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NATURPHILOSOPHIE AND ITS ROLE IN

RIEMANN’S MATHEMATICS
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ABSTRACT. — This paper sets out to examine some of Riemann’s papers and notes
left by him, in the light of the “philosophical” standpoint expounded in his writings on
Naturphilosophie. There is some evidence that many of Riemann’s works, including
his Habilitationsvortrag of 1854 on the foundations of geometry, may have sprung
from his attempts to find a unified explanation for natural phenomena, on the basis
of his model of the ether.
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RÉSUMÉ. — LE RÔLE DE LA NATURPHILOSOPHIE DANS LES TRAVAUX

MATHÉMATIQUES DE RIEMANN. Dans cet article, nous proposons une lecture de
certains mémoires et notes de Riemann à la lumière du point de vue 〈〈philosophique 〉〉

qu’il a développé dans ses écrits sur la Naturphilosophie. Il apparâıt que l’origine de
nombreux travaux de Riemann, y compris l’Habilitationsvortrag de 1854 sur les fonde-
ments de la géométrie, peut être trouvée dans sa tentative d’explication unitaire des

phénomènes naturels sur la base de son modèle de l’éther.

INTRODUCTION

Riemann’s writings on Naturphilosophie1 can be regarded as the result

of his attempt to find a unified, mathematical explanation of various

physical phenomena such as gravitation, electricity, magnetism and light.

They also allow us to include some of his better known papers — such as

his Inauguraldissertation [1851], his Habilitationsvortrag [1854b] and other

papers on physical subjects as well — in a wide-ranging research program.

1 Heinrich Weber gathered these with others manuscripts of Riemann on philosoph-
ical subjects, such as psychology, metaphysics and gnosiology, and published them
in Riemann’s collected works under the title Fragmente philosophischen Inhalts [Rie-
mann 1876a].
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As Klein once said, Riemann’s work was characterized by his continual

attempt to put “in mathematical form a unified formulation of the laws

which lie at the basis of all natural phenomena” [1894, p. 484]. Klein did

not hesitate to claim that “the origins of Riemann’s pure mathematical

developments” lay in this research which, in Riemann’s words, was at a

certain stage his own “main work”.

Searching for a mathematical description of the known physical phe-

nomena, Riemann thought of space as pervaded by substance (Stoff 2),

and in a section of his Fragmente he considered the state of a single parti-

cle of substance and analysed locally the space around it [Riemann 1853].

This passage from “local” to “global” constitutes the basic method

used by Riemann in some of his most important works in geometry as

well as in analysis and physics. In analytical terms this corresponds to

the analytical continuation of a complex function. This is “a well known

theorem” [Riemann 1857b, p. 88] which is at the basis of the “new method”

he set up in his thesis. This “method” [Riemann 1851, p. 37–39] could be

applied to Abelian functions, as he did in [1857b], and also “in its essential

lines” to “every function which satisfies a linear differential equation with

algebraic coefficients” [1857a, p. 67]. Accordingly, in this paper he studied

the transcendental functions defined by the hypergeometric differential

equation “almost without calculations” [Werke, p. 85] and “and in their

totality” on the complex sphere.

The same point of view inspired his Habilitationsvortrag where he

defined metrics on manifolds by using the linear element ds. In particular,

Riemann stated that “questions about the immeasurably large are idle

questions for the explanation of Nature. But the situation is quite different

with questions about the immeasurably small” [Riemann 1854b/1979,

p. 151]. As Riemann explained in the introduction to the first course

he gave in Göttingen as a Privatdozent, the laws for all space could

be deduced by integrating partial differential equations expressing some

“elementary” principles valid for infinitely small portions of space.3

2 Instead of this, in his later lectures on gravitation, electricity and magnetism Riemann
preferred to use the term ether.

3 “Wahre Elementargesetze können nur im Unendlichkleinen, nur für Raum —
und Zeitpunkte stattfinden. Solche Gesetze aber werden im Allgemeinen partielle
Differentialgleichungen sein, und die Ableitung der Gesetze für ausgedehnte Körper
und Zeiträume aus ihnen erfordert die Integration derselben. Es sind also Methode
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Such a research method had already been announced by Riemann him-

self in a rather cryptic way in 1850. When lecturing at the Pädagogische

Seminar he noticed that it was possible to formulate a mathematical the-

ory by moving from elementary principles toward general laws valid in

all of a given continuous space without distinguishing between gravity,

electricity, magnetism and equilibrium of heat.4

As Klein pointed out, the method of studying functions on the basis

of their behaviour in the infinitely small had a physical counterpart in

the concept of a line of force. Moreover, Klein suggested a kind of dualism

between Riemann’s mathematical thought and Faraday’s concept of action

by contact, writing that: “If I may dare to proceed with so forceful the

analogy, then I shall say that Riemann in the field of mathematics and

Faraday in the field of physics are parallel” [Klein 1894, p. 484].

