime numbers, or the “Symbolum primi ge-
neticum” [Poetius 1728 & 1738, p. 141]. A first class of such characteristics
was given under the heading “Division”, where the rules are given to deter-
mine whether a number is divisible by 2, 3, 4, 5, 7, 9 and 11. These rules
were standard in most textbooks on arithmetic, and were generally called
the “Kenn-Zeichen” of the numbers. The classic Demonstrative Rechenkunst
by Clausberg [1732], for instance, devoted some 60 pages to them. For
Poetius, these characteristics were tools for the construction of factor
tables. A second class of factoring auxiliaries appears in the section on
powers:

of the number two or four. It may be remarked that the development of number sys-
tems by Weigel and Leibniz seems to be independent of Caramuel’s invention of non-
decimal number bases in 1670. Caramuel does not give the rules of calculating with
the numbers (except for base 60), while Weigel and Leibniz do. Also, whereas for
Weigel and Leibniz their number systems constituted a possible perfect notation for
both science and philosophiy, Caramuel seems to propose a pluralistic philosophy of
numeration systems, cf. [Høyrup 2008, pp. 15–17].
50 Original: “Auf solche Art hat man zu den Expressionen so wohl der größten, als
auch der kleinsten Zahlen nicht viele Zeichen und Nahmen von nöthen.” Authorities
quoted at this point are Wolff [1713] and Christian August Hausen [1715].
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To find whether a number with large aliquot parts has factors, or if it is a
prime number?
We mentioned this problem in §397, and this problem also belongs to the use
of square tables.
One subtracts the given number (if it is not a square) from the next greater
square, until the remainder is a perfect square, then the root of the greater
square + the root of the smaller square gives the larger factor, and the root of
the greater square � the root of the smaller square yields the smaller factor.
[Poetius 1728 & 1738, p. 299] 51

With a table of squares at hand, this elementary method can indeed help
to determine the factors. Poetius appears to have been the first factor table
maker who explicitly indicated the methods he used in the construction.
Curiously enough, only methods working with one number at a time are
mentioned, whereas Eratosthenes’ sieve does not occur at all 52.

Poetius’ factor table was later reprinted in the Vollständiges mathemati-
sches Lexicon [Wolff & Richter 1734/1742, II, pp. 530ss.], originally edited
by Christian Wolff (1716), later reworked and extended against Wolff’s will
by G.F. Richter, who inserted the table in Volume II (1742). 53 Some years
later, a Nürnberg military man, Peter Jäger, calculated a list of primes to
the full 100,000 (actually to 100,999) and offered his complete table for
sale at the steep price of 2,000 Thalers. Halle’s professor of medecine, J.G.
Krüger [1746], however, published the table without paying. Apparently
without knowing of Pell or Poetius, H. Anjema of Franeker (Netherlands)
also undertook the calculation of all factors of numbers under 100,000, but

51 Original: “Zu finden, ob eine ungrade schwehrtheilige Zahl einige Factores hat,
oder ob sie eine Prim-Zahl ist?
Hiervon ist schon oben im 397 § gedacht worden, und gehört dieses Problema auch
mit zur Nutzung der Quadrat-Taffeln.
Man subtrahiere die vorgegebene Zahl, (so sie nicht selbst eine Quadratzahl ist,) von
denen nechstfolgenden grössern Quadraten, so lange biß der Rest ein vollkommen
Quadrat, so giebt des grösseren Wurtzel + des kleinern Wurtzel den grössern Fac-
torem, und d es grössern Wurtzel – des kleinern wurtzel, den kleinern Factorem.”
52 As Verdonk [1966, p. 167] has shown, the original descriptions of the cribrum
Erasthostenis in Nichomachus and Boethius seem to have been little known in the 16th
century. This seems to have persisted in the 17th century. Only in the 18th century
did Rallier des Ourmes [1768] publish a description, and Horsley [1772] edited both
text excerpts.
53 See [Kästner 1786, pp. 556-57] for the publication history.
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died when he had reached 10,000. 54 After his death, the editors Sam. and
Joh. Luchtmanns published the extant part. Anjema’s table consisted of
302 pages, because he not only indicated all factors for all numbers, but
also included 1 and the number itself in the list [Kästner 1786, pp. 558-
59].

3. JOHANN HEINRICH LAMBERT’S TABLE PROJECT

“It seems at any rate that calculation and the construction of tables
have become Mr Lambert’s second nature, as it seems to cost him

no more time and effort than plain writing.” 55

This was the state of the art regarding factor tables in the year 1770,
when J.H. Lambert published several appeals for tables in general, and fac-
tor tables in particular. This event would dramatically change the history of
factor tables and leave a mark far into the 19th century. Johann Heinrich
Lambert (1728–1777) was born in Mulhouse (Alsace) to poor parents, but
through private study and determination he became a philosopher, physi-
cist, linguist and mathematician of importance. In 1748, Lambert became
tutor of the children of the Swiss confederation president von Salis in Chur.
In this way, Lambert not only became acquainted with many works in the
rich library of the Salis family, but in 1756–58 he also visited Göttingen,
Hannover, Utrecht, Leiden, Turin with his pupils. This trip brought him
into contact with scholars in various European centers of learning. Among
the mathematical books which Lambert read quite early on were Wolff’s
Anfangsgründe and Poetius’ Anleitung.

As he recorded in his scientific diary, the Monatsbuch, Lambert started
thinking about the divisors of integers in June 1756. An essay by G.W.
Krafft (1701–1754) in the St. Petersburg Novi Commentarii seems to have

54 Some biographical detail can be found in [Mathematical Tables and other Aids to
Computation 3 (24), (Oct. 1948), pp. 331–332].
55 Original: “Wenigstens muß das Rechnen und das Tabellenmachen dem H. Lam-
bert schon so zur andern Natur worden seyn, daß es ihm nicht mehr Zeit und Mühe
kostet, als gemeine Schrift.” (review of Lambert’s Beyträge zum Gebrauche der Mathe-
matik und deren Anwendung, Band II (1770), in: Allgemeine Deutsche Bibliothek 14 (2),
p. 322, 1771.)
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triggered Lambert’s interest [Bopp 1916, p. 17, 40]. A physicist, as-
tronomer and mathematician, Krafft was Leonhard Euler’s colleague in
St. Petersburg and had already published on perfect and amicable num-
bers. His [Krafft 1751/1753] was a survey of known facts and techniques
to factor large integers. Krafft referred to van Schooten’s list of primes
and Poetius’ factor table and indicated some errors in the latter. Then he
went on to discuss the “prime-formula” 6n�1 (due to Jacob Bernoulli and
Leibniz [1678]) 56 and explained how versions of Fermat’s Little Theorem
(as it is called today; an odd prime p divides ap � a for all a) may be used
for factoring, referring to Euler [1732/1738]. 57

3.1. Simple Ideas, Prime Numbers and Tables

From 1760 to 1765 Lambert worked on his major philosophical works
[Bopp 1916, p. 47] in which he merged Wolff’s cognitia symbolica with John
Locke’s anatomy of concepts [Locke 1690]. Lambert wanted a reform of
philosophy where the basic principles would not be fairly arbitrary defini-
tions (as with Wolff), but would be acquired through an anatomy of the
concepts available (following Locke). This reform was to enable philoso-
phy to make progress by accumulating data, theorems and theories, just as

56 I.e., all prime numbers are necessarily of the form 6n�1, because 6n�2 or 6n�3
are divisible by 2 or 3 respectively.
57 Euler’s paper only contained a statement of Fermat’s Little Theorem, not a proof.
Euler proved the theorem in 1736 (published 1741) and showed in 1747 (published
1750) how to use it for factoring. Krafft did not refer to those later papers, but seems
to have known their content as he gave a proof and application of Fermat’s little the-
orem.
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science did. The scientific method is explained in the Neues Organon [Lam-
bert 1764] 58 The anatomy of basic concepts is performed in Anlage zur Ar-
chitectonic [Lambert 1771]. 59

To carry out this anatomy of concepts and to re-combine simple con-
cepts (“das Chaos auseinander lesen”), tables were of great value to Lam-
bert. Lambert often used a topical table as a heuristic tool in his investiga-
tions, whether philosophical or scientific:

A topical system, which would be the abstraction of what can be thought, de-
termined, researched for any object [.. .] an inventory, a form of all things [.. .]
that one can use when one wants to know something, both the thing in itself
and in its relationships to other things. [Lambert Briefe, I, pp. 284–85] 60

Lambert saw the anatomy of a number system as an instance of such a
topical table:

The architecture of numbers is the abstraction of all those things where one
calculates with numbers or discrete quantities. It is a general type, a form, and
the relationships and transformations of numbers have arithmetic as their own
theory. [Ibid.] 61

58 The title of this work, of course, refers to both Aristotle’s Organon and Francis
Bacon’s Novum Organum (1620). Lambert claims that his Organon is more complete
than those of his predecessors, because it is comprised of four parts: The Dianoiol-
ogy (laws of thought), the Alethiology (the doctrine of truth), the Semiotics (the doc-
trine of signs), and the Phenomenology (the doctrine of appearances). Among the
many methods proposed by Lambert are an algebraic calculus for logical deduction
(in the Dianoiology); an algebraic view of language (in the Semiotics) and an alge-
braic calculus to determine the degree of verisimilitude of historical accounts (in the
Phenomenology).
59 This work was published in 1771, but had been already finished in 1765.
60 Original: “Ein topisches System, welches ein Abstractum wäre, von allem was sich
bey einem jeden Objecte gedenken, betrachten, bestimmen, untersuchen läßt [...]
ein Inventarium, ein Formular etc. von allem [...], was bey jeder Sache, wenn sie an
sich und nach ihren Verhältnissen erschöpft werden sollte, zu suchen ist.” (Lambert
an Holland, 15.8.1768) Lambert’s topical table was published in Nova Acta Eruditorum
[Lambert 1768].
61 Original: “Nun ist das Zahlengebäude gleichsam das Abstractum alles dessen, wo
man mit Zahlen rechnet oder aller Discreten-Quantitäten. Es ist ein allgemeiner Ty-
pus, ein Formular davon, und die Verhältnisse und Verwandlungen der Zahlen haben
die Arithmetik als ihre eigene Theorie.”
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In this analogy, it is hardly surprising that a table of factors becomes the
metaphor for a philosophy having a table of simple concepts at its disposi-
tion. 62

[In this anatomy of concepts] one takes a concept and looks up its inner de-
terminations, which are more or less like its factors and prime numbers. [Lam-
bert Briefe, I, p. 24] 63

The anatomy of concepts is paralleled by an anatomy of numbers, anato-
mia numerorum, a peculiar combination of words that one encounters not
only in the title of Poetius’ table, but also in the title of [Lambert 1769].

Reforming philosophy meant for Lambert also reforming the organi-
sation of knowledge. In 1765, Lambert became a member of the Berlin
Academy, a position he kept until his death in 1777. During this Berlin pe-
riod he devoted himself to the dissemination and advancement of sciences
in general, and to the editing of tables in particular. From 1770 onwards,
two extensive table projects absorbed nearly all of Lambert’s time. The first
one, supported by the Academy and in collaboration with his colleagues
Bernoulli, Schulze, Lagrange and Bode, was a collection of astronomical
tables [Bernoulli et al. 1776]. The aim was to bring together all useful and
necessary astronomical tables in one collection so that they would be acces-
sible to the individual astronomer and would eliminate printing and calcu-
lation errors through comparison and recalculation. In this way, Lambert
claimed:

if all the best astronomical tables [.. .] were to be lost, they could be recon-
structed from our collection [Lambert Briefe, V, p. 154] 64

In 1770, Lambert started up a similar kind of compilation of mathemat-
ical tables.

