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5 (1999), p. 249–284.
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ABSTRACT. — A methodical analysis of the research related to the article, “Sur
les groupes continus”, of Henri Poincaré reveals many historical misconceptions and
inaccuracies regarding his contribution to Lie theory. A thorough reading of this article
confirms the priority of his discovery of many important concepts, especially that

of the universal enveloping algebra of a Lie algebra over the real or complex field,
and the canonical map (symmetrization) of the symmetric algebra onto the universal
enveloping algebra. The essential part of this article consists of a detailed discussion of
his rigorous, complete, and enlightening proof of the so-called Birkhoff-Witt theorem.

RÉSUMÉ. — LA DÉMONSTRATION DE POINCARÉ DU THÉORÈME DIT DE

BIRKHOFF-WITT. — Une analyse méthodique des travaux faits en connexion avec
l’article, “Sur les groupes continus”, de Henri Poincaré révèle des erreurs historiques et
des jugements injustes en ce qui concerne sa contribution à la théorie de Lie. Une étude
approfondie de cet article confirme l’antériorité de sa découverte de plusieurs concepts
importants; notamment de l’algèbre enveloppante universelle d’une algèbre de Lie sur
le corps réel ou le corps complexe, et de l’application canonique (la symétrisation) de
l’algèbre symétrique sur l’algèbre enveloppante universelle. L’essentiel de cet article
consiste en un examen approfondi de sa démonstration rigoureuse et complète du
théorème de Birkhoff-Witt.

1. INTRODUCTION

In our research on the universal enveloping algebras of certain infinite-

dimensional Lie algebras we were led to study in detail the original proofs
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of the so-called Birkhoff-Witt theorem (more recently, Poincaré-Birkhoff-

Witt theorem). This, in turn, led us to the investigation of Poincaré’s con-

tribution to Lie theory (i.e., the theory of Lie groups, Lie algebras, and

their representations). To our great surprise we discovered many historical

misconceptions and inaccuracies, even in some of the classics written by

the leading authorities on the subject. This discovery has puzzled us for

some time, and we have sought the opinions of several experts in the field.

Their answers together with our thorough reading of several original arti-

cles on the subject shed some light on this mystery. We were astounded

to find out that Poincaré was given credit neither for his fundamental

discovery of the universal enveloping algebra of a Lie algebra over a field

of characteristic zero, nor for his introduction of the symmetrization map,

and only a cursory and belated acknowledgment of his contribution to the

so-called Birkhoff-Witt theorem, of which he gave a rigorous, complete,

beautiful, and enlightening proof. Indeed, in two of the most exhaustive

treatises on universal enveloping algebra [Cohn 1981] and [Dixmier 1974],

Poincaré [1900] was not mentioned. In many authoritative textbooks treat-

ing Lie theory such as [Chevalley 1955], [Cartan & Eilenberg 1956], [Kuros

1963], [Jacobson 1962], [Varadarajan 1984 (1974)], [Humphreys 1972],

[Knapp 1986], . . ., Poincaré’s discovery of the universal enveloping algebra

and the symmetrization map was ignored. In some books his name was

left off the Birkhoff-Witt theorem, and his fundamental article [Poincaré

1900] was not even quoted. In the Encyclopaedia of Mathematics [Ency-

clopaedia 1988–1994] under the rubric “Birkhoff-Witt theorem” it was

written “. . .The first variant of this theorem was obtained by H. Poincaré;

the theorem was subsequently completely demonstrated by E.Witt [1937]

and G.D. Birkhoff 1[1937]. . . ”. Clearly the author, T.S. Fofanova, did not

read carefully [Poincaré 1900]; otherwise she would have realized that

Poincaré had discovered and completely demonstrated this theorem at

least thirty-seven years before Witt and Birkhoff. Why such slights can

happen to one of the greatest mathematicians of all times, who published

1 Actually Garrett Birkhoff (1911–1996), not G.D. (Birkhoff) which are the initials of
George David Birkhoff (1884–1944), the father of Garrett. This inaccuracy only occurs
in the translation, not in the original (Russian) version of the Encyclopaedia. We are
grateful to Professor Sergei Silvestrov for elucidating this fact to us.
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these results [Poincaré 1900] in one of the most prestigious scientific jour-

nals, Transactions of the Cambridge Philosphical Society, on the occa-

sion of the jubilee of another great mathematician, Sir George Gabriel

Stokes, is a most interesting mystery that we shall attempt to elucidate

in this article. But before beginning our investigation we want to make it

clear that our intention is to study thoroughly one of the most fundamen-

tal discoveries by one of the greatest minds in order to understand how

important ideas are created, and not to rectify such injustices, for such

a task is doomed to fail as the force of habit always prevails; a fact very

clearly expressed in the following excerpt from [Gittleman 1975, p. 186],

“. . . l’Hospital’s rule, Maclaurin’s series, Cramer’s rule, Rolle’s theorem,

and Taylor’s series are familiar terms to calculus students. Actually, only

one of these five mathematicians was the original discoverer of the result

attributed to him, and that man was Rolle. The person who popularizes

a result generally has his name attached to it, although later it may be

learned that someone else had originally discovered the same result. For

practical purposes names are not changed, but even so, the mistakes seem

to compensate for one another. Although Maclaurin was credited with a

series he did not discover, a rule which he did originate is now known as

Cramer’s rule. . . ”. Besides, Poincaré is a member of the elite group of

mathematicians to whom many important mathematical discoveries are

attributed; indeed, in the Encyclopaedia of Mathematics [Encyclopaedia

1988–1994] 18 rubrics are listed under his name. Curiously, under the

heading “Poincaré last theorem” the editorial comments state that “[this

theorem] is also known as the Poincaré-Birkhoff fixed-point theorem, ” and

the author, M.I. Vŏıtsekhovskĭı, wrote “. . .it was proved by him in a series

of particular cases but he did not, however, obtain a general proof of this

theorem ”.2 Misnaming mistakes seem to compensate one another after all.

2 Vŏıtsekhovskĭı continues, “The paper was sent by Poincaré to an Italian journal two
weeks before his death, and the author expressed his conviction, in an accompanying

letter to the editor, of the validity of the theorem in the general case.” Indeed, on
December 9, 1911, having some presentiments that he might not live long, Poincaré
wrote a moving letter to Guccia, director and founder of the journal Rendiconti del
Circolo Matematico di Palermo (cf. [PoincaréŒuvres, II, p. LXVII]), asking his opinion
regarding what has become known as “Poincaré’s Last Geometric Theorem” (see
[Barrow-Green 1997, §7.4.2, pp. 169–174], for an English translation of the letter and
an excellent discussion of the theorem). Mr. Guccia readily accepted the memoir for
publication and it appeared on March 10, 1912, just a few months before Poincaré’s
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In his book [Bell 1937], E.T. Bell, who called Poincaré “the Last Uni-

versalist”, considered the Last Geometric Theorem as Poincaré’s “unfin-

ished symphony” and wrote “. . . And it may be noted that Poincaré turned

his universality to magnificent use in disclosing hitherto unsuspected con-

nections between distant branches of mathematics, for example, between

continuous groups and linear algebra”. This is exactly the impression we

had when reading his article, “Sur les groupes continus”.

2. POINCARÉ’S WORK ON LIE GROUPS

To assess Poincaré’s contribution to Lie theory in general we use two

main sources [Poincaré Œuvres ] and [Poincaré in memoriam 1921] and

investigate in depth the references cited therein. We start with the article,

“Analyse des travaux scientifiques de Henri Poincaré, faite par lui-même”3

which was written by Poincaré himself in 1901 [Poincaré in memoriam

1921, pp. 3–135] at the request of G. Mittag-Leffler (cf. “Au lecteur”

[Poincaré in memoriam 1921, pp. 1–2]). It is part of vol. 38 of the journal,

Acta Math., published in 1921 in memory of Henri Poincaré. (Actually,

most of vol. 39 published in 1923 is also devoted to Poincaré’s work).

In the third part of the above-mentioned article, Section XII (Algèbre)

and Section XIII (Groupes Continus) are devoted to his contribution

to Lie theory. Actually, we think that because of Poincaré’s impetus

finite-dimensional continuous groups were eventually called Lie groups.

Indeed, Poincaré expressed repeatedly his great admiration for Lie’s work

in [Poincaré 1899] and [Poincaré 1900] and wrote in Rapport sur les

death on July 17, 1912 (Sur un théorème de géométrie, Rendiconti del Circolo
Matematico di Palermo, 33, pp. 375–407 = [Poincaré Œuvres, VII, pp. 499–538]).
Ultimately it was G.D. Birkhoff who gave a complete proof of this theorem (Proof

of Poincaré’s geometric theorem, Trans. Amer. Math. Soc., 14 (1913), pp. 14–22
= Collected Mathematical Papers I , pp. 673–681) and of its generalization to n
dimensions (Une généralisation à n dimensions du dernier théorème de géométrie de
Poincaré, C. R. Acad. Sci. Paris, 192 (1931), pp. 196–198 = Collected Mathematical
Papers II , pp. 395–397).