Supporting Klein’s point of view, in Raum Zeit Materie Weyl stated

that the passage from Euclidean to Riemannian geometry “is founded

in principle on the same idea as that which led from physics based

on action at a distance to physics based on infinitely near action”

[1919a/1922, p. 91]. In fact, according to Weyl:

“The principle of gaining knowledge of the external world from the

behaviour of its infinitesimal parts is the mainspring of the theory of

knowledge in infinitesimal physics as in Riemann’s geometry, and, indeed,

the mainspring of all the eminent work of Riemann, in particular, that

dealing with the theory of complex functions” [1919a/1922, p. 92].

1. ON THE SOURCE OF RIEMANN’S ANALYTICAL WORK

Riemann introduced his ideas on complex function theory in his 1851

paper which concluded his studies at Göttingen. Riemann’s starting point

nöthig, durch welche man aus den Gesetzen im Unendlichkleinen diese Gesetze im
Endlichen ableitet, und zwar in aller Strenge ableitet, ohne sich Vernachlässigungen zu
erlauben. Denn nur dann kann man sie an der Erfahrung prüfen” [Riemann 1869, p. 4].

4 “So z.B. lässt sich eine vollkommen in sich abgeschlossene mathematische Theorie
zusammenstellen, welche von den für die einzelnen Punkte geltenden Elementar-
gesetzen bis zu den Vorgängen in dem uns wirklich gegebenen continuirlich erfüllten
Raume fortschreitet, ohne zu scheiden, ob es sich um die Schwerkraft, oder die
Electricität, oder den Magnetismus, oder das Gleichgewicht der Wärme handelt”
(in [Dedekind 1876, p. 545]).
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was given by the equations

(1.1)
∂u

∂x
=

∂v

∂y
, ∂u

∂y
= − ∂v

∂x
,

which have to be satisfied by the function w = u + iv of a variable

z = x + iy. From (1.1) he deduced the equations ∆u = 0, ∆v = 0 which

are the basis for investigating the properties of the functions u and v

[Riemann 1851, p. 7].

As Prym was to write to Klein after Riemann’s death,5 since his student

days Riemann had attributed great importance to equations (1.1) for the

continuation of a function from one complex domain to another. According

to him, equations (1.1) explain why correct results can be obtained even

when working with divergent series, as Euler repeatedly did.

It is a well known fact that Riemann’s complex function theory is deeply

connected with potential theory in two dimensions — a theory he was

well acquainted with. Indeed, as a student Riemann had followed Weber’s

lectures in 1849 and the following year he participated in the physics

seminar jointly founded and led by Gauss and Weber. Gauss himself had

developed the theory of the Laplace equation in a paper of 1839. He had

determined the potential function in different cases and, in particular, he

had studied the problem of the distribution of masses or electric charges

on a closed surface S, assuming the potential to be constant on S.

From a mathematical point of view, this reduced the problem to

minimizing the following integral

J =

∫

V

| gradu|2dv.

5 “Nach einer Mittheilung, die mir Riemann in Frühjahre 1865 während meines
Pisaner Aufenthalts machte, ist derselbe zu einer Theorie der Functionen einer
verändlichen complexen Grösse durch die Beobachtung gekommen, dass Beziehungen
zwischen Functionen, die durch Entwicklung der betreffenden Functionen in Reihen
erhalten worden, bestehen bleiben, auch wenn man über die Convergenzgebiete der

darstellenden Reihen hinausging, und dass man in vielen Fällen richtige Resultate
erhält, wenn man, wie Euler z.B. es wiederholt getan, mit divergenten Reihen operiert.
Er frug sich dann, was denn eigentlich die Function aus dem einen Gebiete in das
andere fortgesetzt, und gelangte zu der Einsicht, dass dies die partielle Differential-
gleichung thue. Dirichlet, mit dem er den Gegenstand besprach, stimmte dieser Ansicht
vollständig bei; es fällt also diese Idee wohl noch in die Studienjahre Riemanns, vor
die Auffassung seiner Inauguraldissertation”. This letter from February 6, 1882 is kept
in Klein’s Nachlass [11, 383].
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Since J > 0, “a [homogeneous ] distribution must necessarily exist, so that

the integral J has a minimum”, Gauss wrote [1839, p. 233]. This argument

was used systematically by Dirichlet in his lectures on the forces which

are inversely proportional to the square of distance.

