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THE AREA AND THE SIDE I ADDED:

SOME OLD BABYLONIAN GEOMETRY

Duncan J. Melville

Abstract. — There was a standard procedure in Mesopotamia for solving quadratic
problems involving lengths and areas of squares. In this paper, we show, by means of
an example from Susa, how area constants were used to reduce problems involving
other geometrical figures to the standard form.

Résumé (La surface et le côté que j’ai ajouté : un problème de géométrie babyloni-
enne)

Il y avait en Mésopotamie un procédé standard pour résoudre des problèmes
quadratiques impliquant des longueurs et des surfaces de carrés. Nous montrons,
sur un exemple de Suse, que des constantes géométriques ont été employées pour
ramener des problèmes concernant d’autres figures au format standard.

INTRODUCTION

One of the central topics of Old Babylonian mathematics is the solu-

tion of ‘quadratic’ or area problems. Høyrup has developed a convincing

geometric interpretation for the procedures by which many of these prob-

lems were solved. However, it has not previously been recognized how Old
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Babylonian scribes applied these techniques when the underlying figure

was not a square. Here, we show by means of an exemplar from Susa that

the solution to this problem lays in an elegant usage of another ubiqui-

tous element of Old Babylonian mathematics, the technical constant, or

coefficient.

Among the corpus of Old Babylonian geometric problems is a group

of exercises that begin with variations on the phrase, “The area and side

of my square I added..." The resulting total is given, and the problem

for the student is to determine the length of the side of the square.1

On first translation, these problems were seen as exercises in pure alge-

bra, dressed in physical guise. If the unknown length of the side of the

square is denoted `, then the sum of the area and side is `2 + `, and the

goal of the problem is to solve for the side `. On the other hand, sides

and squares are geometrical objects, and if treated geometrically, then

addition of lengths and areas makes no sense: the equations are not ho-

mogeneous. If Mesopotamian scribes of the second millennium are not

to be considered to have had a concept of abstract algebra, a conceptual

development that lay far in their future, then the geometrical viewpoint

appears to present an insurmountable hurdle.

The resolution of this apparent dilemma has been developed by

Høyrup over the last twenty years or so, culminating in the exposition in

[Høyrup 2002]. By a close reading of the specific mathematical termi-

nology involved, Høyrup showed that the stumbling block for a modern

understanding of ancient geometry lay in our inheritance of the Greek

categories of inhomogeneous lines and areas, and specifically in the

Euclidean notion that a line has no breadth. Høyrup has convincingly

demonstrated that in the pre-Euclidean world of the Old Babylonian

scribes, lines are best understood as having unit breadth. That is, in

algebraic contexts, we should view the side ` as in fact an area 1 � `, where

1 The phrase itself occurs in the first problem of BM 13910 (discussed below) as ‘a.šàlam ù

mi-it-har-ti ak-mur-ma’, which Høyrup renders as “the surface and my confrontation I have

accumulated” [Høyrup 2002, p. 50]. The rest of the problems on BM 13901 are related –

there are assorted additions, subtractions and combinations. Similar problems are to be

found in AO 6770, AO 8862, BM 85200 + VAT 6599, TMS 8, TMS 9, TMS 16, and YBC 6504.

Additionally, BM 80209 contains statements of similar problems involving circles, but with

no procedure given, and TMS 20, the main text discussed here, contains both statements

and procedures for solving the problem in the case of the apsamikkum (see below).
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the factor 1 is usually hidden from view. In geometric terms, the length

added to the area becomes a rectangle of length 1 adjoined to a square.

More than the statement of the problem, it is a detailed analysis of the

individual steps of the solution procedure that provides the most forceful

evidence of the persuasiveness of Høyrup’s case. His approach is based

upon a very deep understanding of the precise usage of the technical

vocabulary of Old Babylonian mathematics and a fine judgment for the

careful way it is employed. It is clear from his work that Old Babylonian

categories of thought relating to mathematical operations were not the

same as ours and that in many cases, they made finer distinctions than

our more abstract approach allows.2 Høyrup has developed an English

vocabulary to reflect these fine distinctions, but we will simplify some of

the terminology here when the shades of meaning do not affect our argu-

ment. We also stress that Høyrup’s analysis goes far beyond the problems

considered here.