3 In [Poincaré Œuvres] this article is listed as published by Acta Math., 30 (1913),
pp. 90–92. In fact, it never existed as such; the editors of Poincaré’s collected works
probably found the manuscript of the article among his papers with his annotations
regarding the journal and the date of publication but due to World War I it appeared
eventually in [Poincaré in memoriam 1921]. This remark extends to all discrepancies
between the intended and actual dates of publication of many of Poincaré’s works in
[Poincaré in memoriam 1921], for example, Rapport sur les travaux de M. Cartan.
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travaux de M. Cartan [Poincaré in memoriam 1921, pp. 137–145]: “Je

commencerai par les groupes continus et finis, qui ont été introduits par

Lie dans la science; le savant norvégien a fait connâıtre les principes

fondamentaux de la théorie, et il a montré en particulier que la structure

de ces groupes dépend d’un certain nombre de constantes qu’il désigne

par la lettre c affectée d’un triple indice et entre lesquelles il doit y avoir

certaines relations. . . une des plus importantes applications des groupes

de Lie. . .”. So far as we know this is the first time that the name Lie

groups was explicitly mentioned.

Poincaré’s first encounter with Lie theory probably dated back to his

article [Poincaré 1881] and its generalization [Poincaré 1883]. The problem

he considered there can be phrased in modern language as follows:

For X = (x1, . . . , xn) ∈ Cn let GLn(C), the general linear group

of all n × n invertible complex matrices, act on Cn via (X, g) �→ Xg,

g ∈ GLn(C). Let F (X) denote a homogeneous form of degree m (i.e., a

homogeneous polynomial of degreem in n variables (x1, . . . , xn)), find the

subgroup G of GLn(C) which preserves the form F ; i.e., F (Xg) = F (X),

for all g ∈ G. Conversely, given a subgroup G of GLn(C) find all

homogeneous forms that are left invariant by G. This is precisely the

problem of polynomial invariants (cf. [Weyl 1946]).

In [Poincaré 1881] and [Poincaré 1883] he found all cubic ternary (of

three variables) and quaternary (of four variables) forms that are pre-

served by certain Abelian groups (which he called “faisceau de substitu-

tions”), and he also extended this result to the non-Abelian case. Con-

versely, he exhibited explicit groups that preserve quadratic and cubic

ternary and quaternary forms. For example, in [Poincaré 1881, pp. 239–

241] he found the subgroup of the unipotent group





1 α β

0 1 γ

0 0 1


 ; α, β, γ ∈ C





which preserves the quadratic form

[x1 x2 x3 ]



A1 B3 B2

B3 A2 B1

B2 B1 A3





x1

x2

x3




= A1x
2
1 +A2x

2
2 +A3x

2
3 + 2B1x2x3 + 2B2x1x3 + 2B3x1x2,

Ai, Bi ∈ C ; 1 ≤ i ≤ 3.
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Conversely, he showed that all quadratic forms which are left invariant

by the full unipotent group defined above must satisfy a certain partial

differential equation. Lie theory also plays an important role in Poincaré’s

work on the conformal representation of functions of two variables which

in turn leads to the theory of relativity. In [Poincaré 1906] and [Poincaré

1912] he studied the group of linear transformations which leave the

Minkowski’s metric x2 + y2 + z2 − t2 invariant, which he called the

homogeneous Lorentz group, or as H.A. Lorentz wrote in [Lorentz 1921]

“groupe de relativité ”, and discovered the Poincaré group which is the

semidirect product of the four-dimensional translation group with the

homogeneous Lorentz group.

In his analysis of his scientific accomplishments Poincaré classified

his work in seven topics which range from “Differential Equations” to

“Philosophy of Science”. His accomplishments in any single one of these

areas would already make him famous. Indeed Sir George H. Darwin

(1845–1912), a physicist and son of the famous Charles Darwin (1809–

1882), wrote in 1909 that Poincaré’s celestial mechanics would be a vast

mine for researchers for half a century [Boyer 1968, pp. 652]. Under rubric

number three “Questions diverses de Mathématiques pures”, Algebra,

Arithmetic, Group theory, and Analysis Situs (combinatorial topology)

are listed together, with Lie groups as a subsection of Group theory. This

gives a false impression that he had only a slight interest in the subject. In

fact with the exception of his first article on continuous groups [Poincaré

1899] the other three articles are quite long: [Poincaré 1900] (35 pages),

[Poincaré 1901] (47 pages) and [Poincaré 1908] (60 pages). In all these

articles he not only conveyed to the reader his keen interest in the subject

but also some of the difficulties that preoccupied him over a ten-year

period.

It was Lie’s third theorem that motivated Poincaré to write [Poincaré

1899]. This theorem can be stated in Poincaré’s notations 4 as follows:

If {X1, . . . , Xr} is a system of infinitesimal transformations (i.e., vector

4 Poincaré used parentheses instead of brackets for the commutator products. To avoid
confusion we replace the parentheses with the more conventional brackets. He also
used the notation ciks instead of the more convenient notation csik for the structure
constants. We do not however replace this notation, which does not cause any confusion,
to preserve as much as possible Poincaré’s style and terminology.
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fields) which satisfy the equation

(2.1) [Xi, Xk] =
∑

s=1,...,r

ciksXs

then the structure constants ciks must satisfy the relations

ckis = −ciks,(2.2)
r∑

k=1

(cikscjlk + c
kscijk + cjksc
ik) = 0 (1 ≤ i, j, �, s ≤ r),(2.3)

which follow immediately from the fact that the bracket [ · , · ] is skew

symmetric, and the Jacobi identity

[
[Xa, Xb], Xc

]
+

[
[Xb, Xc], Xa

]
+

[
[Xc, Xa], Xb

]
= 0.

Conversely, if the coefficients ciks satisfy equations (2.2) and (2.3) then

there exists a system of infinitesimal transformations verifying equation

(2.1), and hence a group of transformations with r parameters.

In [Poincaré 1900] he gave a different proof of this theorem, especially

for the case of Lie algebras with non-trivial centers. His approach consists

of reformulating Lie’s construction of the adjoint group, deriving the

differential equations associated with the parametric group, and then

showing that these equations can be integrated. More specifically, if

X1, . . . , Xr form a basis of a Lie algebra of infinitesimal transformations,

and
V =

∑
viXi, T =

∑
tiXi,

then one has the adjoint representation

T �−→ T ′ = e−V T eV ,

where T ′ =
∑
t′iXi and etX =

∑∞
n=0 t

n/n!Xn. The image of the adjoint

representation is then called the adjoint group. By setting

eV eT = eW , where W =
∑

wiXi,

it follows that the w are functions of the v and t, or, in other words the

transformation eT transforms eV into eW , i.e., the v into the w; and the

group thus defined in r variables is called the parametric group associated



256 TUONG TON-THAT, THAI-DUONG TRAN

with the system {X1, . . . , Xr}. In [Poincaré 1901] and [Poincaré 1908] he

studied in great detail these differential equations and the isomorphism

between the adjoint and parametric groups. His research into expressions

of W as a function of U and V in the formula eUeV = eW resulted in

a precursory form of the Baker-Campbell-Hausdorff formula (see [Schmid

1982] for a discussion regarding Poincaré’s contribution to this theorem

and, e.g., [Varadarajan 1984 (1974), p. 114] or [Bourbaki 1972, Chap. II],

for a more modern proof of this theorem).

3. POINCARÉ’S DISCOVERY OF THE UNIVERSAL ENVELOPING

ALGEBRA AND THE SO-CALLED BIRKHOFF-WITT THEOREM

In this section we shall expound the main theme of this article, namely,

Poincaré’s priority in the discovery of the universal enveloping algebra and

the so-called Birkhoff-Witt theorem. For this purpose we shall examine

in detail his article [Poincaré 1900]. As a general rule we try to adhere

faithfully to his exposition, notation, and style as much as possible.

But in order to make our point we shall insert some comments, prove

some claims which Poincaré considered self-evident but did not seem

to be so obvious to us, and integrate his work into the more modern

framework of Lie theory. At first reading [Poincaré 1900] seems to be

hastily written, repetitive, and sometimes cryptic, and this might explain

why not many people have read it; especially for the readers for whom

French is not their first language. But by a careful analysis of [Poincaré

1900] one must conclude without a shade of doubt that Poincaré had

discovered the concept of the universal algebra of a Lie algebra and gave

a complete and rigorous proof of the so-called Birkhoff-Witt theorem. As

we shall see, his entire proof of this theorem, with the exception of the

claim that we will state as Theorem 3.3, is quite rigorous and modern

in language. For these reasons we will translate the parts in [Poincaré

1900] that are relevant to our discussion for the benefit of the readers who

are not familiar with French. But before going into the details we shall

elaborate on why we consider his proof very enlightening. For example,

his introduction of the symmetrization map is made quite natural by

the observation that the most elementary “regular” (or “symmetric”)

polynomials are the linear polynomials and their powers. And, as it turns

out, all symmetrized polynomials are linear combinations of those. From
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the symmetrization the notion of equipollence comes out naturally. This,

in turn, leads to the notion of equivalence, and ultimately to the definition

of the universal enveloping algebra of a Lie algebra. In the proof of the

fact stated as Theorem 3.8 below, he introduced the notion of “chains”

and cleverly showed that he could add more chains to paradoxically reduce

the number of basic chains. This enabled him to proceed by induction (on

the degree of the regular polynomials). This ingenious idea foreshadows

some techniques used in the modern theory of word problem.