Dirichlet [1876, p. 127] faced the problem of proving that a function

with continuous first partial derivatives on a given bounded domain, which

satisfies the Laplace equation within the domain and has given values on

the boundary, always exist. Dirichlet’s existence proof of the solution of

the “Dirichlet problem” was based on the fact that the minimum for the

integral J existed (“Dirichlet principle”).

According to Riemann, potential theory as developed by Gauss and

Dirichlet was well suited to a particular geometrical object, the “Riemann

surface”, he had introduced in order to study multi-valued functions

such as algebraic functions and their integrals. Riemann required that

the surface associated to a function be composed of as many sheets as

were the branches of the function, connected in such a way to preserve

continuity and to yield a single-valued function on the surface. In this

way, he attained an abstract conception of the space of complex variables

by means of a geometrical formulation which his contemporaries were

to find very hard to understand. Referring to a conversation he had with

Prym in 1874, Klein reported that Prym “told me that Riemann’s surfaces

originally are not necessarily many-sheeted surfaces over the plane, but

that, on the contrary, complex functions of positions can be studied on

arbitrarily given curved surfaces in exactly the same way as on the surfaces

over the plane” [Klein 1882/1893, p. x].

Riemann made the surface simply connected with suitable transver-

sal cuts (Querschnitte) and analysed the behaviour of the function in

the neighbourhood of the singularities — poles and branch points. Then,

thanks to the Dirichlet principle, Riemann stated and proved a fundamen-

tal existence theorem for a function with given singularities and boundary

conditions [1851, p. 34–35]. This is the global theorem which, in Riemann’s

words, opens the way to the the study of complex functions independently

of their analytical expressions [Riemann 1851, p. 35].

Many of the ideas of this paper, as Klein first emphasized, were inspired

by physical topics. As Riemann told Betti (see [Bottazzini 1985, p. 559]),

the idea of transversal cut on a surface struck him after a long discussion
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with Gauss on a mathematical-physical problem. In Brill and Noether’s

opinion, the origin of the concepts of Riemann surface and transversal

cut could be found in an unpublished note [Riemann 1876c] on a problem

of electrostatic or thermal equilibrium on the surface of a cylinder with

transversal cuts.6

Apparently Riemann sought to evaluate the distribution of the static

electricity on the surface of a cylinder, due to constant forces along the

directrices of the cylinder. Laplace had already observed that, when the

interacting masses are placed on an infinite cylinder and the forces are

constant along straight lines parallel to the directrices of the cylinder, the

evaluation of the potential of the bodies can be seen as a plane problem. To

this end, it is sufficient to replace every directrix by its intersection point

with a plane orthogonal to the directrix. Thus, the differential equation

involved reduces to the Laplace equation ∆u = 0 in two variables and

the sought for potential function
∑

m/r reduces to the “logarithmic”

potential
∑

m log(r).

Accordingly, Riemann stated that solving this problem was equivalent

to finding a function u having given boundary values and satisfying the

differential equation ∆u = 0 within a surface S, which he supposed to be

plane, simply connected, simple sheeted and bounded by n arbitrarily

given curves [Riemann 1876c, p. 440]. In turn, this problem could be

reduced to the easier one of determining a function ζ = ξ + iη of the

complex variable z = x + iy which is finite and continuous within S and

takes real values on the boundary, where it becomes infinite of the first

order in just one point for each curve of the boundary.

Under the condition that ζ goes from −∞ to +∞ when any of the

boundary curves is travelled in a positive sense, “one can easily” show

that ζ takes every real value exactly once on each curve of the boundary

whereas within S it takes every complex value n times (with Im ζ > 0).

Thus, one gets a conformal map of S onto a n-sheeted surface T over

the upper half plane, whose boundary lines on the n sheets of the surface

coincide with the real axis. As within T there are (2n− 2) branch points

[Riemann 1857b, p. 113], the problem reduces to the determination of

6 As Weber remarked, apart from some hints by Riemann, this note reduces to sheets
with calculations. “Wir sind geneigt, die[se] Note als eine der frühesten Arbeiten
Riemann’s, oder doch ihren Gedankengang als den Ausgangspunkt für Riemann’s
Arbeiten über Functionentheorie zu bezeichnen” [Brill and Noether 1894, p. 259].
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a function of ζ branched like T , such that its real part u is continuous

within T and takes arbitrarily given values on the n lines of the boundary.