THE SIDE AND THE SQUARE

The classic example of this approach, explained many times by Høyrup

himself and numerous other commentators is the first problem on the

Old Babylonian tablet BM 13901.3 The problem reads as follows:

The area and side of my square I added: 0 ; 45.4

2 For example, Høyrup distinguishes four groups of terms for what we consider multiplica-

tion. Briefly, these may be described as: the a.rá or ‘steps of’ from the multiplication tables;

terms derived from našēum, ‘to raise or lift’ for multiplication by constants, etc.; espum, a

doubling or more general repetition, and terms based on šutakūlum, which generate physi-

cal areas from bounding lengths and widths. For more details see [Høyrup 2002, pp. 18–40]

in general and [Muroi 2002] on terms for multiplication.

3 The text was first published by Thureau-Dangin [1936] and re-edited by Neugebauer

[1935/37]. It is of unknown provenance and currently housed in the British Museum.

Høyrup includes in [Høyrup 2002] many of the problems (Problems 1, 2, 3, 8, 9, 10, 12,

14, 18, 23, 24) and has published a complete edition in [Høyrup 2001]; his transliteration

mostly follows that of Neugebauer, with a few minor differences in restoration of broken

passages. I have followed Høyrup’s transliteration, but the translation below is mine.

4 Abstract numbers in Old Babylonian mathematics were written in a sexagesimal, or base

60, place-value system. The value of a sign depended on the sexagesimal ‘column’ in which it

occurred. However, these numbers contained no explicit reference to absolute size in terms
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You, put down 1, the projection.

Break 1 in half.

Multiply 0 ; 30 and 0 ; 30.

Join 0 ; 15 to 0 ; 45: 1.

1 is the square root (of 1).

Subtract the 0 ; 30 which you multiplied in the 1: 0 ; 30.

The side (is) 0 ; 30.

Before illustrating Høyrup’s geometric interpretation of this problem,

it is worth giving a formal analysis of the steps of the algorithm for com-

parison with later problems. This approach is adapted from Ritter, who

introduced a similar technique for comparing medical, divinatory and

jurisprudential texts with mathematical ones in Egypt and Mesopotamia

in [Ritter 1995a;b; 1998]. Ritter’s main concern was to show that divina-

tion, medicine and mathematics formed a common intellectual domain

for Old Babylonian scribes. Of course, the technical vocabulary of these

three areas is quite discipline-specific, so that whereas Høyrup has fo-

cused on the terminology of mathematics, Ritter was drawn to analyzing

the underlying grammatical and organizational structure of the texts. In

particular, he showed the consistent ways in which grammatical signifiers

marked off sections of the texts. As with Høyrup, Ritter’s analysis is much

wider and deeper than the specific cases considered here.

In order to analyze the underlying structures of Old Babylonian math-

ematical procedures, Ritter introduced a ‘schematic form’ of representa-

tion to show the linkages between individual arithmetic steps. The exam-

ple he chose in [Ritter 1995a] to illustrate this technique was BM 13901,

giving a full analysis of the first three problems and an abbreviated de-

scription of the remainder. As part of his analysis, Ritter showed that there

are some core, basic algorithms in Mesopotamian (and Egyptian) math-

ematics, as well as many variations on that core. Ritter [1998] returned

of the base unit. In order to align columns correctly for addition, size had to be inferred

from context. There are several conventions for transliterating cuneiform numbers. Here,

we follow the widely-used Neugebauer convention where each sexagesimal place is separated

by a comma, and the ‘sexagesimal point’ separating multiples from fractions is denoted by a

semi-colon. That is, 1,30 represents 1�60+30 = 90 , but 1 ; 30 represents 1+ 30
60
= 1 1

2
. For

convenience of the reader, we have silently introduced an absolute size for the problems we

discuss, but we stress that this notation is not present in the cuneiform original.
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Computation Symbolic
Instruction

Step 0 Put down 1 w

Step 1 Break 1 in half: 0 30 R1 :=
1
2w

Step 2 Multiply 0 30 and 0 30: 0 15 R2 := R21

Step 3 Join 0 15 to 0 45: 1 R3 := R2 + D

Step 4 Square root of 1: 1 R4 :=
p
R3

Step 5 Subtract 0 30 from 1: 0 30 R5 := R4 � R1

Table 1. BM 13901, Problem 1

to the same example when comparing the structure of the algorithm to

that of the problem in Str. 368. The notation he used in the latter paper

was somewhat different to the earlier version; it is this later technique we

have adapted here. As some of the points we wish to emphasize are a bit

different to Ritter’s focus, we have changed the notation somewhat. Rit-

ter’s approach has also been extensively used by Imhausen [2002; 2003]

in studying Egyptian mathematics.