For the remainder of this section, in order to capture Poincaré’s vivid

flow of ideas we shall use the present tense to present his exposition.

For convenience, we shall discuss the universal enveloping algebra first.

Let X1, . . . , Xn be n elementary operators (Poincaré thinks of these

operators as vector fields but never really uses this fact here). Let L be

the Lie algebra over a field of characteristic zero K (Poincaré thinks of K
as R or C but all concepts and proofs remain identical) generated by these

n elementary operators which constitute a basis for L. Let A denote the

non-commutative algebra of polynomials in n variables X1, . . . , Xn with

coefficients in K. Consider the set of all elements of A of the form

(3.1) P
(
XY − Y X − [X,Y ]

)
Q,

where P and Q are arbitrary polynomials in A, and where [X,Y ] denotes

the bracket product of L. Define an equivalence relation ∼ in A by declar-

ing that an element A ∈ A is equivalent to 0 if A is a linear combination

of elements of the form (3.1) for some P and Q in A, and A ∼ A′, A′ ∈ A,
if A − A′ ∼ 0. Then the quotient algebra (or residue ring) thus defined

is now called the universal enveloping algebra of L. In fact, this can be

rephrased in modern language as follows:

Let T denote the tensor algebra over the underlying vector space of L,
then T is isomorphic to A (see, for example, [Lang 1965, Prop. 10, p. 423]).

Let J denote the two-sided ideal of T generated by the tensors X ⊗ Y −
Y ⊗X − [X,Y ] where X,Y ∈ L. Then the associative algebra U = T /J
is called the universal enveloping algebra of L (cf., e.g., [Bourbaki 1975,

p. 12] or [Bourbaki 1960, p. 22]). Under the isomorphism between T and

A the ideal J corresponds to the two-sided ideal of A spanned by all

elements of the form (3.1). Actually this is exactly Harish-Chandra’s

approach to the universal enveloping algebra in [Harish-Chandra 1949].
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Unaware that Poincaré had defined this notion in [Poincaré 1900], Harish-

Chandra [1949, p. 900] wrote the following footnote: “This algebra is the

same as the one considered by Birkhoff [1937] and Witt [1937], though

their method of construction is different”. He also wrote: “In view of this

1-1 correspondence between representations of L and U it is appropriate

to call U the general enveloping algebra of L”. In his fundamental paper

[Harish-Chandra 1951] on the role of the universal enveloping algebra of a

semisimple Lie algebra in Lie theory, published two years later, he replaced

the word “general” with “universal”, probably under the influence of

Birkhoff’s work on universal algebras. Thus we can conclude that it

was Harish-Chandra who named this algebra discovered by Poincaré

“universal enveloping algebra”.

In his very influential book [Chevalley 1955], C. Chevalley, one of the

world’s leading experts in Lie theory and a founding member of Bour-

baki, attributed to Harish-Chandra the following theorem: “There exists

a one-to-one correspondence (but not multiplicative!) between elements of

U and those of the symmetric algebra of L; also if L is the Lie algebra of a
Lie group G, then U is isomorphic to the algebra of right (or left) invari-

ant differential operators over the algebra of analytic functions on G”

[Chevalley 1955, vol. III, chap. 5, §6]. Note that Chevalley and Harish-

Chandra were colleagues at Columbia University during this period. It is

also interesting to note that Chevalley also gives a proof of the Birkhoff-

Witt theorem [Chevalley 1955, vol. III, Prop. 1, p. 163] without mention-

ing the work of Birkhoff and Witt. Anyhow, many authors seem not to

acknowledge Poincaré’s discovery of the fundamental notion of universal

enveloping algebra; for example, in the encyclopaedic work [Dixmier 1974]

Poincaré’s work is not even referred to with regard to this algebra.

Finally we are coming to the main part of this article, namely,

Poincaré’s proof of the Birkhoff-Witt theorem. But before going into detail

about the proof, we shall make some historical remarks. As discussed ear-

lier, none of the leading experts in Lie theory seemed to be aware of the

existence of Poincaré’s work on the universal enveloping algebra and his

proof of the so-called Birkhoff-Witt theorem prior to about 1956. Gar-

rett Birkhoff and Ernst Witt certainly didn’t mention Poincaré’s work

in [Birkhoff 1937] and [Witt 1937], respectively. M. Lazard [1952, 1954]

generalized this theorem, which he called the Witt theorem, but did men-
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tion [Birkhoff 1937] and the work of Kourotchkine. So far as we know

the authors who first noticed that the proof of the Birkhoff-Witt theo-

rem already appeared in [Poincaré 1900] were H. Cartan and S. Eilenberg

[1956]. Curiously, they called the theorem the Poincaré-Witt theorem and

did not refer to Birkhoff’s proof; moreover, they attributed the complete

proof of the theorem to Witt. It appears that Bourbaki was the first to

call this theorem the Poincaré-Birkhoff-Witt theorem in [Bourbaki 1960],

a recognition acknowledged in arguably the most influential book on Lie

algebras in the English language [Jacobson 1962]. From then on this is the

prevalent name used for this theorem; however, many authors of serious

books on Lie theory such as [Kuros 1963], [Cohn 1981] and more recently

[Knapp 1986], etc., continue to call it the Birkhoff-Witt theorem.

Now let us carefully examine [Poincaré 1900], especially the portion

relevant to our investigation, pp. 224–232.

The section heading is “Calcul des polynômes symboliques”. Let

X,Y, Z, T, U, . . . , be n elementary operators (i.e., a basis for a Lie algebra

over a commutative field K of characteristic zero). Consider the algebra

of symbolic (or formal) non-commutative polynomials in these operators

with coefficients in K. Then as previously mentioned, we may identify this
algebra with the tensor algebra T .

Definition 3.1. — Two monomials are said to be equipollent if they

differ only by the order of their factors. This definition extends obviously

to two polynomials that are sums of pairwise equipollent monomials. Ex.

XY 2, Y XY , and Y 2X are equipollent monomials, and 3XY 2 + 3Y Z2 +

3ZX2 and XY 2+Y XY +Y 2X+Y Z2+ZY Z+Z2Y +ZX2+XZX+X2Z

are equipollent polynomials.

Definition 3.2. — A polynomial is said to be regular (or normal) if

it can be expressed as a linear combination of powers of the form

(3.2) (αX + βY + γZ + · · ·)p, p ∈ N, α, β, γ ∈ K.

Poincaré then makes several statements without bothering to prove

them. (They must have seemed obvious to him; note that the same state-

ments are made in [Poincaré 1899], which is an abridged version of [Poin-

caré 1900], where regular polynomials are called normal.) However,

because of the importance of their implications we shall formulate these

statements as a theorem and provide the reader with a proof which seems
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to be quite long, but we do not see how to shorten it. (We suspect

that because of these unproved statements some authors did not consider

Poincaré’s proof rigorous.)

Theorem 3.3. — (i) A necessary and sufficient condition for a

polynomial to be regular is that if it contains among its terms a certain

monomial then it must contain all monomials equipollent to that monomial

and with the same coefficient.

(ii) Among all polynomials equipollent to a given polynomial there exists

one and only one regular polynomial.

Some preparatory work is needed for the proof of this theorem.

Let P ≡ P(x1, . . . , xn) denote the commutative algebra of polynomials

in n indeterminates x1, . . . , xn, with coefficients in the field K. For an
integer m ≥ 0 let Pm ≡ Pm(x1, . . . , xn) denote the subspace of all

homogeneous polynomials of degree m. If (α) = (α1, . . . , αn) is a multi-

index of non-negative integers set x(α) = xα1
1 · · ·xαn

n and |(α)| = ∑n
i=1 αi.

Then it is clear that the set {x(α)} where (α) ranges over all multi-indices
such that |(α)| = m forms a basis for Pm. Let A ≡ A(X1, . . . , Xn) denote

the algebra of non-commutative polynomials in X1, . . . , Xn, then A is

obviously graded. Let Am ≡ Am(X1, . . . , Xn) denote the subspace of all

homogeneous elements of A of degree m. Define the symmetrization map

(Poincaré does not formulate this map explicitly, but it is obvious from

the context that he must have it in mind) Φm :Pm → Am as follows:

For 1 ≤ j ≤ α1 let X ′
j = X1, for α1 + 1 ≤ j ≤ α1 + α2 set

X ′
j = X2, for α1 + α2 + 1 ≤ j ≤ α1 + α2 + α3, set X

′
j = X3, . . . , for

α1 + · · · + αn−1 + 1 ≤ j ≤ m set X ′
j = Xn, with the convention that

whenever αi = 0 then the term Xi does not appear. Let

(3.3) Φm(x
(α)) = Sym(X(α)) =

1

m!

∑

σ∈Σm

X
′

σ(1) · · ·X ′
σ(m)

and extend this definition by linearity to all elements of Pm (note that

X(α) = Xα1
1 · · ·Xαn

n ). For example, with (α) = (1, 2, 0, . . . , 0) and m = 3,

then x(α) = x1x
2
2, X

(α) = X1X
2
2 , X

′
1 = X1, X

′
2 = X2, X

′
3 = X2, and

Sym(X(α)) =
1

6
(X ′

1X
′
2X

′
3 +X ′

1X
′
3X

′
2 +X ′

3X
′
2X

′
1(3.4)

+X ′
2X

′
1X

′
3 +X ′

2X
′
3X

′
1 +X ′

3X
′
1X

′
2)
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=
1

6
(X1X

2
2 +X1X

2
2 +X2

2X1

+X2X1X2 +X2
2X1 +X2X1X2)

=
1

3
(X1X

2
2 +X2X1X2 +X2

2X1).