62 As far as we know, Lambert hit upon this metaphor independently of John Pell
(see 2.2 above).
63 Original: “[Bey dieser Anatomie der Begriffe] hält man sich schlechthin an den
Begriff selbst, und sucht seine inneren Bestimmungen auf, welche gleichsam seine
Factores und numeri primi sind.” (Lambert to Holland, 21.04.1765)
64 Original: “Wenn die besten astronomischen Tafeln [...] sollten verlohren gehen,
so würden sie aus unserer Sammlung wieder hergestellt werden können.”
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There are numbers, proportions, formulae and calculations that deserve to
be done and written down once and for all, because they occur very often, so
as to avoid the trouble of finding or calculating them over and over again. This
is the reason why in all parts of mathematics one has tried to put everything in
tables that can possibly be put into tables. [Lambert 1770, p. 1] 65

The publication of the Zusätze zu den logarithmischen und trigonometrischen
Tafeln [Lambert 1770] was a personal project of Lambert’s (without the
support of the Academy). Therefore, at the same time, Lambert launched
an urgent appeal to the general public to help him extend this collection
of tables.

Prominently featured in Lambert’s collection of tables is a factor and a
prime table, filling pages 2 to 117 of the 210 pages of the book. As Lambert
recounted in the introduction to the Zusätze, Poetius’ table to 10,000 was
the first factor table he saw and although Poetius referred to Pell’s table,
Lambert had been unable to find a copy. At first, Lambert wanted to use
Poetius’ table for his collection:

I satisfied myself with the table calculated by Poetius, and just brought it into
a more flexible order. 66 I occasionally showed my table, before its printing, to
Mr de la Grange. He did not know of any other tables similar to it, and thus
he wished to have copies of the table once it was printed, to send them to his
correspondents. As the printing was delayed, Mr de la Grange looked to see
whether he could find more of these tables. He did not search in vain. Pell’s
table, that in fact goes to 100,000 and thus goes 10 times further than Poetius or
Anjema, could be found in the Dictionnaire encyclopédique and in Harris’ Lexicon
of Arts and Sciences. As I thereupon looked into Wallis’ Opera, I found the 30
printing errors Wallis had indicated in Pell’s tables and Pell himself had missed,
all just as Poetius mentions. [Lambert 1770, pp. 4–5] 67

65 Original: “[es gibt] Zahlen, Verhältnisse, Formeln und Rechnungen, die eben da-
her, daß sie öfters vorkommen, ein für allemahl gemacht und aufgezeichnet zu wer-
den verdienen, damit man der Mühe, sie immer von neuen zu finden oder zu berech-
nen, überhoben seyn könne. Dieses ist der Grund, warum man in allen Theilen der
Mathematick, was sich in Tabellen bringen liesse, in Tabellen zu bringen gesucht hat.”
66 This specimen, a factor table to 10,200 was printed in [Lambert 1765-1772, II,
pp. 52–53].
67 Original: “[ich ließ] es bey der von Poetius berechneten Tafel bewenden, und
begnügte mich sie in eine geschmeidigere Ordnung zu bringen. Ich zeigte hierauf
meine Tafel, ehe sie abgedrückt wurde, gelegentlich dem Herrn de la Grange. Es
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Figure 3. A specimen of Lambert’s Table of Divisors, with C.F.
Gauss’ handwritten correction
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Lambert used Poetius’ table, Pell’s table in the two reprinted versions
and Wallis’ corrections to check the table before publication. Following
Pell’s table, Lambert excluded numbers divisible by 2 and 5 and only noted
the smallest factor, but he also excluded the numbers divisible by 3 and
likewise changed the arrangement of the table. As Lambert had explained
in [Lambert 1765-1772, II, pp. 42–53], the regularities of the decimal sys-
tem could be used for checking the table, and he advised the following
arrangement: the hundreds still figure over the columns, but are now ar-
ranged in three separate progressions (3n, 3n + 1, 3n + 2); the units are
still in the rows but those divisible by 2, 3, and 5 are excluded. In this way,
there are 3000 numbers per page, and certain regularities are easier to ob-
serve. Lambert noted more than 60 errors in addition to those given by
Wallis [Lambert 1770, p. 5].

3.2. Lambert’s Contributions to a Theory of Composite and Incomposite Numbers

Lambert did more than deliver the factor table. He also addressed the
absence of any coherent theory of prime numbers and divisors. Filling
such a lacuna could be important for the discovery of new and more pri-
mality criteria and factoring tests. For Lambert the absence of such a the-
ory was also an occasion to apply the principles laid out in his philosophical
work. A fragmentary theory, or one with gaps, needed philosophical and
mathematical efforts to mature.

To this aim [prime recognition] and others I have looked into the theory
of prime numbers, but only found certain isolated pieces, which did not seem
possible to make easily into a connected and well formed system. Euclid has

war ihm ebenfalls weiter nichts davon bekannt, und so bezeugte er ein Verlangen,
die Tafel, wenn sie einmal abgedrückt wäre, zu haben, und selbst an seine Correspon-
denten Exemplarien davon zu verschicken. Da es sich inzwischen mit dem Abdrucke
verzögerte, so suchte der Herr de la Grange, ob er nichts weiteres von solchen Tafeln
finden könne. Er suchte auch nicht vergebens. Pells Tafel, die in der That biß auf
100000, und demnach 10mal weiter als die von Poetius und Anjema geht, findet sich
sowohl in dem Dictionaire encyclopňěedique als in des Harris Lexicon der Künste
und Wissenschaften. Und da ich daraufhin noch in den operibus Wallisi nachsuchte,
so fand ich darinn auch die von Poetius erwähnte 30 Druckfehler, die Wallis in Pells
Tafel angemerkt hat, und die sich unter den von Pell selbst angemerkten nicht fan-
den.”
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few, Fermat some mostly unproven theorems, Euler individual fragments, that
anyway are farther away from the first beginnings, and leave gaps between them
and the beginnings. [Lambert 1770, p. 20] 68

This lack of theory was much regretted by Lambert. In a comprehen-
sive discussion on the structure and acquirement of scientific knowledge
in his Neues Organon [Lambert 1764, I, pp. 386–450], Lambert had given
many tools and strategies for finding and repairing the gaps in a theory, for
building a theory and making it more complete. The theory of numbers,
in Lambert’s opinion, needed such a treatment badly.

In an essay on periodic decimal fractions, Lambert had already con-
structed some primality tests and had found a new criterion for primality. 69

In this way, there are given, for any prime a, progressions 1; m; m2; m3; m4 , etc.
for which a period of a�1 members is produced. This clearly never happens in
the case of composite numbers and thus affords a criterion for prime numbers.
[Lambert 1769, pp. 127–128] 70

This criterion comes down to the (modern) statement that every prime
number has a primitive root (using the word Euler would later introduce),
or alternately, that there exists a positional number system with base m

in which 1
p , written down in this number system, will display a period

of length p � 1. This criterion, however, is hardly efficient in practice,
since its worst case amounts to writing 1p in (p� 1)=2 different positional
systems (i.e. with base 2, 3, . . . , (p� 1)=2).

In 1770, Lambert presented two sketches of what would be needed for
something like a theory of numbers. The first dealt mainly with factor-
ing methods [Lambert 1765-1772, II, pp. 1–41], while the second gave a

68 Original: “Ich habe mich zu diesem Ende [der Primzahlerkennung] so wie auch
zu andern Absichten um die Theorie der Primzahlen näher umgesehen, und da
fand ich freylich nur einzelne abgebrochne Stücke, ohne sonderlich Anschein, daß
dieselbe so bald sollten zusammengehängt und zum förmlichen System gemacht wer-
den können. Euclid hat wenig, Fermat einzelne meistens unbewiesene Sätze, Euler
einzelne Fragmente, die ohnehin von den ersten Anfängen weiter entfernet sind und
zwischen sich und den Anfängen Lücken lassen.”
69 On decimal fractions and Lambert’s essay, see [Bullynck 2009b].
70 Original: “Sic et pro quovis numero primo a dantur progressiones 1; m; m2; m3; m4 ,
etc. quae periodum producant a� 1 membrorum, quod cum de numeris compositis
nunquam locum habeat, patet, et hincpeti posse numerorum primorum criterium.”
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more axiomatic treatment [Lambert 1770, pp. 20–48]. In the first essay,
Lambert explained how, for composite number with small factors, Eratos-
thenes’ sieve could be used and optimised. For larger factors, Lambert ex-
plained that approximation from above, starting by division by numbers
that are close to the square root of the tested number p, was more advan-
tageous. 71 For both methods, Lambert advised the use of tables. 72 The
second essay had more theoretical bearings. Lambert rephrased Euclid’s
theorems for use in factoring, included the greatest common divisor algo-
rithm, and put the idea of relatively prime numbers to good use. He also
noted that binary notation, because of the frequent symmetries, could be
helpful. Finally, Lambert also recognized Fermat’s little theorem as a good,
though not infallible criterion for primality, ”but the negative example is
very rare” [Lambert 1770, p. 43]. 73

Through Lambert’s efforts, the topic of factoring came to be discussed
in the Berlin Academy. J.-L. Lagrange (1736–1813) showed clear interest
in factor tables 74, and Johann III Bernoulli (1744–1807), pursuing Lam-
bert’s method of factoring with decimal periods, also regretted the absence
of a theory [Bernoulli 1771/1773, p. 318]. In this atmosphere, Academy
member Nikolaus von Beguelin (1716–1789), the former tutor of the Prus-
sian crown prince, wrote some essays on factoring. To this end, Beguelin
devised a new number system that combined the advantages of algebraic
and numerical notation.

Although the science of numbers is necessarily geometrical, founded on the
principle of contradiction, we know that the number signs & and the methods

71 One should bear in mind that Lambert’s range of tested numbers is between 1 and
a few million, say, up to 10-digit numbers. Nowadays we test much larger numbers,
using methods that fall into 3 categories: small, medium and large.
72 With Eratosthenes’ sieve, a table of primes can help in selecting the next sieve
number or recognizing primes. When trying to find a large factor, a table that holds
the last two or three digits of squares and a table of repeated division can help in rec-
ognizing squares or could reduce some divisions to copying down the right numbers.
73 The exceptions are composite numbers, say c, for which ac�1 � 1 (mod c) for all
a relatively prime to c. Nowadays these exceptions are called Carmichael numbers.
74 See the introduction to Lambert’s Zusätze [Lambert 1770, p. 4], Lambert’s corre-
spondence [Lambert Briefe, V, pp. 51–52; 120–121; 194] and Lagrange’s correspon-
dence [Lagrange Œuvres, XIII, p. 193].
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of expressing the various combinations are not of absolute necessity. It is a ques-
tion of choice or convention. [.. .] It is evident that the greater the number of
primitive elements, the more the arithmetical operations will be simplified, &
the sooner also we can hope to see the nature of numbers & their mutual rela-
tionships in their expressions. [Beguelin 1772b, p. 296] 75

Though the 18th century had proven Leibniz wrong in expecting that
the binary notation would reveal the mysteries of prime numbers, other
notations could be helpful for finding factors, as Lambert had pointed out,
providing examples of binary numbers which can be factorised ‘at sight’.
Beguelin applied his principle of sufficient reason (“raison suffisante”) to
this problem of finding an optimal notation. The binary system would be
the best, if it did not posess two drawbacks that Beguelin pointed out: the
notation of the numbers becomes too long, and one cannot transpose the
digits at will as one can in literal algebra, that is, in algebra ab equals ba, but
in positional notations 12 does not equal 21. His solution was a mixture
of systems: he wrote down the exponents of two that occur in the binary
expression of a number. For example, the number 19 is 10101 in binary
notation (or more explicitly: 1 � 24 + 1 � 22 + 1 � 20), and can be written in
Beguelin’s notation as 0.2.4. (or 4.0.2. etc.) [Beguelin 1772b, p. 297].