In this formalism, three types of information are differentiated. First,

there are the data that are explicitly given in the statement of the prob-

lem; these data are denoted D1; : : : ; Dm . In the case of BM 13901, Prob-

lem 1, the only datum given is the total area, which we denote by D =

0 ; 45. Secondly, there is the implicit data, in this case the projection,

which always has unit length, this we denote by w = 1. Finally, each arith-

metical step of the algorithm produces a result, and we denote the result

of step n by Rn . Using this approach, we may present the problem above

in the form of Table 1.

One advantage of this particular approach to Old Babylonian mathe-

matics is that it helps to foreground the fact that, as far as possible, each

step of the algorithm uses the result of the immediately preceding step

as one of its inputs, so that Step 4 uses R3 (the result of Step 3), Step 3

uses the result of Step 2, and Step 2 uses the result of Step 1. The final

Step 5 uses the result of the preceding step as well as the result of an ear-

lier step, here Step 1. This important characteristic is lost in an algebraic

description of the problem as an equation such as x =
q

( 12w)
2 � 1

2w .
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In contrast to this formal symbolic analysis of the steps of the al-

gorithm, Høyrup offers a very concrete, physical interpretation of the

procedure in terms of cut-and-paste, or ‘naı̈ve’ geometry. In this view,

the area (a.šà) is a physical square, and the side is a physical rectangle

projecting a distance 1 from the square.

`

`

1

The instructions in the problem call for the projection to be broken in

half. This may be viewed as a literal tearing in half of the unit rectangle,

with the torn off piece being moved to construct a gnomon.

`

`

30

30

Since the original projection was torn in half and one half moved,

the projecting halves allow for a literal completion of the square, where

the computation determines the area of this square as 0 ; 30 times

0 ; 30 : 0 ; 15.

`

`

30

30

The area of the new square is calculated (as 0 ; 45 + 0 ; 15 = 1), and

the length of the side of a square of area 1 is determined (a physical

interpretation of the computation of a square root). Now the width of

the adjoined, torn off rectangle is subtracted from the length of the side
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of the newly-formed square to find the length of the side of the origi-

nal square, and thus the original unknown. Høyrup’s interpretation thus

gives a physical meaning to each algorithmic step.5

Although Høyrup has shown that there are a large number of prob-

lems involving squares and rectangles that are solved using his approach,

it has not been clear that Old Babylonian scribes had generalized the

procedure to apply to other geometric shapes. After all, a basic require-

ment of the procedure is that it begins with a square. However, Høyrup

has shown that a number of ‘non-normalized’ problems, including sev-

eral from BM 13901 itself, were solved by essentially the same procedure.

Additionally, Høyrup has commented on the presence of similar prob-

lems involving circles on the tablet BM 80209, studied by [Friberg 1981].

This text presents a catalog of problems, mostly involving circles and in-

cluding some problems of the variety, “to the area I added y times the

circumference”. However, the tablet gives no hint of the solution proce-

dure. Fortunately, one other text, TMS 20, does show how this problem

was handled in the case of the geometric figure called an apsamikkum, and

the approach shows an elegant use of geometrical coefficients, a central

tool in Old Babylonian mathematics.

THE APSAMIKKUM

There has been some debate about both the etymology and the mean-

ing of the term apsamikkum. Here, we do not need to discuss the ety-

mology, and Robson [1999] has conclusively demonstrated the primary

meaning as the central, shaded, figure in the diagram below.

The apsamikkum arises naturally in a geometry that widely uses in-

scribed and circumscribed figures. This is not a central part of mod-

ern geometry and there is no good corresponding term for the figure

in English. Robson uses ‘concave square’, while Muroi [2000] follows

5 Together, Høyrup’s and Ritter’s approaches provide a powerful methodology for analyz-

ing Old Babylonian mathematics. Although each approach has been well-developed sep-

arately, the two do not appear to have been combined before, perhaps because Høyrup’s

approach concentrates on vocabulary and geometry while Ritter’s emphasizes grammar and

algorithms. For other approaches to algorithmic aspects of Old Babylonian mathematics,

see especially [Knuth 1972] and [Robson 1997].
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the Chicago Assyrian Dictionary and translates the term as ‘regular concave-

sided tetragon’. For convenience, we shall use apsamikkum as a loan-word.