Now the dimension of Pm is precisely the number of ways a n-tuple of

integers (α1, . . . , αn) can be chosen so that |(α)| = m. If dm denotes this

number then a combinatorial formula gives dm = (n+m−1
m ). Order this

set Λm of multi-indices following the reverse lexicographic ordering as

follows:

(3.5)





(α) ≺ (β) if for some k, 1 ≤ k ≤ n, αk < βk

and αk+1 = βk+1, . . . , αn = βn ;

(α) � (β) if either (α) ≺ (β) or (α) = (β).

Then � is obviously a total ordering; for example, (m, 0, . . . , 0) ≺
(m− 1, 1, 0, . . . , 0) ≺ (m− 3, 3, 0, . . . , 0), and (m, 0, . . . , 0) is the first (the

least) element and (0, 0, . . . , 0,m) is the last (the largest) element under

this ordering. If p is an element of Pm of the form

p = (c1x1 + · · ·+ cnxn)
m, where ci ∈ K, 1 ≤ i ≤ n,

then clearly

p =
∑

(α)∈Λm

(m
α

)
c(α)x(α),

where the multinomial coefficient (mα ) is equal to m!/α1! . . . αn!, and

c(α) = cα1
1 · · · cαn

n . If we denote by X̃(α) the image of x(α) by Φm (i.e.,

X̃(α) = Sym(Xα)), then by linearity

Φm(p) =
∑

(α)∈Λm

(m
α

)
c(α)X̃(α).

On the other hand an easy computation shows that

(3.6)
(m
α

)
X̃(α) = sum of all distinct elements

of Am equipollent to X(α).
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By expanding (c1X1 + · · · + cnXn)
m and taking into account the non-

commutativity of the products of the Xi we see that

(c1X1 + · · ·+ cnXn)
m(3.6)

=
∑

(α)∈Λm

c(α)(sum of all distinct elements

of Am equipollent to X(α))

=
∑

(α)∈Λm

(m
α

)
c(α)X̃(α).

Thus

Φm

(
(c1x1 + · · ·+ cnxn)

m
)
= (c1X1 + · · ·+ cnXn)

m.

It follows by linearity that the image of a regular polynomial in Pm is the

regular polynomial in Am, obtained by substituting the variable xi by the

variable Xi; moreover, regular elements of Am are already symmetrized.

Let Φ:P → A denote the linear map obtained by setting

(3.8) Φ(p) =
∑

m≥0

Φm(pm),

where p is decomposed into homogeneous elements as p =
∑

m≥0 pm.

If
∑

(α)∈Λm
λ(α)x

(α) is an arbitrary element of Pm(λ(α) ∈ K, for all
(α) ∈ Λm), then from equations (3.3) and (3.6) it follows that

Φm

( ∑

(α)∈Λm

λ(α)x
(α)

)
=

∑

(α)∈Λm

λ(α)X̃
(α)

=
∑

(α)∈Λm

λ(α)
1

(mα )
(sum of all distinct elements

of Am equipollent to X(α)).

Since the non-ordered monomials of degree m (i.e., the set of all distinct

elements of Am equipollent to X(α) for all (α) ∈ Λm) form a basis for Am,

it follows that if

Φm

( ∑

(α)∈Λm

λ(α)x
(α)

)
= 0,

then λ(α) = 0 for all (α) ∈ Λm. Thus Φm is one-to-one, and it follows

that Φ is a monomorphism of vector spaces (but not an algebra homo-

morphism). Let R ≡ R(X1, . . . , Xn) denote the subspace of all regular
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polynomials of A; then among the consequences of Theorem 3.3 one can

infer that Φ is a vector space isomorphism of the vector space P onto

the vector space R, and moreover, regular elements in A are already sym-

metrized.

Lemma 3.4. — For any positive integer r there exists an n-tuple

(c) = (c1, . . . , cn) of positive integers such that

(c)(β) ≥ r c(α) whenever (α) ≺ (β), ∀ (α), (β) ∈ Λm.

Proof. — Given r ∈ N∗ choose c1 = 1 and define ck inductively by

ck = r(ck−1)
m for 2 ≤ k ≤ n. Then clearly c1 ≤ c2 ≤ · · · ≤ cn and

ck = r(ck−1)
m ≥ rcα1

1 cα2
2 · · · c

αk−1

k−1 since α1 + · · · + αn = m. Hence if

(α) ≺ (β), i.e., αk < βk and αk+1 = βk+1, . . . , αn = βn then

c(β) ≥ cβk

k c
βk+1

k+1 · · · cβn
n ≥ ckc

αk

k c
αk+1

k+1 · · · cαn
n

≥ (rcα1
1 cα2

2 · · · c
αk−1

k−1 )(c
αk

k c
αk+1

k+1 · · · cαn
n ) = rc(α).

Lemma 3.5. — The polynomials X̃(α) ≡ Φm(x
(α)) ≡ Sym(Xα) are

regular for all (α) ∈ Λm.

Proof. — We prove by induction that for each (β) ∈ Λm the following

statement holds:

(3.9) For every (α) � (β), X̃(α) can be expressed as

X̃(α) = f
(β)
(α) +

∑

(γ)�(β)

λ
(β)
(α)(γ)X̃

(γ),

where f
(β)
(α) is a regular element of Amand the constants λ

(β)
(α)(γ) are

rational numbers.

First observe that if

(β) = (0, . . . , 0,m, 0, . . . , 0),
↑

ith slot

then x(β) = xmi and Φm(x
(β)) = X̃(β) = Xm

i , which is by defini-

tion regular. Thus the first element in this reverse lexicographical order-

ing is (β) = (m, 0, . . . , 0) and the statement (3.9) holds trivially with

X̃(m,0,...,0) = Xm
1 , where

f
(m,0,...,0)
(m,0,...,0) = Xm

1 and λ
(m,0,...,0)
(m,0,...,0),(γ) = 0
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for all (γ) � (m, 0, . . . , 0).

Now assume the statement holds for (β). Let (β′) denote the immediate

successor to (β), and consider the element g(β′) ∈ Am of the form

g(β′) = (c1X1 + · · ·+ cnXn)
m =

∑

(α)∈Λm

( m

(α)

)
c(α)X̃(α),

where the n-tuple (c) = (c1, . . . , cn) is yet to be determined. This implies

that
( m

(β′)

)
c(β

′)X̃(β′) = g(β′) −
∑

(α)�(β)

( m

(α)

)
c(α)X̃(α) −

∑

(γ)�(β′)

( m

(γ)

)
c(γ)X̃(γ).

From (3.9) it follows that
( m

(β′)

)
c(β

′)X̃(β′) = g(β′) −
∑

(α)�(β)

( m

(α)

)
c(α)

(
f
(β)
(α) +

∑

(γ)�(β)

λ
(β)
(α)(γ)X̃

(γ)
)

−
∑

(γ)�(β′)

( m

(γ)

)
c(γ)X̃(γ)

=
(
g(β′) −

∑

(α)�(β)

( m

(α)

)
c(α)f

(β)
(α)

)

−
∑

(α)�(β)

∑

(γ)�(β)

( m

(α)

)
c(α)λ

(β)
(α)(γ)X̃

(γ)

−
∑

(γ)�(β′)

( m

(γ)

)
c(γ)X̃(γ).

Since (β′) is right after (β), the multi-indices (γ) � (β) consist of

(γ) = (β′) and (γ) � (β′). Hence equation (3.10) can be written as
( m

(β′)

)
c(β

′)X̃(β′) =
(
g(β′) −

∑

(α)�(β)

( m

(α)

)
c(α)f

(β)
(α)

)

−
( ∑

(α)�(β)

( m

(α)

)
c(α)λ

(β)
(α)(β′)

)
X̃(β′)

−
∑

(γ)�(β′)

{( ∑

(α)�(β)

( m

(α)

)
c(α)λ

(β)
(α)(γ)

)
+

( m

(γ)

)
c(γ)

}
X̃(γ).

This implies that

(3.11)
[( m

(β′)

)
c(β

′) +
∑

(α)�(β)

( m

(α)

)
c(α)λ

(β)
(α)(β′)

]
X̃(β′)
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=
(
g(β′) −

∑

(α)�(β)

( m

(α)

)
c(α)f

(β)
(α)

)

−
∑

(γ)�(β′)

{( ∑

(α)�(β)

( m

(α)

)
c(α)λ

(β)
(α)(γ)

)
+

( m

(γ)

)
c(γ)

}
X̃(γ).

In equation (3.11) we can solve for X̃(β′) provided that
( m

(β′)

)
c(β

′) +
∑

(α)�(β)

( m

(α)

)
c(α)λ

(β)
(α)(β′)

is not zero. To insure this we now determine (c) = (c1, . . . , cn) as in

Lemma 3.4 by choosing the integer r such that

(3.12) r > dm max
(α)�(β)

{( m

(α)

)∣∣λ(β)
(α)(β′)

∣∣
}
,

where dm = (m+n−1
m ) is the cardinality of Λm. Then

( m

(β′)

)
c(β

′) ≥ c(β
′) >

∑

(α)�(β)

c(β
′)

dm

≥
∑

(α)�(β)

rc(α)

dm
>

∑

(α)�(β)

( m

(α)

)∣∣λ(β)
(α)(β′)

∣∣c(α).