Using the advantages of his notation, Beguelin constructed formulae
for numbers with 2, 3, and 4 factors that show the general framework of
the notation. In this way, Beguelin had an approach that mechanised Lam-
bert’s remarks on binary numbers. Instead of manipulating the binary
number to find symmetries, Beguelin could look them up in a table of
formulae. Unfortunately, Beguelin soon found out that the problem was
thus reduced to a form of the combinatorial problem of partition, that is,
writing a number as a sum of certain other numbers having a specific form.
For most forms, Beguelin’s approach reduced factoring to a problem in
additive number theory which was at least as difficult. For numbers that

75 Original: “Quoique la science des nombres soit de nécessité géométrique, fondée
sur le principe de contradiction, on fait que les signes des nombres, & les méthodes
d’en exprimer les diverses combinaisions ne sont pas d’une nécessité absolue. C’est
une affaire de choix, ou de convention. [...] Il est évident que plus le nombre des
élémens primitifs, plus les operations arithmétiques seront simplifiées, & plutôt aussi
on pourra se promettre d’appercevoir la nature des nombres & leurs rapports mutuels
dans leur expression.”
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in Beguelin’s notation had no gaps (i.e., contained all exponents starting
from 0), the so-called Mersenne numbers 2n� 1, or have many gaps, such
as 2n + 1, Beguelin [1777] tediously deduced formulae. Beguelin’s essays
again display the connection between a rational philosophy of cognitia
symbolica and the research done on number systems.

Finally, it should be remarked that in 1773 and 1775, Lagrange pub-
lished his Recherches d’arithmétique in the Mémoires of the Berlin Academy,
merging Euler’s and his own results on quadratic forms, presenting the
first general treatment of reduction and equivalence of binary quadratic
forms (in later terminology). In his preface, he explicitly referred to the
use of this theory for factoring numbers:

These studies are devoted to numbers that can be represented by the formula
Bt2 + Ctu + Du2 [.. .] First I will give a way to find the different forms the divi-
sors of these numbers can have; then I will give a method to reduce these forms
to the smallest possible number; I will show how to set up tables for practical
use, and I will show how to use these tables in the search for divisors of num-
bers.[Lagrange 1773 and 1775, p. 265] 76

Lagrange had tabulated the linear divisors of a certain family of
quadratic forms. These were useful as a tool in finding particular forms of
prime numbers, or forms that exclude them. Lagrange closed his paper
with an application, showing how to factor 10,001, 10,003 and 100,003
with the help of these tables, and with a list of divisibility criteria. 77

3.3. Lambert’s Call for the Production of Factor Tables

Lambert’s first public appeal for the production of mathematical tables
was expressed in the 2nd part of his Beyträge zum Gebrauch der Mathematik

76 Original: “Ces Recherches ont pour objet les nombres qui peuvent être représen-
tés par la formule Bt2 + Ctu + Du2 [...] Je donnerai d’abord la manière de trouver
toutes les différentes formes dont les diviseurs de ces sortes de nombres sont suscep-
tibles; je donnerai ensuite une méthode pour réduire ces formes au plus petit nombre
possible; je montrerai comment on en peut dresser des Tables pour la pratique, et je
ferai voir l’usage de ces Tables dans la recherche des diviseurs des nombres.”
77 The tables are in pp. 311–312 (1773); pp. 329–330; 332–333 (1775), or also in
[Lagrange Œuvres, III, p. 695] on pages 757–758, 766–767 & 769–770. The theorems
on divisibility on pp. 345–349 (1775) resp. pp. 783–788. The divisibility criteria had
been announced two years before by Johann III Bernoulli [1771/1773, p. 321].
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(1770). In the description of his first specimen of a factor table (to
10,200), Lambert had encouraged other mathematical practitioners to
extend the table. To all calculators who wanted to join his project, Lam-
bert had promised honour, if not scientific immortality, of the sort that
Napier, Briggs, and others had earned:

I will remark that I publish this [factor] table principally so that its flexible ar-
rangement would motivate someone to add 9 more [tables of the same length],
or if he wants real immortal fame, 99 more [i.e. to 1,020,000] [Lambert 1765-
1772, II, p. 49] 78

In the introduction to the table collection, the Zusätze (1770), Lambert
elaborated on his argument. He deplored that the factor table had been
computed at least four times already (Pell/Brancker, Poetius, Anjema,
Krüger/Jäger), but that those duplicate efforts had not advanced the
table in any way.

I said that in the future these tables will be calculated from scratch again.
[.. .] Because it is a tedious labour, to calculate the table of all divisors of the
numbers from 1 to 102000 again, I have a plea for the journalists and other writ-
ers who will see this work. Namely, they will act out of humanity and do good
service to the mathematical sciences if they contribute as much as possible to the
advertisement of this work. Because if someone in the future feels like calculat-
ing such tables, he will better spend his time [...] extending the table, instead
of recomputing it once more.[Lambert 1765-1772, II, pp. 8–9] 79

78 Original: “Vielmehr werde ich anmerken, daß ich die Tabelle vorzüglich deswe-
gen durch den Druck bekannt mache, daß etwann jemand durch die so geschmei-
dige Einrichtung derselben sich bewegen lasse, noch 9 andere, oder wenn er sich
einen recht unsterblichen Namen machen will, noch 99 andere beyzufügen. [d.h.
bis 1020000]”
79 Original: “Ich sagte erst, daß solche [Faktoren- und Prim-]Tafeln auch künftig
noch von neuem werden berechnet werden. [...] Da es indessen eine langwierige
Arbeit ist, die Tafeln der Theiler der Zahlen von 1 biß 102000 von neuem zu berech-
nen, so werde ich an die Herren Journalisten und an jede andere Schriftsteller, denen
dieses Werckchen vorkommen wird, eine Bitte thun. Sie werden nemlich aus Men-
schenliebe handeln, und den mathematischen Wissenschaften einen guten Dienst
thun, wenn sie zur Bekanntmachung dieses Werkchens so viel möglich beytragen.
Denn wer nur auch künftig Lust hat, solche Tafeln zu berechnen, der wird dann im-
mer besser seine Zeit darauf verwenden [...] [die Tabelle] weiter [zu führen], als das
bereits berechnete nochmals [zu berechnen]”
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Here again, we see Lambert’s vision of science at work: science should
progress, and its results should be known and accessible to everyone.

In 1771 and 1772 two updates on the table project were published. A few
people had joined Lambert’s table project, and made some progress which
had to be made public to avoid duplication. Lambert inserted a note in the
widely read review journal Allgemeine Deutsche Bibliothek (1771, vol. 14, nr. 1,
pp. 305–306), communicating that one person (Oberreit) had calculated
the factor table to 150,000 and planned to proceed to 200,000, and that an-
other (Wolfram) had calculated hyperbolic logarithms. He also repeated
that everyone was invited to complete the system of tables. Lambert con-
cluded thus:

My address is:
A Monsieur Monsieur Lambert, Professeur Royal, Membre de l’Acad. R. de
Berlin et diverses Academies et Sociétés des Sciences, à Berlin.

Parallel to this public appeal, Lambert had also added a standard appeal
to all the private letters he sent off during the years 1770–1771:

Every now and then there are lovers of mathematics who like to calculate.
And I have reason to hope that my invitation [...] will not be in vain. If, dear Sir,
you should find someone in your vicinity who would like to undertake such cal-
culations, it would be very agreeable to me. [Lambert Briefe, I, pp. 367–368] 80

The last publicly printed update of Lambert’s table project appeared in
the third and last volume of Lambert’s Beyträge (1772). It included a four
page list of errors in the factor table which the officer Wolfram had found
and a list of tables that Lambert had already received or calculated himself,
amongst them a factor table to 339,000 [Lambert 1765-1772, III, non-pag.
Vorrede]. The table project had been mostly organized through letters,

80 Original: “Es gibt hin und wieder Liebhaber der Mathematik, die gerne rechnen.
Und ich habe Ursache zu hoffen, daß die Einladung [...] nicht ohne Frucht seyn
werde. Sollten Sie, mein Herr, in dortigen Gegenden jemand finden, der zu solchen
Berechnungen Lust hätte, so würde es mir sehr angenehm seyn.” (Lambert to Kant).
Cf. Bernoulli’s footnote on this page. In this context, it is also interesting to note that
Lambert proposed to Röhl (Sept. 1771) that the calculation of tables might provide
convenient topics for doctoral students [Lambert Briefe, II, pp. 391–392].
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everything else can be easily adjusted in a written correspondence [A.D.B. 14
(1), p. 305]

This exchange with about a dozen correspondents comprises most of
parts IV and V in Lambert’s Deutscher Gelehrter Briefwechsel, edited by Johann
III Bernoulli from 1782 to 1787, after Lambert’s death.

3.4. Calculators in Correspondence

3.4.1. Early Answers to Lambert’s Appeal

One year after the publication of the Zusätze the first contributions ar-
rived in Lambert’s hands. All in all, between 1770 and 1777, the year of his
death, Lambert entertained a correspondence with 11 persons on tabular
topics, 6 of whom were working on factor tables. 81 Restricting ourselves
to factor tables, the contributions occurred in two quite different phases:
A first one 1770–1776 (Wolfram, Oberreit, von Stamford, Rosenthal) and
a second one 1776–1777 (Felkel, Hindenburg). It is remarkable how dif-
ferentiated the social provenance of Lambert’s collaborators was: Wolfram
was an artillery officer, Oberreit an accountant, von Stamford an engineer,
Rosenthal a baker, Felkel a teacher and Hindenburg a student and later
professor. This list already gives a hint why the first phase is different from
the second; Felkel and Hindenburg were near professionals, thinking in
terms of career, whereas the others were amateurs.

As already mentioned, Isaac Wolfram had contributed a list of errors
to the factor table in Lambert’s Zusätze, his other main contributions to
the table project were logarithms. 82 Oberreit had devoted himself exclu-
sively to factor tables. He had computed up to 150,000 in 1770, to 260,000
in the Summer of 1771, and to 339,000 in 1772 [Lambert 1765-1772, II,
non-pag. Vorrede]. In 1774–5 Lambert had received Oberreit’s factor ta-
ble up to 500,000, but also the announcement that professional problems

81 These are Wolfram, Oberreit, von Stamford, Rosenthal, Felkel, Hindenburg on
factor tables; Schönberg and Röhl on square and cube tables; Baum on sine tables;
Schulze and Eißenhardt on issues of publication. The correspondences are in [Lam-
bert Briefe, II, IV & V].
82 Some biographic details and a thorough survey of Wolfram’s contributions in
[Archibald 1950].
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made further calculations quite impossible for him. Acting on this prob-
lem, Lambert found von Stamford willing to calculate the part 504,000 to 1
million, Seeing that the work did not advance quickly enough, however, he
divided the work between von Stamford (504,000 to 750,000) and Rosen-
thal (750,000 to 1 million). 83 In the end, two tables were finished, the one
by Oberreit to 504,000 and the one by Rosenthal from 750,000 to 1 mil-
lion. Unfortunately neither of them were published. J.K. Schulze, who was
designated to continue Lambert’s table project after 1777, had Lambert’s
table-related Nachlass at hand. 84 He published Wolfram’s logarithms and
Röhl’s squares and cubes in [Schulze 1778], but he never got around to
publishing Oberreit’s table. 85 After Lambert’s death, Rosenthal sent his
table to J.G. Kästner, professor at Göttingen University, but the remaining
gap between 500,000 and 750,000 prevented publication [Kästner 1786,
pp. 564–565]. 86

Lambert had had a clear plan for publishing the tables. He repeatedly
promised his correspondents they would get their “paper and ink” paid
back when it came to a publication, and that he would take care of find-
ing a publisher [Lambert 1781–1787, V, p. 61]. But publishers tended to
be rather unwilling to invest in volumes of tables which were hard to print
and hard to sell. Knowing very well the mechanisms of the printing trade
of his day, Lambert devised strategies to find a publisher:

I have to find various ways to gradually publish [these tables]. I thought the
Leipziger Buchmesse would offer the best opportunity to find publishers, in par-
ticular those who cannot find enough manuscripts because they live in remote
places. From time to time one can easily convince a publisher who has had a
bad experience with a fashionable book to count more on the durability of sales

83 The respective correspondence with Oberreit, von Stamford and Rosenthal is in
[Lambert Briefe, II, pp. 366–382 & V, pp. 10–23 & V, 24–33], a summary of the content
of these letters is given by Glaisher [1878, pp. 111–113].
84 The rest, letters and unpublished essays, was with Johann III Bernoulli.
85 See Bernoulli’s footnote [Lambert Briefe, I, p. 368].
86 In a letter to Z. Dase [1856, pp. 76–77] (dated 1850), C.F. Gauss wrongly de-
scribed this table as a factor table for numbers between 500,000 and 750,000. This
was probably due to a slightly confused recollection of Kästner’s lectures and books
which Gauss had read some 50 years prior to this letter. Cf. [Glaisher 1878, p. 113].
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than on rapidity, which is usually very iffy. That has indeed always been my best
argument. [Lambert 1781–1787, V, p. 313] 87

A more unfortunate result of Lambert’s appeal was the case of J. Neu-
mann, who, upon reading the 2nd part of the Beyträge, had decided to ex-
tend and correct Lambert’s small table (to 10,200) to 100,100. Working on
his own without contact with Lambert, Neumann [1785] finished and pub-
lished his table in Dessau. His table lists all factors, not only the smallest
one. At the time of publication, his table had unfortunately already been
superseded by Lambert’s own table to 102,000 in the Zusätze, although, as
Kästner [1786, pp. 562–3] remarked, it could be used for checking. Inci-
dentally, Vega [1797, I, pp. 1–86] used exactly this factor table in his col-
lection of mathematical tables.

3.4.2. Mechanising the Production of Factor Tables

In January 1776, the Vienna-based teacher Anton Felkel (1740–1800?)
announced to Lambert that he had found an apparatus, consisting of rods
that could mechanically find the divisors of all integers. He had come up
with this device by reading Lambert’s Zusätze, especially the remarks on the
best arrangement of a table. Felkel’s device was a mechanisation of fac-
tor table making, based on Eratosthenes’ sieve. In his letter, Felkel had
inserted a short announcement of his method, of a soon-to-be-published
table to 144,000, and of a promise to extend it to 1,000,000. Felkel’s idea
was that Lambert would publish the announcement in a journal to help
him find financial support (and to fend off competitors) [Lambert 1781–
1787, V, pp. 41–44]. Lambert inserted Felkel’s circular in the Leipziger Neue
Zeitungen von gelehrten Sachen (L.G.Z., nr. 63, 5 August 1776, pp. 507–510),
but advised Felkel to collaborate with the other calculators and start on
the second million. At the end of March 1776, however, Felkel wrote back

87 Original: “[ich] muß auf verschiedene Mittel bedacht seyn, sie nach und nach
herauszugeben. Ich dächte inzwischen, daß sich auf der Leipziger Messe die beste
Gelegenheit anbieten sollte, Verleger zu finden, zumal solche die, weil sie an abgele-
genen Orten wohnen, in ihrer Gegend nicht immer genug Manuscripte aufbringen
können. Zuweilen läßt sich ein Buchhändler, dem ein Mode=Buch fehlgeschlagen, le-
icht bereden, mehr auf die Dauerhaftigkeit als auf die meistens sehr mißliche Schnel-
ligkeit des Verkaufs zu setzen. Dieses war auch in der That immer mein bester Beweg-
grund.” (Lambert to von Schönberg)
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Figure 4. The frontispice of Felkel’s 1776 Factor Table, depicting
him with a book by Lambert in his hand, his machine at his table
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to Lambert that he had changed his plan. Constrained by the design of
his machine, processing 240 numbers per hour, on the one hand, and en-
couraged by his patrons in Vienna on the other, Felkel had decided to play
cavalier seul. He now announced a table from 1 to 2,016,000, the numbers
arranged in a way differing from Lambert’s set-up [Lambert 1781–1787,
V, pp. 62–70]. He held back with details on his method and machine, to
avoid the danger of “seeing my own work thwarted” [Lambert Briefe, V,
p. 67]. Felkel’s ensuing letters of June and July kept insisting that Lambert
ought to convince the other calculators to discontinue their work [Lam-
bert Briefe, V, pp. 70–80].

Lambert’s reaction to Felkel was irritation and silence; he expressed his
disappointment to Rosenthal [Lambert 1781–1787, V, p. 30]. In the mean-
time, triggered by Felkel’s announcement in the L.G.Z., the publisher S.L.
Crusius had a note inserted in the same Zeitung (L.G.Z., nr. 64, 8 August
1776, pp. 515–522), stating that the Magister Carl Friedrich Hindenburg
(1741–1808) from Leipzig had also found a mechanism for producing fac-
tor and other tables in 1774, some time ago, and now planned to publish a
description of the mechanism and a factor table to the fifth million [Hin-
denburg 1776b]. Hindenburg’s mechanism was a continuation of Lam-
bert’s ideas:

The advantage mostly results from a careful study of the structure of the dec-
imal number system, and is in itself so considerable that it surpasses everything
one could hope and wish for in that it changes the tedious looking up of divisors
into a nearly immediate finding, and it produces the prime numbers in their
natural order without searching and without loss of time. The method is, as
would be suspected, totally mechanical and so reliable that it becomes impossi-
ble to make errors which would not immediately be betrayed by a contradiction.
This circumstance takes away the danger of the usual miscalculations which are
inevitable with such huge quantities of numbers. [Hindenburg 1776b, pp. 144–
45] 88

88 Original: “Dieser Vortheil ist größtentheils das Resultat einer sehr sorgfältigen
Untersuchung des Decimalzahlengebäudes, und ist in seiner Art so beträchtlich, daß
es alles übertrifft, was man nur wünschen und hoffen konnte, indem er das mühsame
Aufsuchen der Theiler, in ein fast augenblickliches Finden verwandelt, und selbst
die Primzahlen, in ihrer natürlichen Ordnung nach einander, ohne sie zu suchen,
und also ohne allen Zeitverlust, giebt. Das Verfahren hierbey ist, wie man leicht
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Upon the publication of the announcement, Hindenburg opened his
correspondence with Lambert, forwarding him the text from the L.G.Z.
(August 1776). Trying to save the collaborative spirit, Lambert immedi-
ately informed all his factor table correspondents on August 13 of Felkel’s
and Hindenburg’s plans, adding complaints when writing to his correspon-
dents of longer standing, and adding an insistent request in the letters to
Felkel and Hindenburg to divide amongst them the 2nd and 3rd million
[Lambert Briefe, V, pp. 81–82 & 151–154]. To Rosenthal, Lambert wrote:

These Gentlemen apparently want to best each other, but it would be clearly
better instead for one to start where the other stops. The first one praises his
machine, the second his method. Time must tell what there is in both. [Lam-
bert 1781–1787, V, p. 30] 89

Instead of the scientific collaboration that Lambert so vividly promoted,
a series of disputes, (unfulfilled) promises and discussions ensued. 90

Felkel’s reaction to Hindenburg’s announcement was immediate. In
September he published a more extensive, though not more informative,
announcement of his plans, promising now a table to 10 million, to assert
his priority in mechanising the production of factor tables [Felkel 1776a].
As Crusius had antedated Hindenburg’s announcement to May 1776,
Felkel did the same, antedating his to June 1776. Hindenburg meanwhile
had prepared a manuscript for Lambert and Kästner that described his
method, and although nearly all presses were busy during the Leipziger
Messe, he succeeded in publishing his Beschreibung at the end of 1776
[Hindenburg 1776a]. By that time, Felkel, in his turn, had printed a first
specimen of his table to 144,000 [Felkel 1776b]. Both sent their work to
Lambert, with Felkel included an error list for his table [Lambert Briefe,
V, pp. 112–113].

vermuthen wird, ganz mechanisch, und so zuverläßig, daß es unmöglich wird einen
Fehler zu begehen, der sich nicht sogleich auf der Stelle durch einen Widerspruch
verrathen sollte: ein Umstand, der das gewöhnliche, bey einer so großen Menge
Zahlen, ganz unvermeidliche Verrechnen nicht befürchten läßt.”
89 Original: “Diese Herren wollen, wie es scheint, einander zuvorkommen, anstatt
dass unstreitig besser wäre, wenn der eine da anfienge, wo der andere aufhöret. Der
eine rühmt seine Maschine, der andere seine Methode. Die Zeit muss lehren, was an
beiden ist.”
90 See also [Glaisher 1878, pp. 113–118] for an account of the priority discussion.
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Following this series of announcements and publications, Lambert pre-
sented the plans of Felkel and Hindenburg to the Berlin Academy. In this
matter, he communicated closely with Lagrange, who acted as a kind of sec-
ond referee for Felkel’s and Hindenburg’s pretentions and productions. 91

The judgment was made in favour of Hindenburg, because his procedure
was, so to speak, ‘open source’, whereas Felkel spent 2 long pages describ-
ing his mechanism without being all too clear. Lambert made up for this
obscure description and explained it himself in a posthumously published
review of both Felkel’s and Hindenburg’s books [Lambert 1778]. In this
review, Lambert also mentioned a serious drawback of Felkel’s table: It
grouped numbers not in groups of 3n + 0; 1; 2 as Lambert had done, but
in groups of 30n+ : : : 92 and it used letters as abbreviations for the factors,
which made any connection with previous (and later) work quite difficult.

After Lambert’s death in 1777, the dispute continued. Felkel travelled
to Leipzig in the Autumn of 1783 to discuss the matter with Hindenburg
[Lambert Briefe, V, pp. 487-88]. The conflict was, however, not resolved,
and each issued a new announcement, Felkel a circular in Halle [Felkel
1784], Hindenburg an advertisement for his table to the million in the
Leipziger Messkatalog. The tables to the n-th million they promised were
never printed. However, Felkel had calculated a table to the second mil-
lion during the years 1775–1776. The first part to 144,000 was printed (see
[Felkel 1776b]) and two additions up to 408,000 were issued. These would
later be used by Vega [1797, I, pp. 87–128] for his list of primes. 93 Most
copies of these additions were not sold and were unfortunately destroyed
and/or lost during the Austrian-Turkish War (1787–1791); the paper of
Felkel’s table was recycled for gunpowder cartridges. From 1793 to 1794,

91 The correspondence with Lagrange over Felkel’s first circular, Felkel’s table and
Hindenburg’s Beschreibung can be found in [Lambert 1781–1787, V, pp. 51–52 & 120–
121 & 194].
92 This ordering is similar to Euler’s plan, see 4.1.
93 A description of Felkel’s rare 1776 tables to 408,000 and their arrangement is
given by Glaisher [1878, pp. 106–108]. In [Glaisher 1873/1874] there remains some
confusion between the 1770 original of Lambert’s Zusätze and the Latin 1798 edition.
Glaisher seems to have seen only the 1798 edition, and thus gets the data slightly con-
fused sometimes, thinking that Felkel has priority over Lambert.
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Felkel occupied himself with finding methods to reduce the bulk of the ta-
bles to 5 or 10 millions. He finally took refuge in non-decimal place value
systems, a topic he had pursued while studying periodic decimal fractions
[Felkel 1785]. Felkel considered 15 bases for the tables to 24 million,
while 65 were needed for a table to 100 million. In 1798, Felkel produced
a Latin translation of Lambert’s Zusätze, commissioned and published
by the Academy of Sciences in Lisbon [Felkel 1798]. The introduction
recounted his story, and the book contained a table to 102,000, not in
Lambert’s but in Felkel’s arrangement [Glaisher 1878, pp. 119–122].
Hindenburg, as J. Bernoulli confirmed [Lambert Briefe, I, pp. 386–87 & V,
242], had prepared the manuscript for the first two millions, but as had
been the case with his his Primtariffe 94, they never appeared in print.