In Old Babylonian mathematics, a crucial role is played by the so-called

‘coefficients’. As Mesopotamian geometry is profoundly computational,

so there is a need for constants or coefficients linking the various param-

eters of a geometrical object. These coefficients have been studied in

depth by Robson [1999]. Each geometrical object has a defining param-

eter from which the other parameters are derived. In the case of the ap-

samikkum, the defining parameter is one quarter-arc, which is thus taken

to have length 1. The quarter-arc of the apsamikkum is also a quarter-arc

of a circle, and apsamikkum coefficients are related to those for the circle.

The defining parameter for the circle was the circumference and the cru-

cial relations for our purposes are that the diameter of a circle was taken

to be 13 = 0 ; 20 of the circumference and the area to be 1
12 = 0 ; 5 times

the square of the circumference.6 Thus a circle with a circumference of 4

would be taken to have a diameter of 13�4 = 0 ; 20�4 = 1 ; 20 and an area

of 1
12 � 4

2 = 0 ; 5 � 16 = 1 ; 20. Since the apsamikkum with a quarter-arc

of length 1 would have a perimeter of 4, it can be considered as inscribed

in a square of side 1 ; 20, this is the coefficient of the ‘diagonal’ of the

figure. The area of the apsamikkum may be easily obtained as the differ-

ence between the area of the square of side 1 ; 20 and an inscribed circle

of diameter 1 ; 20; it is 0 ; 26,40. One other apsamikkum coefficient is the

transversal, the difference between the diagonal of the square and diam-

eter of the inscribed circle; it is 0 ; 33,20. More complete descriptions of

the derivations of these coefficients can be found in [Muroi 2000] and

[Robson 1999].

6 These formulas are equivalent to setting � = 3 .
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There are only a few surviving texts with apsamikkum problems; one of

these is TMS 20.7 This text was originally published by Bruins & Rutten

[1961] as text number 20 in Textes mathématiques de Suse. The tablet is

badly broken and only part of it survives. However, the extant part is suf-

ficient to show that originally the tablet had one problem written on each

side. The problem on the obverse can be restored as beginning, “The

area, the length, and the diagonal I added: 1 ; 16,40”. The procedure

to be followed is given and the solution is determined: the length of the

side was 0 ; 30. The problem on the reverse can be restored as beginning,

“The area and the side of the apsamikkum I added: 0 ; 36,40”. Again, the

procedure is given, and the side is found to be 0 ; 30. As the second prob-

lem is simpler we consider it first. Although the tablet is quite broken, the

mathematical content can be restored with confidence from the remain-

ing numbers and terminology and parallels between the two problems,

even if there is room to doubt precise phrasing of certain terms. The

translation below is adapted from Bruins and Rutten and no indication is

given here of breaks and restoration from the original.

The area and the side of the apsamikkum I added: 0 ; 36,40.

You, put down 0 ; 36,40.

Multiply 0 ; 26,40, the coefficient, by 0 ; 36,40: 0 ; 16,17,46,40 you see.

Turn back. 1, for the length, put down.

Break 1 in half: 0 ; 30 you see.

Square 0 ; 30: 0 ; 15 you see.

Add 0 ; 15 to 0 ; 16; 17; 46; 40: 0 ; 31; 17; 46; 40 you see.

What is the square root? 0 ; 43,20 is the square root.

Subtract 0 ; 30 from 0 ; 43,20: 0 ; 13,20 you see.

Find the reciprocal of 0 ; 26,40, the coefficient: 2 ; 15 you see.

Multiply 2 ; 15 by 0 ; 13,20: 0 ; 30, you see.

0 ; 30 is the length.