It follows that
( m

(β′)

)
c(β

′) +
∑

(α)�(β)

( m

(α)

)
c(α)λ

(β)
(α)(β′)

≥
( m

(β′)

)
c(β

′) −
∑

(α)�(β)

( m

(α)

)
c(α)

∣∣λ(β)
(α)(β′)

∣∣ > 0.

Thus we have shown that the n-tuple (c) = (c1, . . . , cn) of positive integers

can be chosen so that the coefficient of X̃(β′) in equation (3.11) is a positive

rational number, and the coefficients of X̃(γ) in the sum
∑

(γ)�(β′) are

rational numbers. Obviously,

g(β′) −
∑

(α)�(β)

( m

(α)

)
c(α)f

(β)
(α)

is a regular polynomial, so by dividing both sides of equation (3.11) by

the coefficient of X̃(β′) we can write

(3.13) X̃(β′) = f
(β′)
(β′) +

∑

(γ)�(β′)

λ
(β′)
(β′)(γ)X̃

(γ),
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where f
(β′)
(β′) is regular and the constants λ

(β′)
(β′)(γ) are rational. For (α) ≺ (β′),

i.e., α � (β) equation (3.9) can be written as

X̃(α) = f
(β)
(α) + λ

(β)
(α)(β′)X̃

(β′) +
∑

(γ)�(β′)

λ
(β)
(α)(γ)X̃

(γ)(3.14)

=
(
f
(β)
(α) + λ

(β)
(α)(β′)f

(β′)
(β′)

)

+
∑

(γ)�(β′)

(
λ
(β)
(α)(β′)λ

(β′)
(β′)(γ) + λ

(β)
(α)(γ)

)
X̃(γ).

Set f
(β′)
(α) = f

(β)
(α) + λ

(β)
(α)(β′)f

(β′)
(β′) and λ

(β′)
(α)(γ) = λ

(β′)
(α)(β′)λ

(β′)
(β′)(γ) + λ

(β)
(α)(γ),

then it follows from equations (3.13) and (3.14) that for all (α) � (β′),

X̃(α) = f
(β′)
(α) +

∑

(γ)�(β′)

λ
(β′)
(α)(γ)X̃

(γ),

where f
(β′)
(α) is obviously regular and the coefficients λ

(β′)
(α)(γ) are obviously

rational. Hence we have completed the induction. Now for the proof of

the lemma in the statement (3.9), choose (β) = (β)max = (0, . . . , 0,m) to

be the last element of Λm. Then (3.9) reads:

“For every (α) � (β)max , X̃
(α) = f

(β)max

(α) , where f
(β)max

(α) is a regular

element of Am”. This is exactly what the lemma affirms.

From the fact that Φm :Pm → Am is a monomorphism it follows

that the system {X̃(α), (α) ∈ Λm} is linearly independent. Therefore

if Rm denotes the subspace of R of all homogeneous non-commutative

regular polynomials of degree m in the indeterminates X1, . . . , Xn, then

Lemma 3.5 and equation (3.7) imply that the system {X̃α, (α) ∈ Λm}
forms a basis forRm. It follows immediately from the discussion preceding

Lemma 3.4 that Φm :Pm → Rm is an isomorphism and hence, Φ is an

isomorphism of P onto R (clearly from equation (3.7) Rm ⊂ Φm(Pm),

Lemma 3.5 shows that Rm = Φm(Pm)). Now each X̃(α), being a regular

homogeneous polynomial of degreem, is therefore a linear combination of

polynomials of the form (c1X1 + · · ·+ cnXn)
m. Let S be the set of such

polynomials, then S is a finite set of vectors spanning the vector spaceRm.

From a general fact in linear algebra (see, for example, [Hoffman & Kunze

1971, Corollary 2, p. 44]) we can deduce the following.

Corollary 3.6. — (i) The vector space Rm admits a basis consisting

of vectors of the form

(3.15) fi = (ci1X1 + ci2X2 + · · ·+ cinXn)
m, 1 ≤ i ≤ dm, c

i
j ∈ K.
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(ii) The same conclusion holds with Pm replacing Rm and xj, 1 ≤ j ≤ n,

replacing Xj.

Proof of Theorem 3.3.— Clearly since A is a graded algebra, it suffices

to prove the theorem for Am,m ≥ 0.

(i) If f is a regular element of Am then since {X̃(α), (α) ∈ Λm} forms
a basis for Rm ,

f =
∑

(α)∈Λm

λ(α)X̃
(α), λ(α) ∈ K.

Thus if λ(α) �= 0 then since X̃(α) contains all distinct monomials equipol-

lent to X(α), therefore f contains all monomials equipollent to X(α) with

the same coefficient

1

( m
(α) )

λ(α).

Conversely, if f is a polynomial in Am which contains all monomials

equipollent to a fixed monomial, which we may assume without loss of gen-

erality to beX(α), with the same coefficient, then f must contain µ(α)X̃
(α)

with µ(α) a non-zero constant. Hence f is of the form

∑

(α)∈Λm

λ(α)X̃
(α), λ(α) ∈ K,

and therefore is a regular polynomial.

(ii) First observe that if Xi1 · · ·Xim , 1 ≤ ij ≤ n, 1 ≤ j ≤ m,

is a monomial in Am, then it is equipollent to a unique monomial

X(α) = Xα1
1 · · ·Xαn

n for some (α) ∈ Λm. Then from the definition of

X̃(α) ≡ Sym(Xα) and part (i) of this theorem, X̃(α) is the unique regu-

lar polynomial of Am that is equipollent to X(α), and hence to Xi1...im

(for example, X2X1X2 is equipollent to X(1,2,0,...,0) = X1X
2
2 , which

from equation (3.4) is equipollent to the regular polynomial X̃(1,2,0,...,0) =
1
3
(X1X

2
2 + X2X1X2 + X2

2X1) = 1
6
[(X1 + X2)

3 + (X1 − X2)
3 − 2X3

1 ]).

Let

p =
∑

i1,...,im

λi1···imXi1 · · ·Xim ,
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where the sum is over all distinct non-commutative homogeneous monomi-

als of degree m and the coefficients λi1...im are uniquely determined. Then

since each Xi1 · · ·Xim is equipollent to a unique regular polynomial X̃(α)

for some (α) ∈ Λm, p is equipollent to the unique regular polynomial

∑

(α)∈Λm

µ(α)X̃
(α),

where µ(α) is the sum of all λi1...im for which Xi1...im is equipollent

to X̃(α).

Remark 3.7. — It follows from Corollary 3.6 (i) and equation (3.7)

that a polynomial p of A is regular if and only if Sym(p) = p. Now define

(as in [Godement 1982, 5.6.1]) a polynomial

p =
∑

i1...im

λi1...imXi1 · · ·Xim , 1 ≤ ij ≤ n, 1 ≤ j ≤ m,

to be symmetric if all its coefficients λi1...im are symmetric, i.e., for all

σ ∈ Σm, λiσ(1) ...iσ(m)
= λi1...im . Then Theorem 3.3 (i) implies that a

polynomial in A is regular if and only it is symmetric, since a monomial is

equipollent to Xi1 · · ·Xim , if and only if it is of the form Xiσ(1)
· · ·Xiσ(m)

for some σ ∈ Σm. Thus in this context regular is synonymous with

symmetric, and this is probably what [Bourbaki 1969] must have had in

mind when he affirmed that Poincaré gave a proof of algebraic nature that

the associative algebra generated by theXi, 1 ≤ i ≤ n, has as basis certain

symmetric functions in Xi. In fact, in [Godement 1982, 5.6.1], for example,

this fact is used to define the vector space isomorphism β :S(g) → U(g)
of the symmetric algebra of polynomial functions on the dual g∗ of the

Lie algebra g onto the universal enveloping algebra g. Obviously, P is

isomorphic to S(g) and as we shall see R is isomorphic to U(g); thus the
map β is basically Φ.

Now let us return to [Poincaré 1900]. Let X1, . . . , Xr be elementary

operators (i.e., infinitesimal transformations) which form a basis for a Lie

algebra L. Define the Lie bracket as

(3.16) [X,Y ] = XY − Y X ; X,Y ∈ L.

Two polynomials in A are said to be equivalent if one can be reduced to

the other in taking into account relation (3.16).
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For example, the product P (XY − Y X − [X,Y ])Q as defined in

equation (3.1) (where the first and the last factors P and Q are two

arbitrary monomials inA) is equivalent to zero, and obviously so are linear
combinations of products of that form (i.e., P and Q may be taken to be

polynomials). Products of the form (3.1) are called trinomial products.

The difference of two monomials which differ only by the order of two

consecutive factors is equivalent to a polynomial of lesser degree. Indeed,

let X and Y be those two consecutive factors. Then our monomials are

written as

PXYQ and PY XQ,

P and Q being two arbitrary monomials, and their difference

P (XY − Y X)Q

is equivalent to P [X,Y ]Q, which has degree one less, since [X,Y ] is of

first degree, while XY and Y X are of second degree.