3.4.3. A Short Description of the Sieve Mechanisms

Both Felkel’s and Hindenburg’s inventions 95, as well as a third one pro-
posed by Lambert himself, were mechanisations of multipication, based
on the simple idea that every multiple of n in the natural order of a posi-
tional number system is n units removed from the preceding and from the
preceding multiple. The most time-expensive step in Eratosthenes’ sieve,
checking the multiples of already known prime numbers, is simplified by
these devices. They all use Lambert’s remark in the Beyträge that a well cho-
sen arrangement of a table displays certains patterns. For example, the
multiples of 7 can be discerned by the eye in Lambert’s arrangement. Such
patterns allow to check certain multiples as well as the consistency of the
factor table.

Felkel’s mechanism, depicted on the frontispiece of his Tafel (Figure 4),
is a variation on multiplication rods. Because Felkel based his device on a
step-30 procedure, there are 8 of these rods corresponding respectively to
30n+1; 7; 11; 13; 17; 19; 23; 29 (the numbers of the form 30n+a which are
not divisible by 2, 3 or 5). On each rod, all integers 30n+ a, with n = 0 to
99, are inscribed but the digits of the thousands are dropped. If one now

94 See [Bullynck 2009b].
95 Bischoff [1804/1990, pp. 73–83] contains detailed drawings and descriptions of
Felkel’s and Hindenburg’s devices.
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wants to find the multiples of 47, say, one first has to calculate the multi-
ples of 47 below 1000 by hand, and then look these numbers up on the 8
rods. Then, one has to align the rods so that the multiples are all on a hor-
izontal line. Now, one has to calculate the first multiple of 47 exceeding
1000, drop the 1 of the thousands (but take it down on a sheet of paper),
and look up the remaining digits on the first rod. The numbers (on the
other rods) that are horizontally aligned with that number are the further
multiples of 47. This procedure (with some slight improvements) can be
repeated to find further multiples [Lambert 1778, pp. 494–95].

As Lambert remarked, this mechanism has some disadvantages. First,
one has to take down the thousands by hand, which is a possible source of
errors. Second, the mechanism is limited by the limits of the rods, though
one can produce extra rods [Lambert 1778, p. 494] [Lambert Briefe, V,
pp. 120–121]. Hindenburg noticed one more inconvenience in a letter
to Lambert, namely, that the numbers that are found are on the rods
and have to be copied down (by dictation or by sight) on paper, so that
“machine and journal are separated” [Lambert 1781–1787, V, p. 204].
Lambert also noticed in his review that this same mechanism can be trans-
formed into a cylinder with circular discs on it. On one disc the numbers
0 to 99 are inscribed, on the other a segment is indicated, corresponding
to a number p whose multiples one wants to know. By turning this second
disc on the first one, one can find the last 2 digits of the desired multiples
in natural order; by counting how many complete circles have already
been turned, one can manually take down the other digits [Lambert 1778,
p. 495]. This system has, of course, the same disadvantages as Felkel’s
system.

Hindenburg’s solution avoided the first and third disadvantages, and
adapted the procedure to printing practice, since it was an ink-and-paper
implementation of Erastosthenes’ sieve procedure. As is explicit in the ti-
tle of his work: Beschreibung einer ganz neuen Art, nach einem bekannten Gesetze
fortgehende Zahlen, durch Abzählen oder Abmessen bequem und sicher zu finden,
Hindenburg relied (as Felkel and Lambert did) on the property of the po-
sitional system that every multiple of n taken in order is n removed from
the next one. To exploit this property, he designed perforated cartridges
that fit on a folio page with 10 times 30 cells on which were imprinted all
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Figure 5. C.F. Hindenburg’s sizeable paper-and-ink prime sieve
set up for the number 23
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odd numbers from left to right, and were continued left to right in the next
row. The perforations were, relative to the grid on the folio, at a distance n

from each other. This cartridge method worked for 7, 11, 13, 17 and 19 96;
for larger numbers, Hindenburg conceived of a cartridge of adaptable size
(see Figure 5). This cartridge is a frame of wood with various sliders in it
that can be adjusted and/or changed. The sliders cover exactly one row of
10 cells on the folio, except for one cell at position n (1 < n < 10). Thus,
the number 23 can be sieved using two sliders without holes and one with
a hole at position 3, followed by one slider without a hole and one with a
hole at position 6, etc. It is clear that arranging the sliders takes quite some
time, but the pattern repeats itself after 23 folio pages (in our example),
and it is also possible to re-use one portion of the work with a slight reshuf-
fling after one or two folios.

Using the cartridges for all prime numbers in their natural order, Hin-
denburg wrote the factor m and its “distance” n (which he called “Ord-
nungszahl”, index) in the measured cell, m:n making up the number of
the cell. The end product was many folios that only differed in one respect
from the to-be-printed tables, namely, that they still contained the multi-
ples of 3 and 5. Hindenburg insisted from the beginning on the fact that
this procedure could be used for constructing other tables. In his Beschrei-
bung, he explained how to use this device for making tables of squares,
of triangular numbers, of remainders after division, and even how to use
it for solving linear Diophantine equations [Hindenburg 1776a, pp. 39–
92 and 106–116]. 97 The foundations of the later Combinatorial Analysis,
as laid down in [Hindenburg 1781], sprang from this study of the posi-
tional number system [Hindenburg 1776a, pp. 92–104], as Hindenburg

96 3 and 5 can be discerned by the eye because of the arrangement of the folio, viz.,
all 5-tuples were contained in two horizontal columns, all triples could be found be a
diagonal.
97 This last issue was investigated theoretically in [Hindenburg 1786a]. Hindenburg
later realised that his folios could be used directly for printing the factor tables if he
deleted the multiples of 3 and 5 in his standard folios [Lambert 1781–1787, V, p. 178
note]. Although this had the advantage of minimising copying errors, it had the dis-
advantage that the folios could then no longer be used for other tables such as tables
of squares, of remainders after division, etc.
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[1795b, p. 247] explained. 98 Hindenburg insisted again on the idea of
how remarkable it was that so many numbers could be represented with
such a small set of signs. By showing that it does not matter if one uses
hindu-arabic ciphers or letters, Hindenburg [1776a, pp. 96–100] rediscov-
ered the combinatorial nature of positional number systems with respect
to an arbitrary base. 99 He also pointed out that a positional number sys-
tem essentially implies the possibility of mechanisation. Referring to Le-
upold’s encyclopedic work on arithmetical instruments [Leupold 1727],
Hindenburg indicated how his system was related to the abacus, to mul-
tiplication rods, and to many other computational devices [Hindenburg
1776a, pp. 101–104].

4. FACTOR TABLES AND THE BIRTH OF NUMBER THEORY

“Most of the important classical theorems in number theory
were discovered as a by-product of the production

and inspection of tables.” 100

Lambert had predicted that his factor table project “may in the future
be an important part of the history of mathematics” [Lambert Briefe, II,
p. 30]. In line with this thought, Johann III Bernoulli carefully docu-
mented the whole history while editing the scientific correspondence
of Lambert between 1781 and 1787. He asked the human computers
involved in the project for their part of the correspondence, and also for
notes and additions to the exchange of letters. Also A.G. Kästner [1786,
pp. 549–564], professor of mathematics in Göttingen, wrote extensively
on the topic. Later on, however, partly through external circumstances,
in particular the Napoleonic Wars, and partly with the advent of a new
generation of mathematicians after 1800, the history of Lambert’s project

98 Cf. Bernoulli’s remark in the Vorrede of [Lambert Briefe, V]. Note also that one
issue (vol. 2, nr. 2) of the Leipziger Magazin für reine und angewandte Mathematik (1787),
of which Hindenburg was the editor, was devoted in part to factoring. None of the
essays in the Magazin, however, went beyond what Hindenburg himself had described
much earlier (as he did not fail to point out in his editorial comments).
99 Hindenburg (p. 100) referred in this context to [Beguelin 1772b].
100 [Lehmer 1969, p. 118].
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was largely forgotten. 101 Indirectly, however, Lambert’s project stimulated
some of the most important mathematicians around 1800, and as such
contributed substantially to the birth of number theory as an independent
discipline.

4.1. Euler, Factor Tables, and the Science of Numbers

As long as Lambert participated and communicated actively, from 1770
through 1777, the table project caused a considerable stir in the research
community, which, however, was quite small at the time. Tables and fac-
toring were a much discussed topic at the Berlin Academy (see p. 165
above). Lagrange also made sure that a specimen of Lambert’s Tables was
sent to his correspondent d’Alembert [Lagrange Œuvres, XIII, pp. 202–
203]. Apart from the project of astronomical tables and the factor tables,
a third collaborative project was under way at the Academy around the
same time. Following a wish of d’Alembert, Johann III Bernoulli began a
French translation of Leonhard Euler’s Algebra which had been published
in 1770 in St. Petersburg. He was assisted by J.L. Lagrange, who wrote the
well-known supplement on indeterminate analysis which complemented
Euler’s second volume. When the French Élémens d’Algèbre appeared in
1774, Bernoulli wrote in the foreword:

. . . Nor will I say anything about the notes I added to the first part [.. .] but they
can throw light on various points in the history of mathematics & make known
a great number of little-known subsidiary tables. [Euler 1774, p. xvj] 102

Indeed, in the notes to Bernoulli’s translation we find all the tables listed
that Lambert had mentioned in the preface to his Zusätze, and we also see
praise of Lambert’s own work on tables [Euler 1774, pp. 26–28].

Leonhard Euler (1707–1783) had left the Berlin Academy for the St. Pe-
tersburg Academy in 1766, after a conflict with Frederick of Prussia, and

101 It was left to Glaisher [1878] to rediscover it, for his account of the production
of factor tables.
102 Original: “Je ne dirai rien non plus des notes que j’ai ajoutées à la premiere Par-
tie; [...] elles peuvent d’ailleurs répandre du jour sur différens points d’histoire des
Mathématiques, & faire connoitre un grand nombre de tables subsidiaires peu con-
nues.”
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possibly also after a conflict with Lambert on running the Academy [Bier-
mann 1985]. Euler plays only a marginal role in the history of tables, but
a curious one. Even though he did not correspond on the topic either
with Lambert or with Lagrange 103, he did so with Johann III Bernoulli
and Nikolaus von Beguelin. Many of Euler’s contributions concerning fac-
toring methods were actually made in letters, presentations or papers that
were initially conceived as a response to their work, with the notable excep-
tion of one essay. This essay, published in 1774 in the Novi Commentarii of
the Petersburg Academy, discussed how to arrange a factor table to the first
million in the best possible way [Euler 1774/1775]. Without any reference
to Lambert’s work, Euler argued for the importance of factor tables and
described a method of arrangement that was based in the grouping into
30n + 1; 7; 11; 13; 17; 19; 23; 29. Thinking of quarto pages (not the larger
folio format, as most others did), Euler constructed subsidiary tables to fa-
cilitate the application of Eratosthenes’ sieve over successive pages. At the
end of his paper, Euler gave some (fairly error-ridden) samples from such
a factor table. 104

Euler’s plan was known (i.e., its abstract in the Journal Encyclopédique
of 1776 was read), but its influence was not tremendous. As Hindenburg
remarked in a letter to Lambert, Euler’s arrangement was essentially the
same as Felkel’s, except for the different format; but Felkel claimed he
had not been aware of Euler’s paper [Lambert Briefe, V, pp. 204 & 501].
After 1800, Euler was often mentioned in the introductions to factor
tables, but instead of Euler’s arrangement, Lambert’s tended to be used
throughout. The only exception that we are aware of is an unpublished
table of primes by the Swede Schenmark, which was presented to Lexell
in Lund. Regarding this table, Nikolas Fuss, Euler’s assistant, wrote to Joh.
III Bernoulli in December 1781:

103 Euler’s last letter to Lagrange in 1775, that ends with a reference to [Euler
1774/1775], seems to be the only exception to this [Euler Opera, IV, 5, pp. 244-45].
A letter from Lambert to Euler with a specimen of the Zusätze from October 1771 re-
ceived only a polite and short response from Euler’s secretary [Juskevic et al. 1975,
OO1419].
104 The editors of [Euler 1907, X–XIII] give a short overview of the history of fac-
tor tables from the perspective of Euler’s paper, barely mentioning Lambert’s earlier
work in a footnote.
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Mr. Lexell [.. .] has brought from Lund a table of prime numbers in manus-
cipt, computed to 1 million after Mr. Euler’s plan [...] by Mr. Schenmark and a
few other computers under his direction. We first discussed publishing it at the
expense of the Academy, but then we hesitated since I communicated to Mr. Eu-
ler what you have remarked to me concerning Mr. Hindenburg, who must have
promised two million by Easter. [Bernoulli 1781/1783, p. 31] 105

Bernoulli consequently advised against publishing Schenmark’s tables,
protecting his friend Hindenburg’s work. Schenmark’s work was, however,
conserved, and later used by Burckhardt for checking his tables.