As with the problem from BM 13901, we first present the algorithm

used in tabular form. In this case, the given or known data at the start

of the problem are the total area, D = 0 ; 36,40, the coefficient for the

7 The others are BM 15285 and TMS 21. See [Robson 1999] and [Muroi 2000] for descrip-

tions of the problems in these texts.
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Computation Symbolic
Instruction

Step 0 Put down 0 ; 36,40 D

Step 1 Multiply the coefficient 0 ; 26,40

by 0 ; 36,40: 0 ; 16,17,46,40 R1 = cD

Step 2 Put down 1 `

Step 3 Break 1 in half: 0 ; 30 R3 =
1
2`

Step 4 Square 0 ; 30: 0 ; 15 R4 = R23

Step 5 Add 0 ; 15 and 0 ; 16,17,46,40:

0 ; 31,17,46,40 R5 = R4 + R1

Step 6 Find the square root of 0 ; 31,17,46,40:

0 ; 43,20 R6 =
p
R5

Step 7 Subtract 0 ; 30 from 0 ; 43,20: 0 ; 13,20 R7 = R6 � R3

Step 8 Find the reciprocal of 0 ; 26,40: 2 ; 15 R8 = �c

Step 9 Multiply 2 ; 15 by 0 ; 13,20: 0 ; 30 R9 = R8R7

Table 2. TMS 20, Reverse

length, ` = 1, and, the area coefficient of the apsamikkum, c = 0 ; 26,40.

In Step 8 of Table 2, �c denotes the reciprocal of c.

A comparison of Tables 1 and 2 reveals the similarities between the

approaches to the two problems and also shows how the Mesopotamian

scribes applied the technique to geometrical figures that were not

squares, by following essentially the approach developed for non-

normalized square problems (see [Høyrup 2002] on BM 13901, Problems

3, 7, 14, and 24, for instance). Note that Steps 3–7 of Table 2 are identical

procedures to those of Steps 1–5 of Table 1, with the single crucial

exception that in Step 3 of Table 1, the area of the figure is given as initial

data and based upon a square, whereas the equivalent Step 4 in Table 2,

uses a value that needed to be calculated earlier in Step 1. This shows

that the result of Step 1 of the second procedure is conceived of as giving

the area of a figure based on a square. But Step 1 multiplies the given

area of the figure by its coefficient. Hence, the scribe is using the area

coefficient in two different ways.
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Recall that the apsamikkum, in common with other geometrical figures

in Old Babylonian mathematics has a defining component, in this case

one arc, and a number of associated constants or coefficients, of which

the primary one is that determining the area (see [Robson 1999, p. 56]).

That is, in algebraic terms, whereas the area, A, of a square of side ` is

obtained as A = `2 , the area of any other geometric figure is obtained as

A = coefficient � `2 . Let c be an abbreviation for coefficient. Then A = c`2 is

precisely the area of a rectangle with sides ` and c`. Geometrically, such

a rectangle may be obtained from the original length ` by first scaling

the length to produce c` and then constructing the rectangle from the

two lengths, or by forming a square of side ` and then scaling it. Alge-

braically, the question is whether c`2 should be viewed as c` � `, or as c � `2 .

For the apsamikkum, there is no direct evidence, but for other figures,

such as the circle, Høyrup’s delimiting of the different uses of types of

‘multiplication’ shows that the area is viewed as a scaled square.8 Also,

from the algorithmic perspective, forming a square and then scaling it by

the coefficient is a cleaner and simpler process than first multiplying the

given length by the coefficient and then retaining the original length for

the second multiplication.

Step 1 of the algorithm above takes the given data, in this case the total

area, and multiplies it by the coefficient. As is easily seen in the algebraic

view, what is obtained is

coefficient � A = (coefficient)2`2 = (coefficient � `)2:

Thus, the result of multiplying the area of a geometric shape by the co-

efficient is a square of scaled length. Bruins and Rutten, in the original

publication of the text [Bruins & Rutten 1961], commented that the prob-

lem is solved by means of a “surface ‘fausse’ ” but without emphasizing the

underlying geometry. The area coefficient can hence be used to ‘square’

any figure. Once a square has been obtained, the procedure followed is

the standard one for problems based on a square, and the scaled length

is derived. Recall that in the canonical problem, the given area is that of

the square adjoined by a unit rectangle. In this problem, the given area is

that of the apsamikkum plus a unit rectangle. When this total is scaled by

8 This fact was pointed out to me by a referee of an earlier version of the paper.
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the area coefficient, the result is both a scaled square from the apsamikkum

and a scaled unit rectangle, which can then be naturally adjoined.

At the end of the problem, the correct length is recovered from the

scaled length by multiplying the latter by the reciprocal of the coefficient,

as is done in Step 9 above.