Now let M and M ′ be two arbitrary equipollent monomials; that is,

they only differ by the order of their factors. One can find a sequence of

monomials

M,M1,M2, . . . ,Mp,M
′,

in which the first and the last terms are the given monomials and any

term in the sequence differs only from the preceding by the order of

two consecutive factors. The difference M −M ′, which is the sum of the

differences M −M1,M1−M2, . . . ,Mp−M ′, is therefore again equivalent

to a polynomial of lesser degree.

More generally, the difference of two equipollent polynomials is equiv-

alent to a polynomial of lesser degree. We now claim the following.

Theorem 3.8. — In the algebra A any arbitrary polynomial is

equivalent to a unique regular polynomial.

Proof. — First let us show that this equivalence relation5 is additive,

i.e., if p ∼ p′ and q ∼ q′ then p+ q ∼ p′ + q′. This is obvious since this is

equivalent to p − p′ ∼ 0 and q − q′ ∼ 0, and hence (p + q) − (p′ + q′) =

(p− p′) + (q − q′) ∼ 0 + 0 = 0.

5 Poincaré used the symbol = to denote this equivalence relation. To avoid confusion
we adopt the more conventional symbol ∼.



270 TUONG TON-THAT, THAI-DUONG TRAN

Now let Pn be an arbitrary polynomial of degree n; then by Theo-

rem 3.3 (ii) Pn is equipollent to a unique regular polynomial P ′
n of the

same degree n, and by the remark preceding this theorem, Pn − P ′
n is

equivalent to a polynomial Pn−1 of lesser degree (which we may assume,

without loss of generality, of degree n − 1). Therefore, Pn ∼ P ′
n + Pn−1,

and Pn−1 is in turn equipollent to a regular polynomial P ′
n−1, and hence

Pn ∼ P ′
n + Pn−1 = P ′

n + P ′
n−1 + (Pn−1 − P ′

n−1)

∼ P ′
n + P ′

n−1 + (Pn−2), . . . ,

and so on; one finally arrives to a polynomial of degree zero which is

obviously regular. Thus one can conclude that

Pn ∼ P ′
n + P ′

n−1 + P ′
n−2 + · · · ,

where the second member is a regular polynomial. We therefore have a

means to reduce any polynomial to a regular polynomial by making use

of the relations (3.16). It remains to find out if this reduction can be done

uniquely.

Since both the equivalence relation ∼ and the notion of regular poly-

nomials are additive, this problem is equivalent to the following:

Can a non-identically zero regular polynomial be equivalent to zero? Or

equivalently, can we find a sum of trinomial products of the form (3.1)

which is a non-identically zero regular polynomial? All sums of such

products are indeed equivalent to zero and vice-versa. If we define a regular

sum to be a sum of trinomial products of the form (3.1) which is also a

regular polynomial then the answer (negative) to this question (and hence

to the question above regarding uniqueness) can be stated as follows:

Lemma 3.9. — Every regular sum is identically zero.

Proof of the lemma. — The degree of a trinomial product (3.1) is

clearly d0(P )+d0(Q)+2. Thus we call the degree of a sum S of trinomial

products the highest of all the degrees of the products in S even though as

we shall see when S is a regular sum the terms of highest degree in these

different products mutually cancel each other.

The trinomial product (3.1) can be considered as the sum of two

products, the binomial product

(3.17) P (XY − Y X)Q,
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where we call PXYQ the positive monomial and −PYXQ the negative

monomial; and the product

(3.18) −P [X,Y ]Q,

which we call the complementary product.

Thus if S is an arbitrary sum of trinomial products of degree p and of

degree < p then we can write

(3.19) S = Sp − Tp + Sp−1 − Tp−1 + · · ·+ Sk − Tk + · · ·+ S2 − T2,

where Sk, 2 ≤ k ≤ p, is a sum of homogeneous binomial products of

degree k, whereas −Tk is the sum of the corresponding complementary

products. First observe that if S is a regular sum then every homogeneous

component of S is also regular since regularity is graded; in particular

Sp is regular. Since Sp is a sum of binomial products of degree p

of the form PXYQ − PY XQ and since equipollence is an additive

equivalence relation it follows immediately that Sp is equipollent to zero.

But zero is a regular polynomial and Theorem 3.3 (ii) implies that two

regular polynomials cannot be equipollent without being identical, and

therefore Sp must be identically zero.

Remark 3.10.— From the discussion above it follows that the degree

of a regular sum as we defined it is actually at least one more than the

classical degree of a polynomial in A.
Thus in particular when S is a regular sum of degree 3 (actual degree 2)

then

(3.20) S = S3 − T3 + S2 − T2.

Since S3 is homogeneous of degree 3, a typical binomial product of S3

must be of the form

(XY − Y X)Z or Z(XY − Y X).

Since S3 is regular, hence symmetric, Theorem 3.3 (i) implies that if

the binomial product (XY − Y X)Z = XY Z − Y XZ occurs in S3, all six

monomials equipollent to XY Z (resp. −Y XZ) must occur in S3 with the

same coefficient.
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Thus S3 must be a sum of terms of the form

(3.21)
∑

(XY − Y X)Z −
∑

Z(XY − Y X),

where the sign
∑

means that one must sum over the term which is

explicitly expressed under the sign and the other two terms obtained by

cyclically permuting the three letters X , Y , Z. Note that one can verify

directly from equation (3.21) that S3 is identically zero. It follows from

equation (3.21) that the sum of the complementary products −T3 contains

terms of the form

(3.22) −
(∑

[X,Y ]Z −
∑

Z[X,Y ]
)

Since S2 − T3 is homogeneous of degree two and S is regular, it follows

that S2 − T3 is also regular, and hence symmetric. Since it contains

−[X,Y ]Z + Z[X,Y ], Theorem 3.3 (i) again implies that it must contain

permutations of these terms with the same coefficients, i.e.,

−[X,Y ]Z − [Y,X ]Z − [Z, Y ]X − [X,Z]Y − [Z,X ]Y − [Y, Z]X

+ Z[X,Y ] +X [Z, Y ] + Y [Z,X ] + Z[Y,X ] + Y [X,Z] +X [Y, Z],

which can be regrouped in the following form:

(3.23) −
(∑

[X,Y ]Z −
∑

Z[X,Y ]
)
+

(∑
[X,Y ]Z −

∑
Z[X,Y ]

)
,

using the fact that the bracket product [ , ] is anti-symmetric. From

equations (3.22) and (3.23) it follows that

(3.24) S2 =
∑

[X,Y ]Z −
∑

Z[X,Y ]

and S2 − T3 = 0. Since S2 is a sum of terms of the form WZ − ZW with

W = [X,Y ] it follows that the complementary polynomial is of degree one

and is a sum of terms of the form [W,Z]. Thus we have

T2 =
∑[

[X,Y ], Z
]
,

where
∑

has the same meaning as above. Thus T2 is a sum of terms of

the form

(3.25)
[
[X,Y ], Z

]
+

[
[Y, Z], X

]
+

[
[Z,X ], Y

]
.
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It follows from equation (2.1) that T2 is a polynomial of first degree

which is obviously symmetric, and hence regular. Therefore, if T2 is not

identically zero, the sum S would be a regular polynomial which is not

identically zero.

Therefore, in order that a polynomial can be reduced in a unique

fashion to a regular polynomial, it is necessary that the expression (3.25)

is identically zero. But one recognizes there the Jacobi identities which

play such an important role in Lie theory. It remains to show that this

condition is sufficient.

At this juncture, it is important to make the following remark:

It follows from Remark 3.10 that we have actually proved that every

polynomial of degree 0, 1, or 2 is equivalent to a unique regular polynomial

of degree 0, 1, or 2, respectively.

Now by induction suppose that the lemma has been proven for regular

sums of degree 1, 2, . . . , p− 1 and propose to extend it to regular sums of

degree p.

Thus, let S = Sp−Tp+Sp−1−Tp−1+· · · be a sum of trinomial products.

Let us call Sp−Tp the head (or leading terms) of the sum S. We say that

a sum of trinomial products form a chain if the negative monomial of each

product is equal to, and of opposite sign of, the positive monomial of the

product that follows. The positive monomial of the first product and the

negative monomial of the last one are called extreme monomials of the

chain. Examples of chains:

C1 : XZ(XY )W −XZ(Y X)W −XZ[X,Y ]W +X(ZY )XW

−X(Y Z)XW −X [Z, Y ]XW +XY (ZX)W

−XY (XZ)W −XY [Z,X ]W,

C2 : XZ(XY )W −XZ(Y X)W −XZ[X,Y ]W +XZY (XW )

−XZY (WX)−XZY [X,W ] +X(ZY )WX −X(Y Z)WX

−X [Z, Y ]WX +XY Z(WX)−XY Z(XW )−XY Z[W,X ]

+XY (ZX)W −XY (XZ)W −XY [Z,X ]W.

Remark 3.11. — It results from the definition that all positive

monomials (and hence, all negative monomials) of the same chain can

only differ by the order of their factors.

A chain is said to be closed if its extreme monomials are equal and

of opposite sign. If Sp − Tp is a closed chain of trinomial products it is
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clear that Sp is identically zero since the positive and negative monomials

cancel each other two by two.