Euler’s reactions to the factoring methods developed by Bernoulli and
Beguelin were more influential for the history of mathematics than his pro-
posals for the layout of a factor table; they announced important methods
that would soon be bolstered by C.F. Gauss’ theoretical analysis. 106 In a
letter to Bernoulli regarding his publication on factoring numbers of the
form 10n�1, Euler presented a simple, necessary and sufficient criterion to
decide whether p divides either 102p+1�1 or 102p+1�1 (p a prime), replac-
ing the piecemeal collection of rules that Bernoulli had assembled from
Euler’s earlier papers [Euler 1772/1774b]. The result rested on Fermat’s
theorem and on a theorem Euler did not state, but described as unproven:
the quadratic reciprocity law (as Legendre would later call it). Simulta-
neously to this letter, Euler read a paper at the St. Petersburg Academy
concerning the theory on which Bernoulli’s paper was built, namely, on
residues of a series of powers an after division by a prime p (for n = 0 to
p � 1), and introduced the term “primitive root” [Euler 1772b]. Later in
the same year, Euler returned to the topic of residues of powers, focussing
in the second half of this new paper [Euler 1772/1774a] on the residues of
the even powers, i.e., on quadratic residues of squares. Euler gave criteria
for deciding whether �1 is or is not a quadratic residue of a prime p.

105 Original: “M. Lexell [...] a apporté de Lund, en manuscript, une Table des
nombres premiers, éxecutée jusqu’à un million d’après le plan que M. Euler a donné
[...] par M. Schenmark & quelques autres Calculateurs sous sa direction. On avoit
parlé d’abord de la faire imprimer aux dépens de l’Académie; mais on hésite depuis
que j’ai communiqué à M. Euler ce que Vous m’avez marqué touchant M. Hinden-
bourg, qui doit avoir promis 2 millions pour Pâques.”
106 See also [Bullynck 2009c, p. 158;166–175] for a analysis of Euler’s work on arith-
metic after 1770.



FACTOR TABLES 1657–1817 193
B

er
li

n
A

ca
d

em
y

E
u

le
r

in
St

.
P

et
er

sb
u

rg
T

o
p

ic
J.

H
.

L
am

b
er

t,
Z

u
sä

tz
e

zu
de

n
lo

ga
ri

th
m

is
ch

en
u

n
d

tr
ig

on
om

et
ri

sc
he

n
T

af
el

n
(1

77
0)

D
e

ta
b

u
la

n
u

m
er

o
ru

m
p

ri
m

o
ru

m
u

sq
u

e
ad

m
il

-
li

o
n

em
et

u
lt

ra
co

n
ti

n
u

an
d

a
(E

46
7,

17
74

/
17

75
)

m
an

u
fa

ct
u

re
o

f
fa

ct
o

r
ta

-
b

le
s

L
am

b
er

t
to

E
u

le
r,

18
O

ct
o

b
er

17
71

Je
an

II
I

B
er

n
o

u
ll

i:
Su

r
le

s
fr

ac
ti

o
n

s
d

éc
im

al
es

p
ér

io
d

iq
u

es
.

Su
iv

i
d

e:
R

ec
h

er
ch

es
su

r
le

s
d

iv
is

eu
rs

d
e

q
u

el
q

u
es

n
o

m
b

re
s

tr
ès

gr
an

d
s

(1
77

1/
17

73
)

E
xt

ra
it

d
e

la
co

rr
es

p
o

n
d

an
ce

d
e

M
.

B
er

n
o

u
ll

i
(E

46
1,

17
72

/
17

74
)

p
er

io
d

ic
fr

ac
ti

o
n

s,
q

u
ad

ra
ti

c
re

si
d

u
es

,
in

-
st

an
ce

s
o

f
q

u
ad

ra
ti

c
re

ci
p

ro
ci

ty
D

em
o

n
st

ra
ti

o
n

es
ci

rc
a

re
si

d
u

a
ex

d
iv

is
io

n
e

p
o

te
s-

ta
tu

m
(E

44
9,

17
72

/
17

74
)

O
b

se
rv

at
io

n
es

ci
rc

a
d

iv
is

io
n

em
q

u
ad

ra
to

ru
m

;
D

is
q

u
it

io
ac

cu
ra

ti
o

r
ci

rc
a

re
si

d
u

a
et

c.
(E

55
2

&
E

55
4,

17
72

/
17

83
)

E
ar

li
er

w
o

rk
:

E
54

,E
13

4,
E

27
1

(F
er

m
at

’s
li

tt
le

th
eo

re
m

);
E

24
2,

E
26

2,
(q

u
ad

ra
ti

c
re

si
d

u
es

)
L

at
er

w
o

rk
:

E
55

7,
E

79
2

N
ik

o
la

u
s

vo
n

B
eg

u
el

in
:

So
lu

ti
o

n
p

ar
ti

cu
li

èr
e

d
u

P
ro

b
lè

m
e

su
r

le
s

n
o

m
b

re
s

p
re

m
ie

rs
(1

77
5)

E
xt

ra
it

d
’u

n
e

le
tt

re
d

e
M

.
E

u
le

r
le

p
èr

e
à

M
.

B
e-

gu
el

in
en

m
ai

17
78

(E
49

8)
fa

ct
o

ri
sa

ti
o

n
u

si
n

g
q

u
ad

ra
ti

c
fo

rm
s

w
it

h
id

o
n

ea
l

n
u

m
b

er
s

E
xt

ra
it

d
’u

n
e

le
tt

re
d

e
M

.
F

u
ss

à
M

.
B

eg
u

el
in

éc
ri

te
d

e
P

ét
er

sb
o

u
rg

le
19

Ć
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A similar pattern of interactions ensued some years later (1778) when
Euler reacted to an essay by Beguelin [1775]. This essay had sprung
from Beguelin’s investigations on his new number system and proposed
a new method for factoring numbers. The idea was to isolate a particular
sequence of numbers, for instance triangular or square numbers, and
gradually exclude elements until one or more were left.

. . . it is only in determining the composite elements that one finds the primitive
elements 107, through the gaps that result of this determination, in the manner
of Eratosthenes. [Beguelin 1775, p. 301] 108

Beguelin obtained his exclusions using a result by Euler, namely that
only composite numbers can be decomposed in more than one way as a
sum of squares a2 + b2 . Using this property, Beguelin sieved the compos-
ites out of his series ppxx+1 (p prime and fixed, x a variable integer). Be-
guelin slightly modified Euler’s method: through a certain arrangement of
lists, only one series of possible squares had to be checked instead of two
[Beguelin 1775, p. 308].

The form a2 + b2 is not the only form with the property that a prime
can only be expressed in exactly one way by the form, whereas composites
either cannot be expressed by the form or have two or more expressions.
The same holds true for a2 + 2b2 , a2 + 3b2 , . . . (but for instance not
for a2 + 11b2 or a2 + 14b2). Now, Euler had found by induction that
there was only a finite number of such forms. In a letter to Beguelin,
Euler gave a list of all 65 n’s for which a2 + n:b2 had the property of
representing a prime in only one way [Euler 1776/1779]. These numbers
were later coined idoneal numbers by Euler, but the letter to Beguelin
contains the first mention (without the name) of these numbers. 109 Since

107 “Primitive elements” here are p’s that are prime and may be used to generate the
elements of the sequence, for example in a sequence of the form ppxx+1, x a variable
integer.
108 Original: “ce n’est qu’en déterminant les élémens composés qu’on trouve
les primitifs, par les lacunes qui résultent de cette détermination, á la manière
d’Erastosthene.”
109 Euler’s idoneal numbers relate to what later would become the concept of the
genus of a quadratic form and the the principal genus theorem. More on this can be
found in [Steinig 1966] and [Lemmermeyer 2007, pp. 531–533].
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Beguelin and Lagrange desired to know more details of this discovery
and the associated novel method of factoring, Euler’s assistant N. Fuss
compiled a resumé which was published somewhat later in the Mémoires
of the Berlin Academy [Fuss 1776/1779]. As in the case of the earlier
paper by Bernoulli [1771/1773], Euler seized the opportunity to write
some papers, this time about the topic of factoring large numbers using
the idoneal numbers. They were published only long after Euler’s death,
between 1801 and 1806. 110.

Finally, Euler also responded to Lagrange’s Recherches d’arithmétique
[Lagrange 1773], not in a letter but with a presentation to the St. Pe-
tersburg Academy October 26, 1775 (published posthumously in the
Opuscula Analytica, 1785). Euler’s objective in that presentation was to
make Lagrange’s survey more elegant and more complete (thus partly
“anticipating” [Lagrange 1775]). Euler used the opportunity to point out
that he had found many of the results much earlier by induction, but that
only the joint efforts of Lagrange and himself had advanced this part of
mathematics. According to Euler, Lagrange “ha[d] brought light into
the science of numbers, that ha[d] hitherto been shrouded in darkness”
[Euler 1775/1785, p. 163]. 111 Although Euler had occasionally used the
term “science of numbers” before 112, this paper explicitly addressed this
new science in its title: De insigni promotione scientiae numerorum. In this
way, Euler indirectly connected Lagrange’s and his own endeavours with
Lambert’s programme.

Euler’s contributions dealt mainly with theoretical aspects of producing
factor tables. Even though these contributions to factoring often re-used
(partial, often unproven) results that Euler had obtained earlier 113, they

110 These are E708, E715, E718, E719, E725 [Euler 1907, II, pp. 249–260 & 198–214
& 215–219 & 220–242 & 261–262].
111 Original: “Eximia omnino sunt, quae La Grange [...] demonstravit, et maxi-
mam lucem in scientia numerorum, quae etiamnunc tantis tenebris est involuta, ac-
cendunt.”.
112 For instance in [Euler, I, 2, p. 611].
113 Some were mentioned in his correspondence with Christian Goldbach, some
were published in the St. Petersburg Commentarii, see [Dickson 1919–1927, I, pp. 360–
1] and Table I.
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now appeared in a different context, as reactions to publications on fac-
toring, and these publications in turn had been instigated by Lambert’s
project. Although Euler never referred to this context, the chronology of
his papers is telling enough, and so is Euler’s adaptation of results from
Diophantine problems to the problem of factoring (large numbers), a
problem that almost never appeared in his work before 1770. 114

Although Euler elaborated further on these results in St. Petersburg,
he did not embed them into a structured series of theorems and demon-
strations, in the way that Lambert would have liked to see the gap bridged
between the beginnings and the advanced parts of a theory of integers
and factoring. This job remained to be done. However, the papers written
at the Berlin and St. Petersburg Academies were stepping stones towards
turning the tables, results, and partial theory of number-related problems
into a coherent body of results, concepts, theorems and demonstrations,
into something that could be called a “theory of numbers” proper. Finish-
ing the job, in some sense, was the work of A.M. Legendre in his Essai sur
la théorie des nombres (1798) and C.F. Gauss in his Disquisitiones Arithmeticae
(1801).