For the apsamikkum, we have that the area is equal to that of a rectangle

of sides ` and 0 ; 26,40 `. Multiplying the other side of the rectangle by

the same coefficient gives a square of sides 0 ; 26,40 `. From this point,

the problem can proceed exactly as in the case of a square, allowing only

for a rescaling at the end of the problem. Thus the general problem

of working with arbitrary geometrical figures for which an area coeffi-

cient is known has been reduced to the standard case, and the algorithm

needed is merely a variant of the standard ‘core’ algorithm.

The problem on the obverse of the tablet is similar, with the exception

that the diagonal is also included in the initial total.

The area, the side, and the diagonal I added: 1 ; 16,40.

You, 0 ; 26,40, the coefficient of the apsamikkum, by 1 ; 16,40 multiply:

0 ; 34,4,26,40 you see.

Turn back. 1, for the length, and 1 ; 20 for the diagonal which you do

not know add: 2 ; 20 you see.

Break 2 ; 20 in half: 1 ; 10 you see. Square 1 ; 10: 1 ; 21,40 you see.

1 ; 21 ; 40 to 0 ; 34,4,26,40 add: 1 ; 55,44,26,40 you see.

What is the square root? 1 ; 23,20 is the square root.9

1 ; 10 from 1 ; 23,20 subtract: 0 ; 13,20 you see.

The reciprocal of 0 ; 26,40 the coefficient, detach: 2 ; 15 you see.

2 ; 15 to 0 ; 13,20 multiply: 0 ; 30 you see.

0 ; 30 is the length.

Here, the given or known data are the total area D = 1 ; 16,40, and

the coefficients for the length, `, the diagonal, d = 1 ; 20, and the area of

the apsamikkum, c = 0 ; 26,40. Table 3 shows the procedure.

9 The text is silent on how the square root of 1 ; 55 ,44,26,40 is determined, as also for

the equivalent problem on the reverse. Frustratingly little is known about Old Babylonian

square root algorithms. Some recent attempts to unravel the situation, responding to the

explanation in [Neugebauer & Sachs 1945, p. 43], have been made by Friberg [1997, p. 318]

discussing TMS 20 in the context of other texts, [Fowler & Robson 1998] and [Muroi 1999].
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Computation Symbolic
Instruction

Step 1 Multiply the coefficient 0 ; 26,40 by 1 ; 16,40:

0 ; 34,4,26,40 R1 = cD

Step 2 Add 1 and 1 ; 20: 2 ; 20 R2 = `+ d

Step 3 Break 2 ; 20 in half: 1 ; 10 R3 =
1
2R2

Step 4 Square 1 ; 10: 1 ; 21,40 R4 = R23

Step 5 Add 1 ; 21,40 and 0 ; 34,4,26,40:

1 ; 55,44,26,40 R5 = R4 + R1

Step 6 Find the square root of 1 ; 55,44,26,40:

1 ; 23,20 R6 =
p
R5

Step 7 Subtract 1 ; 10 from 1 ; 23,20: 0 ; 13,20 R7 = R6 � R3

Step 8 Find the reciprocal of 0 ; 26,40: 2 ; 15 R8 = �c

Step 9 Multiply 2 ; 15 by 0 ; 13,20: 0 ; 30 R9 = R8R7

Table 3. TMS 20, Obverse

A comparison of Tables 2 and 3 shows that the procedure is essentially

identical, with the exception of the addition needed for the sum of the

length and diagonal coefficients.

Although the examples given here are for the apsamikkum, it is clear

that the procedure would allow a scribe to solve similar problems involv-

ing any geometrical figure for which the coefficients were known. In

particular, the circle problems from BM 80209 mentioned above would

be amenable to an identical treatment. The standard Old Babylonian

techniques not only could be applied to a wider set of problems than has

previously been noted, they were so applied.

Høyrup has observed the use of scaling for non-normalized problems

such as BM 13901, Problem 3 [Høyrup 2002, p. 55]; here we see the role

that the basic geometrical coefficients played in reducing problems in-

volving non-square figures to the standard format, and that this technique

involved a very conscious ‘squaring’ of the original figure.

Acknowledgements

I thank the referees of an earlier version of this paper for their thought-

ful and valuable insights, which have greatly contributed to an improved

exposition. Any remaining errors and infelicities are, of course, my own.



20 D.J. MELVILLE

BIBLIOGRAPHY

Bruins (Evert M.) & Rutten (Marguerite)
[1961] Textes mathématiques de Suse, Mémoires de la Délégation en Perse,
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