We have seen that if S is a regular sum, Sp is identically zero. It follows

therefore that the head of a regular sum must always consist of one or more

closed chains.

If two chains have the same extreme monomials, then their difference

is a closed chain. For example,

C1 − C2 : XY Z(XW )−XY Z(WX)−XY Z[X,W ]

+X(Y Z)WX −X(ZY )WX −X [Y, Z]WX

+XZY (WX)−XZY (XW )−XZY [W,X ]

+X(ZY )XW −X(Y Z)XW −X [Z, Y ]XW.

We shall use this remark to show that a closed chain can always be

decomposed in many ways into two or more closed chains. An arbitrary

closed chain can be in many ways regarded as the difference of two chains

C and C ′ having the same extreme monomials. Let C′′ be a third chain

having the same extreme monomials, then the chain C − C′ is then

decomposed into two other closed chains C − C′′ and C′′ − C′.

Now remark first that if a regular sum of degree p is identically zero,

it must be the same for all regular sums of degree p which have the same

head. The difference of these two sums will be indeed a regular sum of

degree p − 1 which will be identically zero according to our inductive

hypothesis. Therefore it suffices for us to form all closed chains of degree p

and prove that each one of them can be considered as the head of an

identically zero regular sum. Indeed, each regular sum S of order p has

as head one or more of those closed chains. Let S′ be one of those closed

chains, then if we show that there exists an identically zero regular sum

having S′ as head, it follows immediately from the remark above that S

must be identically zero. Thus by induction we suppose this statement

holds for all closed chains of degree ≤ p − 1 and we will show that it is

true for all closed chains of degree p.

To establish this assertion, we are going to decompose the closed chain

in question into several closed chains. It is clear that it suffices to prove

the proposition for each component.

A chain is called simple of the first kind if the first factor of all of its

monomials either positive or negative is everywhere the same. A chain is
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called simple of the second kind if the last factor of all of its monomials

either positive or negative is everywhere the same. Moreover, a simple

chain can be either closed or open (not closed).

Since p is larger than three, it is clear that every closed chain can be

regarded as the sum of a certain number of simple chains, alternatively of

the first and second kinds or vice-versa.

Thus let S be a closed chain, C1, C2, . . . , Cn be simple chains of the

first kind, C′
1, C

′
2, . . . , C

′
n be simple chains of the second kind, such that

S = C1 + C′
1 + C2 + C′

2 + · · ·+ Cn + C′
n,

the extreme negative monomial of each chain being, of course, equal and

of opposite sign to the extreme positive monomial of the next chain, and

the extreme negative monomial of C′
n being equal and of opposite sign to

the extreme positive monomial of C1. Note that, a priori, C1 or C′
n, can

be the zero chain, for example, if S starts with XYQ−Y XQ−· · ·, where
d0(Q) > 1; then C1 = 0, but then we can consider C1 as the zero simple

closed chain of the form XYQ− · · · −XYQ, and similarly for C′
n.

Let X be the first factor of all the monomials of C1, Z the last factor

of all the monomials of C′
1, Y the first factor of all the monomials of C2,

and T the last factor of all the monomials of C′
2 (we do not exclude the

case where two of the operators X , Y , Z, T are identical).

Let C′′ be a simple chain of the second kind having its extreme positive

monomial equal and of opposite sign to the extreme negative monomial

of C′
2, and in which all monomials have the last factor equal to T , and

moreover, the extreme negative monomial has X as its first factor.

Let C′′′ be a simple chain of the first kind such that all monomials in

it have X as the first factor, and moreover, the extreme monomials are

respectively equal and of opposite signs to the extreme negative monomial

of C′′ and to the extreme positive monomial of C1.

Schematically we have the following diagram:

(3.26) X� · · · −X�Z︸ ︷︷ ︸
C1

+X�Z · · · − Y�Z︸ ︷︷ ︸
C ′

1

+Y�Z · · · − Y�T︸ ︷︷ ︸
C2

+ Y�T · · · −�T︸ ︷︷ ︸
C ′

2

+�T · · · −X�T︸ ︷︷ ︸
C ′′

+X�T · · · −X�︸ ︷︷ ︸
C ′′′

,

where each box � represents certain unspecified monomial which does not

have any effect on our discussion.
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Thus the closed chain S is decomposed into a sum of two closed chains

as S′ + S′′, where

S′ = (C′′′ + C1) + C′
1 + C2 + (C′

2 + C′′),

S′′ = −C′′ + C3 + · · ·+ Cn − C′′′.

The closed chain S′ contains only four simple chains, since (C′′′+C1) and

(C′
2 + C

′′
) are simple chains; S′′ contains two simple chains less than S.

Continuing this scheme we end up decomposing S into closed components

which consist of only four simple chains. Thus it suffices to consider the

case of closed chains S formed by four simple chains as, for example, the

form S′.

Therefore, it follows from (3.26) that the extreme positive monomials

of the four chains that form S′ have respectively for first and last factors:

for C′′′ + C1 X and T,

for C′
1 X and Z,

for C2 Y and Z,

for C′
2 + C′′ Y and T.

Let M1,M
′
1,M2,M

′
2 denote these four monomials.

From Remark 3.11 it follows that all these monomials are equipollent

to each other and are equipollent to a certain monomial which we will

call XY PZT . Set

Q1 = XY PZT, Q′
1 = XY PTZ,

Q2 = Y XPTZ, Q′
2 = Y XPZT.

We are going to construct a series of simple chains which will constitute

a decomposition of S′ as follows:

Name of Extreme positive Extreme negative
the chain monomial monomial

C′′′ + C1 M1 = X�T −M ′
1 = −X�Z

C′
1 M ′

1 −M2 = −Y�Z
C2 M2 −M ′

2 = −Y�T
C′

2 + C′′ M ′
2 −M1

D1 M1 −Q1

D′
1 M ′

1 −Q′
1
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D2 M2 −Q2

D′
2 M ′

2 −Q′
2

E1 Q1 −Q′
1

E′
1 Q′

1 −Q2

E2 Q2 −Q′
2

E′
2 Q′

2 −Q1

We can suppose that every monomial of the chain D1 has as first

factor X and last factor T ; thus D1 is both a simple chain of the first

and second kind, and similarly for other D and D′ chains. Furthermore,

we can suppose that the E and E′ chains are reduced to a single trinomial

product, for example,

E1 = XY P
(
ZT − TZ − [Z, T ]

)
.

The closed chain S′ = (C′′′ + C1) + C′
1 + C2 + (C′

2 + C
′′
) can be

decomposed into five closed chains as follows:

U1 = (M1 · · · −M ′
1)︸ ︷︷ ︸

C ′′′+C1

+M ′
1 · · · −Q′

1︸ ︷︷ ︸
D′

1

+XY P (TZ − ZT − [T, Z])︸ ︷︷ ︸
−E1

+Q1 · · · −M1︸ ︷︷ ︸
−D1

,

U ′
1 =M1 · · · −M2︸ ︷︷ ︸

C ′
1

+M2 · · · −Q2︸ ︷︷ ︸
D2

+(Y X −XY − [Y,X ])PTZ︸ ︷︷ ︸
−E′

1

+Q′
1 · · · −M ′

1︸ ︷︷ ︸
−D′

1

,

U2 =M2 · · · −M ′
2︸ ︷︷ ︸

C2

+M ′
2 · · · −Q′

2︸ ︷︷ ︸
D′

2

+Y XP (ZT − TZ − [Z, T ])︸ ︷︷ ︸
−E2

+Q2 · · · −M2︸ ︷︷ ︸
−D2

,

U ′
2 =M ′

2 · · · −M1︸ ︷︷ ︸
C2+C ′′

+M1 · · · −Q1︸ ︷︷ ︸
D1

+(XY − Y X − [X,Y ])PZT︸ ︷︷ ︸
−E′

2

+Q′
2 · · · −M ′

2︸ ︷︷ ︸
−D′

2

,

V = XY P (ZT − TZ − [Z, T ])︸ ︷︷ ︸
E1

+(XY − Y X − [X,Y ])PTZ︸ ︷︷ ︸
E′

1

+ (Y XP (TZ − ZT − [T, Z])︸ ︷︷ ︸
E2

+(Y X −XY − [Y,X ])PZT︸ ︷︷ ︸
E′

2

.

Clearly, U1 +U ′
1 +U2 +U ′

2 + V = (C′′′ +C1) +C′
1 +C2 + (C′

2 +C′′) = S.

We must show that each one of the five closed chains above is the head

of an identically zero regular sum. The first four chains are of the form

U1 = XH1, U ′
1 = H ′

1Z, U2 = Y H2, U ′
2 = H ′

2T,
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where each chainH1, H
′
1, H2, H

′
2 is a closed chain of degree p−1; therefore

by induction, each is the head of an identically zero regular sum. It follows

that U1, U
′
1, U2, and U

′
2 are identically zero, and therefore each of them can

be considered as the head of an identically zero regular sum of degree p.