4.2. Tables and the Distribution of Primes

As an effect of Lambert’s project, it became possible to make more
accurate empirical observations and conjectures about the distribution
of primes using the various tables of factors and primes that had been
printed. The question of the distribution of primes before 1770 had
only been touched upon by Euler. In a letter from 1752 [Fuss 1843, I,
p. 587], Euler had remarked to Goldbach, without proof, that the number
of prime numbers relative to the number of integral numbers (= x)
converges to ln x. Euler repeated this observation in [Euler 1762/1763,
p. 101]. In another letter from the same year 1752 [Fuss 1843, I, p. 595],
Goldbach had claimed he could prove that no closed algebraic formula
could generate only primes; this was later published and proven by Euler

114 Though the topic of finding large prime numbers did appear, factoring itself was
not a major topic.
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[Euler 1762/1763, p. 102]. In 1776, Hindenburg had somewhat light-
heartedly dismissed the question of the progression or distribution of the
primes:

I have neither time nor motivation, to tediously and rigorously prove or
disprove a theorem which is completely useless for my purpose, and which
appears to develop an untimely curiosity rather than real use. [Hindenburg
1776a, p. 15] 115

A more elaborately argued dismissal in the same spirit was given by
Karl Christian Friedrich Krause (1781–1832) in 1804. Krause, now better
known as a philosopher, had written a dissertation at the university of
Jena on finding prime numbers, De inventione numerorum primorum (1801),
probably under the supervision of the Hindenburg-influenced professor
D.M.C. Stahl. 116 In 1804, Krause published a factor table to 100,000 and
returned to the question of the distribution of primes, earlier dismissed
by Hindenburg. Considering the successive application of the sieve proce-
dure, eventually eliminating all composites, Krause arrived at a description
of the “Primzahlgesetz”.

We have found the law [that governs the distribution of primes]. It is a law
that is continuously changing with every series of prime numbers. It is an in-
finitely multisided law which continuously acquires new specifications as one
progresses. That is why we will not trouble ourselves any further to find a finite
algebraic law, where an infinite one rules. [Krause 1804b, p. 12] 117

Krause considered the distribution of primes as an infinite process of
eliminating the multiples of 2, 3, 5 and so on, and since the series of prime

115 Original:“Ich habe weder Zeit noch Lust, einen für meine Absicht völlig un-
brauchbaren Satz [wie sich die Primzahlen unter den Zahlen verteilen], der eher
eine unzeitige Neugierde, als einen reellen Nutzen zu befördern scheint, durch einen
weitläufigen strengen Beweis a priori zu unterstützen oder zu verwerfen.”
116 According to [Riedel 1941], the manuscript seems to be lost now.
117 Original: “Wir haben das Gesetz gefunden, es ist nehmlich ein beständig durch
jede Reihe der Primzahlen gesetzmäßig verändertes; es ist ein unendlich vielseit-
iges, bei immer weiterem Fortschreiten weiter bestimmtes. Daher werden wir uns
nicht weiter bemühen, ein endliches, algebraisches Gesetz aufzufinden, wo ein un-
endliches waltet.”
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numbers was infinite (according to Euclid), their inverses formed an in-
finite decreasing series; but since the rate of decrease was neither regu-
lar nor rapidly decreasing itself, a finite algebraic formula was impossible
[Krause 1804b, p. 11]. 118

4.2.1. The empirical law, first version.

The materials available in the late eighteenth century thanks to Lam-
bert’s project did lead to more concrete results than Krause’s rather vague
speculations. On being received by the Duke of Braunschweig in 1791,
the young Carl Friedrich Gauss (1777–1856) had been given Schulze’s
Sammlung, and somewhat later (in 1793), Lambert’s Zusätze and Hinden-
burg’s Beschreibung. According to a letter to Encke (1849), Gauss had
begun counting in Lambert’s and Schulze’s tables as early as 1792–3,
“even before I had occupied myself with subtler investigations in higher
arithmetic” [Gauss Werke, II, p. 444]. In the margin of his copy of Hin-
denburg’s work, Gauss entered his objections to Hindenburg’s opinion
that it was uninteresting to formulate or prove a law of prime distribution.
On the contrary, Gauss was among the first to make counts and draw up
a formula, though he never published it. In his scientific diary, he had
noted:

Comparationes infinitorum in numeris primis et factoribus cont[entorum]
[1796] 31. Mai G[ottingae]
Leges distributionis [1796] 19. Iun. G[ottingae] [Gauss 1863–1929, X/I,
pp. 493 & 495]

The formula in question was that the number of primes up to a con-
verges to

a

ln a

118 Most famous in connection with finite algebraic formulae for primes is Euler’s
41 � x + xx, where the first 40 terms (for x = 0 to 39) are all prime numbers. This
formula was first mentioned in his letter to Bernoulli [Euler 1772/1774b, p. 36]. Of
course, Euler had already proven some 40 years earlier Krause’s claim that no finite
algebraic formula exists.
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[Gauss Werke, X/1, pp. 11–16], a result already conjectured by Euler. Us-
ing Vega’s list of primes (taken from Felkel’s tables), Adrien-Marie Legen-
dre (1753–1833) came up with a similar, though slightly more accurate for-
mula in the second edition of his Essai sur la Théorie des nombres (1808):

x

log :x� 1:08566
;

where log :x denotes the hyperbolic logarithm ln.

4.2.2. New Tables.

In 1811, Ladislas Chernac [1811], a professor of mathematics in Deven-
ter of Hungarian origin, published the Cribrum Arithmeticum at his own ex-
pense. His table, of more than 1000 pages, gave all factors for the num-
bers not divisible by 2, 3, nor 5. His introduction contained a very com-
plete list of all factor tables until 1811, even mentioning a table by Adolph
Marci (Amsterdam, 1772) that was calculated in response to Lambert’s ap-
peal but seems to have been lost [Chernac 1811, pp. V–X; IX]. Chernac did
not explain how he constructed his table, except for a reference to Nico-
machus’ Arithmetic and the title Cribrum Arithmeticum, which seems to de-
note both the method and the content of the table. Chernac’s introduc-
tion closed with applications and examples: logarithms, divisions and sev-
eral tricks where the factor table can be put to use, but no reference at all
to more abstract number problems.

Three years later, Johann Karl Burckhardt (1773–1825) published
the second million, and in 1816, the third million (he actually went to
3,036,000). In 1817, he republished the first million, corrected and in the
same format as the other two. For this last edition, Burckhardt had com-
pared Chernac’s table with Schenmark’s manuscript, had found some but
few errors in Chernac’s table, many in Schenmark’s, and had checked each
inconsistency by re-calculation [Burckhardt 1814, p. i]. In his own words,
Burckhardt undertook these calculations while “one was occupied with
comparing my moon tables with those of Mr. Burg, a circumstance which
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Figure 6. Gauss’ Table counting the primes in Lambert’s Zusätze
and a specimen of C.F. Gauss’ specially printed paper slips for
counting primes and composites for the first chiliad in Chernac’s
Table
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prevented me from taking up other astronomical studies.” [Burckhardt
1814, p. vij] 119

Burckhardt had a remarkable career. Born in Leipzig, he had acquired
an extensive knowledge of mathematics and astronomy as a 15-year-old
through private study before enrolling at Leipzig University in 1792.
There he studied with C.F. Hindenburg and became a Magister in 1794
with a dissertation on the expression of continued fractions through
combinatorial signs. 120 Thanks to a scholarship and with Hindenburg’s
recommendation, Burckhardt went to the observatory in Gotha to work
and study under the astronomer Franz-Xaver von Zach, a central figure in
the internationalisation of astronomy at the time [Brosche 2001]. Upon
Zach’s recommendation, Burckhardt then went to Paris in 1798, where
the astronomer Lalande hired him as assistant in the Bureau des Longitudes.
In 1800–1802, Burckhardt and Gauss competed for the best calculations
of the orbits of Ceres and Pallas. Burckhardt also translated Laplace’s
Mécanique céleste into German (1800–1802, with lengthy comments and
additional examples), and he was known as a skilled and reliable com-
puter. After Lalande’s death in 1807, Burckhardt became the director of
the observatory of the Ecole Militaire. He died in Paris in 1825. 121

Burckhardt’s very accurate factor tables were computed with the sten-
cil method which would become standard for the production of factor ta-
bles in the 19th and early 20th centuries. Burckhardt described it as an
improvement on Hindenburg’s method in the Beschreibung. 122 First, Bur-
ckhardt eliminated all numbers divisible by 3 and 5 beforehand. 123 To this

119 Original: “j’ai entrepris et fort avancé ce travail dans le tems qu’on s’occupait de
comparer mes Tables de la lune à celles de M. Burg, circonstance qui m’empêchait de
commencer d’autres recherches astronomiques.”
120 Hindenburg [1795a, pp. 174–178] described Burckhardt’s procedure.
121 Cf. the biography in [ADB 1875-1912, 3, pp. 571–72], which consistently mis-
spells “Hindenburg” as “Hindenberg.”
122 As mentioned earlier, Hindenburg had made some of these improvements ear-
lier, [Lambert 1781–1787, V, p. 178 note].
123 “[L]a moitié de l’ouvrage [i.e. the work with Hindenburg’s sieve] [est faite]
en pure perte; car dans les Tables imprimées on rejette les nombres divisibles par 3
ou par 5 [i.e. one does not print them], ce qui oblige de copier au net la partie de
l’ouvrage qu’on conserve. J’ai évité ces deux inconvéniens et j’ai obtenu en même
tems que dans mes Tableaux imprimés les facteurs” [Burckhardt 1814, p. v].
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aim, Burckhardt had let a copper plate be engraved in 81 horizontal lines
and 78 vertical ones, obtaining 80 times 77 little squares. Next to the first
horizontal line were engraved all numbers under 300 not divisible by 2, 3
and 5, thus repeating the arrangement Lambert had advised and Hinden-
burg had followed. Due to the 77 columns, the multiples of 7 and 11 could
immediately be engraved on the plate.

With this plate, the individual sheets were printed, immediately re-
ducing the work to checking divisors above 11. For these larger divisors,
e.g. 13, Burckhardt took an empty, squared sheet, started cutting out the
squares that were multiples of 13 and stopped after the 13th column, since
“this factor will return in the same order [.. .] because of the distance”
[Burckhardt 1814, p. v]. 124 By putting together two sheets, three sheets
etc. this procedure could be expanded for larger divisors.

for divisors over 500, I have preferred to find the multiples by successive addi-
tions [.. .] I have checked the last multiple by a direct multiplication [Burck-
hardt 1814, p. vi] 125

This procedure of cutting out squares in a sheet of squared paper is es-
sentially the stencil method, not very much different from Hindenburg’s
sieve, but more practical. 126

124 Original: “ce facteur retournera dans le même ordre, puisque la distance d’une
colonne à l’autre est toujours de 300.”
125 Original: “quant aux facteurs qui surpassent 500, j’ai préféré de trouver les mul-
tiples par des additions successives. [...] le dernier multiple [...] a été vérifié par une
multiplication directe.”
126 C.F. Gauss reviewed both Chernac’s and Burckhardt’s tables [Gauss 1863–1929,
II, pp. 181–186], referring in the review of Chernac to Lambert’s project and de-
scribing at length Burckhardt’s procedure (without reference to Hindenburg). Also,
Gauss summarized the history of factor tables around 1800, most probably using Käst-
ner’s account [Kästner 1786, pp. 549–564] in the Chernac review. Gauss repeated this
same summary some 30 years later in a letter to Zacharias Dase [Dase 1856], stimulat-
ing Dase to undertake the calculation of the missing millions. The 6th, 7th, and 9th
million were eventually calculated by Dase, the 4th and 5th were computed (with lots
of errors) by Leopold Crelle; they are preserved at the Berlin Academy, cf. [Crelle
1853].
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4.2.3. The empirical law, second version.