Finally for V , it is the head of the sums

XY P (ZT − TZ − [Z, T ]) + (XY − Y X − [X,Y ])PTZ

− Y XP (−TZ + ZT − [Z, T ])− (−Y X +XY − [X,Y ])PZT

− [X,Y ]P (ZT − TZ − [Z, T ])− (XY − Y X − [X,Y ])P [T, Z],

which can be expanded and rearranged as

XY PZT −XY PTZ +XY PTZ − Y XPTZ + Y XPTZ

− Y XPZT + Y XPZT −XY PZT −XY P [Z, T ]− [X,Y ]PTZ

+ Y XP [Z, T ] + [X,Y ]PZT − [X,Y ]PZT + [X,Y ]PTZ

−XY P [T, Z] + Y XP [T, Z] + [X,Y ]P [Z, T ] + [X,Y ]P [T, Z],

which is identically zero. Since 0 is a regular sum, it follows that V is the

head of an identically zero regular sum of degree p.

Note that our analysis remains unchanged when two or more of the

operators X,Y, Z, T are identical. For example, when X = Y , then

E′
1 = E′

2 = 0, and we set Q1 = Q′
2 = X(XP )ZT = XP ′ZT , Q2 = Q′

1 =

X(XP )TZ = XP ′TZ. The definition of the various chains remains the

same, and we can immediately verify that V is identically zero. Finally,

in order that this proof is valid, p must be greater than three since the

chain V must have at least four factors. But this was the assumption

in our inductive hypothesis. Thus the proof of Lemma 3.9, and hence of

Theorem 3.8, is achieved.

Corollary 3.12 (The so-called Birkhoff-Witt Theorem). — Let U(L)
denote the universal enveloping algebra of a Lie algebra over a (commuta-

tive) field of characteristic zero. If {X1, . . . , Xn} is a basis of L and if

(α) = (α1, . . . , αn) denotes an n-tuple of integers ≥ 0, set

X(α) = Xα1
1 · · ·Xαn

n , X̃(α) = Sym(Xα),
∣∣(α)

∣∣ = α1 + · · ·+ αn.

Then the set {X̃(α)}(α), for all (α) such that |(α)| ≥ 0, forms a vector

space basis for U(L). Moreover, any set of elements of U(L) of the form
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{Xi1 · · ·Xim , 1 ≤ ij ≤ n, 1 ≤ j ≤ m, m ≥ 0}, where each Xi1 · · ·Xim is

a representative of an equipollence class X(α) for all distinct (α) such that

|(α)| ≥ 0, is a basis of U(L); in particular, the set of ordered monomials
{X(α), |(α)| ≥ 0} forms a basis for U(L).

Proof.— From our discussion pertaining to Poincaré’s discovery of the

universal enveloping algebra of a Lie algebra, it follows that the quotient

algebra of the polynomial algebra A modulo the equivalence relation ∼
can be regarded as the universal enveloping algebra of the Lie algebra L
generated by X1, . . . , Xn.

Define a map from A to R, the vector space of all regular polynomials
in A, by assigning to each polynomial A in A the unique regular poly-

nomial Ā equivalent to A as defined by Theorem 3.8. From the proof of

Theorem 3.8 it follows that this map is linear, and that it is surjective

since the unique regular polynomial equivalent to a given regular polyno-

mial is itself. The kernel of this homomorphism is, by the definition of the

equivalence relation ∼, the vector space spanned by all trinomials of the

form P (XY − Y X − [X,Y ])Q for arbitrary P and Q in A. Let I denote

this kernel, then obviously I is a two-sided ideal of A. It follows from the

first isomorphism theorem that A/I is isomorphic to R as vector spaces.

From the remark following Lemma 3.5, it follows that the set {X̃(α)}(α),

|(α)| ≥ 0, forms a basis for R, and hence a basis for U(L) ∼= A/I via the

isomorphism above. Note that we have shown following Lemma 3.5 that P
is isomorphic to R via the isomorphism Φ, therefore P is isomorphic

to U(L). For the second part of the theorem, we remark that it follows

from Theorem 3.3 that each Xi1 · · ·Xim is equipollent to a unique regular

polynomial X̃(α) for some (α) ∈ Λm. Thus it suffices to consider the set

{X(α), |(α)| ≥ 0}. We also remark that it suffices to show that the

set {X(α), (α) ∈ Λm} is linearly independent in U(L) for all m ≥ 0, since

U(L) is a filtered algebra. From the proof of Theorem 3.8 it follows that

each X(α), (α) ∈ Λm, is equivalent to a unique regular polynomial of the

form X̃(α)+P(α), where P(α) is a regular polynomial of degree < m. Thus

if for some scalars λ(α) ∈ K such that
∑

(α)∈Λm
λ(α)X

(α) is zero in U(L)
(i.e., equivalent to 0), then since the equivalence relation ∼ is linear it

follows that the regular polynomial
∑

(α)∈Λm
λα(X̃

(α) +Pα) is equivalent
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to 0. It follows from Theorem 3.8 (or more precisely Lemma 3.9) that
∑

(α)∈Λm

λ(α)X̃
(α) +

∑

(α)∈Λm

λ(α)P(α)

must be identically zero. Since d0(X̃(α)) = m and d0(P(α)) < m for all

(α) ∈ Λm, it follows that ∑

(α)∈Λm

λ(α)X̃
(α) = 0;

and hence by the first part of the proof of the theorem, it follows that

λ(α) = 0 for all (α) ∈ Λm. This completes the proof of the theorem.

Remark 3.13.— We note that throughout this section the basis for the

Lie algebra L can be the infinite set {X1, . . . , Xn, . . .}. The tensor algebra
T remains isomorphic to the non-commutative algebraA of polynomials in

infinitely many variables X1, . . . , Xn, . . . (see, e.g., [Schwartz 1998 (1975),

Prop. (2.4), p. 40], and every argument remains the same. As a special

case, let Ln (resp. An) denote the Lie algebra (resp. the non-commutative

polynomial algebra) generated by X1, . . . , Xn. Let L (resp. A) denote the
inductive limit of Ln (resp. An); then all theorems in this section can be

easily generalized. For example, let

Xij = xi
∂

∂xj
, 1 ≤ i, j ≤ n;

then

[Xij , Xk
] = δjkXi
 − δ
iXkj ,

and {Xij , 1 ≤ i, j ≤ n} generates the Lie algebra gln and the associative

polynomial algebra An, respectively. By letting n → ∞ we get the Lie

algebra gl∞ and A∞, respectively. Another example is the Heisenberg Lie

algebra Hn spanned by the vector fields

Pj =
i
√
2

2

(
xj +

∂

∂xj

)
, Qj =

√
2

2

(
− xj +

∂

∂xj

)
, 1 ≤ j ≤ n,

i =
√
−1, and R = iI, where I is the identity operator. Then we have the

commutation relations

[Pj , Pk] = [Qj, Qk] = 0, [Pj , R] = [Qj, R] = 0,

[Pj , Qk] = −δjkR, 1 ≤ j, k ≤ n.

Let An denote the algebra of non-commutative polynomials in the vector

fields P1, . . . , Pn, Q1, . . . , Qn and R. Then when n → ∞ we obviously
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have the generalization of the theorems in this section to the Heisenberg

Lie algebra H∞, and hence to A∞.

4. CONCLUSION

A. Einstein said “A good idea is very rare”. We reckon that there are,

at the very least, three “good” ideas in [Poincaré 1900], namely, the

universal enveloping algebra of a Lie algebra, the symmetrization map,

and the proof of the so-called Birkhoff-Witt theorem. And in our opinion,

none of these were properly appreciated and recognized. We have gone to

great length and sometimes with repetitive arguments to try to convince

the mathematics community of what a great feat Poincaré achieved in

[Poincaré 1900]. But even if we failed, we would be much wiser by our

reading a masterpiece by a great master.

We leave the reader with the following thought of Paul Painlevé,

another great master, in the obituary written for the newspaper Le Temps

(and reprinted in [Painlevé 1921]), on July 18, 1912, the day after Poincaré

died:

“Henri Poincaré n’a pas été seulement un grand créateur dans les sci-

ences positives. Il a été un grand philosophe et un grand écrivain. Certains

de ses aphorismes font songer à Pascal : ‘La pensée n’est qu’un éclair entre

deux longues nuits, mais c’est cet éclair qui est tout’. Son style traduit la

démarche même de sa pensée: des formules brèves et saisissantes, par-

odoxales parfois quand on les isole, réunies par des explications hâtives,

qui rejettent des détails faciles pour ne dire que l’essentiel. C’est pourquoi

des critiques superficiels lui ont reproché d’être ‘décousu’ : la vérité, c’est

que, sans éducation scientifique préalable, une telle démarche logique est

difficile à égaler : le lion ne fait pas des enjambées de souris. ”6

6 This can be roughly translated as follows: “Henri Poincaré was not only a great

creator in the positive sciences. He was a great philosopher and a great writer. Some
of his aphorisms make us think of Pascal : ‘Thought is just a flash of lightning in
the middle of two long nights, but it is this lightning that is everything’. His style
reflects the very development of his thought: brief and startling formulae, sometimes
paradoxical when one isolates them, joined together by hasty explanations, which reject
easy details in order just to express the essential. That is why superficial critiques
reproach him as being ‘incoherent’ : the truth is that, without prerequisite education,
such logical development is difficult to match: the lion does not take a mouse’s paces.”
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[1972] Éléments de mathématiques, Fascicule XXXVII. Groupes et algèbres de Lie,
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