Using these new tables, Legendre had checked his empirical formula
again in 1830, for the third edition of his book that was now simply entitled
Théorie des Nombres. His comparison between tables and formula was quite
favorable evidence for the formula [Legendre 1830, II, p. 65]. Gauss had
pursued his counting as well, at times together with Goldschmidt. Gauss
had even caused custom-made paper slips to be produced for counting
the chiliads in Chernac’s and Burckhardt’s tables (Figure 6). In a letter
to Encke, Gauss spelled out and corrected his formula for the distribution
of primes. Gauss saw it in inverse proportion to the integralZ

da

ln a
:

Gauss compared this integral with Legendre’s formula and found that his
integral approximated the distribution of primes better [Johnson 1884].

4.3. Introducing Number Theory

The birth of a new discipline is usually accompanied by legitimation
practices, often including an account of its prehistory leading inevitably
to the new science. The two works that were to found number theory as
a discipline in its own right, Gauss’ Disquisitiones Arithmeticae (1801) and
Legendre’s Essai sur la Théorie des nombres (1798), used their prefaces to do
exactly this; they construct their own historical lineage. 127 The lineages
constructed in the two treatises are very similar : starting from Books
VII and VIII of Euclid’s Elements, and passing through Diophantus and
Fermat, they finally arrive at Euler and Lagrange.

The immediate precursor was Lagrange’s Recherches Arithmétiques. Leg-
endre explicitly referred to this text as the first general theory on indeter-
minate questions (“la Théorie de Lagrange”, [Legendre 1798, p. X]) and
Gauss may well have translated Lagrange’s title into the title of his own
Disquisitiones Arithmeticae [Weil 1984, pp. 319–320]. A second important

127 To complement our observations on the birth of number theory, [Goldstein &
Schappacher 2007a] is essential reading. In general, see [Goldstein et al. 2007] for
the development of number theory after Gauss (and Legendre).
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impetus, however, had come from Euler’s De insigni promotione scientiae nu-
merorum, posthumously published in 1785. Legendre’s first publication on
number theory, which remained an important part in his later book, was
written precisely to prove some of the theorems Euler had put forward in
that paper [Legendre 1785, pp. 523–524]. It is also one of the most fre-
quently quoted papers in Gauss’ work.

Legendre’s legitimization of number theory was rather tentative; he
placed himself in the tradition of Diophantus:

I do not make a distinction between number theory and indeterminate analy-
sis, and I regard these two parts as one and the same branch of algebraic analysis.
[Legendre 1798, p. xj] 128

Gauss, on the contrary, explicitly addressed a new discipline, probably
taking up Lambert’s suggestion to fill in the gaps between elementary and
advanced arithmetic, and separated its content from mere Diophantine
analysis.

The inquiries which this volume will investigate pertain to that part of Math-
ematics which concerns itself with integers. [.. .] The Analysis which is called
indeterminate or Diophantine [.. .] is not the discipline to which I refer but
rather a special part of it, just as the art of reducing and solving equations (Al-
gebra) is a special part of universal Analysis. [Gauss 1801, Preface]

For Gauss, arithmetic comprised “all investigations on the general
properties and relations between numerical quantities”, so that ”integers
are the sole object of arithmetic”, containing both elementary arithmetic
(reckoning) and higher arithmetic (now called number theory).

Whereas Legendre proposed to present and expand Lagrange’s the-
ory, focussing on quadratic Diophantine problems, Gauss’ reference
framework was broader from the start. Euclid’s books VII and VIII, on
composite and incomposite numbers, constituted the basis of this new
discipline according to Gauss’ preface. In this respect, Gauss seemed to
continue John Wallis’ programme, of re-writing Euclid in arithmetical

128 Original: “Je ne sépare point la Théorie des Nombres de l’Analyse indéter-
minée, et je regarde ces deux parties comme ne faisant qu’une seule et même branche
de l’Analyse algébrique.”
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terms, thus founding mathematics on numbers [Wallis 1657, pp. 14–
20]. 129 Most probably, C. S. Remer’s Demonstrativische Rechenkunst (1739),
which the 8-year-old Gauss received as a gift in 1785 and which he called
his “liebes Büchlein” [Maennchen 1928, p. 17], acquainted Gauss early
on with such ideas. Remer, who often cited Poetius as one of his sources,
dealt extensively with the topics of divisors, odd and even numbers, prime
and composite numbers and factoring methods, including Eratosthenes’
sieve procedure [Remer 1739, pp. 232–321]. The book also contained a
large section on “the properties of numbers in relation to each other”, dis-
cussing properties of the greatest common divisor process [Remer 1739,
pp. 324–356]. 130 Add to this, that between 1791 and 1795 Gauss had also
perused the tabular works edited by Schulze and Lambert , before going
to the university of Göttingen, and one sees a clear interest in integers and
factoring developing over the years.

When Gauss started to write his book on arithmetic that would ulti-
mately become the Disquisitiones Arithmeticae, his original plan (dating
from 1796–97) proposed to conclude the book with his construction of
the 17-sided polygon and a treatise on the general solution of higher order
congruences, the caput octavum which was only published posthumously
[Bachmann 1911; Merzbach 1981, pp. 6–8]. During the later re-workings
of his text, Gauss kept expanding the section V on quadratic forms, build-
ing on his student readings of Euler’s, Lagrange’s, and Legendre’s works
that he could now consult in the rich mathematical library of the Göttin-
gen university (December 1795 through May 1796). 131 As a consequence,
some of the original focus disappeared from the ultimate publication,
which stops at section VII.

129 There was a copy of Wallis’ work in the library of the Collegium Carolinum where
Gauss studied [Küssner 1979, p. 37]. The idea of arithmetisation was discussed by e.g.
Poetius, Lambert, and Kästner in protestant Germany. Of course, Lambert’s tentative
presentation of a theory of numbers in [Lambert 1770] is also along these lines and
was read by Gauss at age 16. Gauss’ Sections I and II may be called the more mature
equivalent of Lambert’s essay.
130 Dr. Christian Siebeneicher (Bielefeld) most kindly drew my attention to Remer’s
book and pointed out its relevance for this topic.
131 See his letters to Zimmermann, [Poser 1987, pp. 20 and 24].
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However, if one leaves out for a moment section V in the structure of the
Disquitiones Arithmeticae and then tries to focus on the older sections I, II,
III and VI and considers their internal coherence, one notices their con-
nection with the developments we have described from the period 1770–
1800. Section I defines what a congruence is and shows how the concept
of congruence can account easily for simple divisibility tests by 9, 11 or 7
(art. 12). Section II contains elementary theorems of number theory, such
as unique factorisation, solution of linear congruences, theorems on Eu-
ler’s �-function, combinations etc. needed for later sections. Section II,
short, is related to Lambert’s attempt at providing the essentials for a the-
ory of integers and factoring but goes beyond it in depth and scope. Sec-
tion III (the theoretical part, including Fermat’s little theorem) and part of
section VI (the application, art. 312–318) treat power residues (using Eu-
ler’s term “primitive root”) and decimal periods, referring to Lambert’s,
Bernoulli’s and Euler’s work. 132 Finally, the end of Section VI (art. 329–
334) is concerned with factoring methods, taking up Lagrange’s linear di-
visors of quadratic forms and Euler’s idoneal numbers (for which the rel-
evant theorems are proven in section V). Putting all this together, one can
observe a sub-focus of the Disquitiones on factoring and other topics that
gained prominence during the years 1770–1800; this only becomes appar-
ent in the light of the prehistory we have investigated above. It is of great
use when one tries to put Gauss’ work into a historical context. The Dis-
quisitiones, which are often described as a book of wonders falling from the
sky, then becomes a phenomenon that can be accounted for. It turns out
to be the brilliant culmination of half a century of research which started
from Euler’s various texts and was actively stimulated by Lambert’s project
on factor tables and his appeal for a coherent and complete theory of num-
bers in general, and in particular of factoring.

5. CONCLUSIONS

19th century mathematics was marked by a rapidly growing profession-
alisation, due to the growing importance (and sometimes introduction)

132 For more detail on this part, see [Bullynck 2009b].
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of mathematics in the university curriculum and the foundation of math-
ematical seminars. 133 As a consequence, in harmony with the industrial
idea of division of labour, table-making became a rather mechanical job,
for reckoners and less talented mathematicians, and often got separated
from academic mathematics. A prime example of this was de Prony’s loga-
rithmic and trigonometric table project in Paris, where the job was divided
between Legendre, who set up the formulae, and jobless haircutters, who
calculated additions and subtractions [Grattan-Guinness 1990b]. The fac-
tor tables of Burckhardt, calculated in his ‘spare time’, and those of the
reckoning prodigy Zacharias Dase were also typical expressions of this ten-
dency. The reports of the British Committee on Mathematical Tables [Cay-
ley 1875/1876; Glaisher 1873/1874] constituted the eventual outcome of
this evolution. They listed all existing tables so as to produce the missing
tables as efficiently as possible. Renowned mathematicians such as Cayley
and Stokes pointed out the most urgent tasks, and J.W.L. Glaisher executed
and/or commissioned the missing tables. 134

But before 1800, the picture was different. Important mathematicians
like Pell, Wallis, Lambert, and Euler spent quite some time on factor ta-
bles, producing, correcting or promoting them. The main medium for the
organization and promotion of these factor tables was private correspon-
dence, although scientific societies (Collins at the Royal Society, Lambert
at the Berlin Academy) acted as catalysts in this scientific communication,
and literary periodicals were also called into service in this regard . Due
the expansion and vulgarization of written communication in the 18th cen-
tury, Lambert could also use popular journals and book publications for
the dissemination of his appeal, and could hope for non-professional, but
well-educated amateurs to join in on his plans.

Apart from its importance for the production and layout of factor ta-
bles, Lambert’s appeal also had a considerable impact on the birth of num-
ber theory. His scientific essays on tables and numbers put factoring on
the academic agenda and pointed out that a coherent theory of numbers,
free from gaps, was a scientific desideratum. Through Lambert’s active

133 See e.g. [Jahnke 1990] for Germany, [Grattan-Guinness 1990a] for France.
134 For the history of the Committee and its dissolution in the 1930s which an-
nounced the computer era, see [Thompson 1949].
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propagation, these questions spread not only in academic circles, inspiring
contributions by Bernoulli, Béguelin, Lagrange, and Euler, but acquired
an even wider public in the German states. The popular professors Käst-
ner (Göttingen), Karsten, Klügel (Halle) and Hindenburg (Leipzig) of-
ten referred to Lambert’s project in their textbooks and lectures, introduc-
ing a generation of university students to the problem of tables, factoring
and some kind of “theory of numbers”. This scientific project was one of
the roots of Gauss’ Disquisitiones Arithmeticae, which would ultimately create
that missing discipline, the theory of numbers.
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1778, Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres
de Berlin, 1776/1779, pp. 337–339; [Euler 1907, II, pp. 418–420].

[1907] Commentationes Arithmeticae, Leipzig, Berlin: Teubner, 1907; 2 vol-
umes. Later volumen II and III in [Euler, Series I].



FACTOR TABLES 1657–1817 213

Felkel (Anton)
[1776a] Nachricht von einer Tafel, welche alle Factoren aller Zahlen von 1 bis 1 Mil-

lion, dann einer andern, welche alle Factoren, aller durch 2, 3, 5 nicht theil-
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[1697] Récreations mathématiques et physiques, qui contiennent plusieurs problêmes
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mécanique, de pyrotechnie, & de physique. Avec un traité nouveau des horloges
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et de physique, présentés à l’Académie royale des sciences par divers sçavans, 5
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