By means of both the Green function and the Riemann-Schwarz

principle of symmetry, Riemann showed how the problem could be solved

by following the same procedure he used in his paper on Abelian functions

[Riemann 1857b, pp. 113, 119] and determining the Green function by

means of an Abelian integral of the third kind. Next he discussed the

particular case in which the boundary of S is given by n circles. As Brill

and Noether [1894, p. 258] remarked, in this way Riemann established a

close connection between the theory of Abelian integrals, the conformal

mapping problem and the fundamental existence theorem Riemann stated

in his 1851 paper.

On the contrary, according to Klein the motivation for Abelian function

theory, which was to be developed by Riemann [1857b], lay in Riemann’s

researches in conductors and galvanic currents. In Klein’s opinion, Rie-

mann’s fundamental existence theorem of a harmonic function u could be

obtained from the following “thought experiment” (Gedankenexperiment):

let a n-sheeted, closed Riemann surface over the complex plane be a uni-

form conductor with the two poles of a galvanic battery at the points A1

and A2 ; on these assumptions a current is created, whose potential u is

defined and single-valued on the surface, it satisfies the equation ∆u = 0,

and in A1 and A2 becomes infinite when r1 and r2 go to infinity as log r1

and − log r2 respectively [Klein 1926, p. 260–261]. Klein took this as the

starting-point of his presentation of Riemann’s theory of algebraic func-

tions and their integrals, claiming that:

“I have no doubt that he [Riemann] started from precisely those physical

problems, and then, in order to give what was physically evident the

support of mathematical reasoning, he afterwards substituted Dirichlet’s

Principle” [Klein 1882/1893, p. x].

After referring to “the conditions under which Riemann worked in

Göttingen” as well as to his writings on Naturphilosophie, Klein con-

cluded that “anyone who clearly understands” this “will, I think, share

my opinion”. In Klein’s view, Riemann’s “general problem” (allgemeine

Fragestellung) was the following: “to study the streamings in the first

place and thence to work out the theory of certain analytical functions”

[Klein 1882/1893, p. 22]. Admittedly, Klein added that his presentation
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“by no means include[d ] the whole of what [Riemann] intended in the

theory of functions” and recognized that, even in the case of algebraic

functions and their integrals, his point of view was “necessarily very sub-

jective”.

In spite of Klein’s hope, his interpretation of the origins of Riemann’s

theory met strong criticism. In his review of Klein’s booklet, M. Noether

[1882] openly questioned Klein’s historical reconstruction. This was also

rejected by Prym7 and Betti did the same in a letter to Klein from

March 22, 1882. Answering a precise question asked by Klein, he stated

that:

“Riemann ne m’a jamais dit avoir développé la théorie des courants

stationnaires dans un fluide incompressible, dans un espace quelconque

à trois dimensions et à courbure quelconque, quoiqu’il se soit entretenu

avec moi plusieurs fois sur les travaux de Mr. Helmholtz” [Klein Nach-

lass 8, 86].8

Some days later Klein addressed Bianchi [Opere 11, pp. 116–117], a

former student of Betti, who had spent a period in München with Klein.

In his reply Bianchi reported that, according to Betti’s record, Riemann

never made any connection between electric currents and closed surfaces

“free in space”. Instead, “[Betti ] can ensure you with all certainty that

once Riemann told him that he [Riemann] had been led to his analytical

theory and his way of thinking [Anschauungsweise] after dealing with

questions and problems of physics” [Klein Nachlass 8, 100].

7 Contrary to Klein’s opinion, in the letter mentioned above (see footnote 5) Prym
stated that: “Ich halte es daher auch für sehr wahrscheinlich, dass ähnliche Ideen, wie
Sie sie entwickeln, von Riemann verfolgt worden sind, aber erst nachdem die Theorie
der Abelschen Functionen vollendet war. Sie dagegen scheinen der Ansicht zu sein,
dass Riemann von dem allgemeinen, auf beliebig beschaffene Flächen bezüglichen Falle
zu dem Falle der Abelschen Functionen als einem speciellen Hinabgestiegen sei. Ich
meine, der umgekehrte Weg, den ja auch Sie, wenn auch nicht in Ihrer Abhandlung,
so doch in Ihren Studien eingeschlagen haben, sein der natürliche und entspreche am
meisten den Gesetzen der geschichtlichen Entwicklung.”

8 French revised [Eds.].
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2. RIEMANN’S NEUE MATHEMATISCHE PRINCIPIEN DER

NATURPHILOSOPHIE

After the completion of his thesis, Riemann himself gave a hint of his

research projects by writing in an undated note that his “main work”

involved “a new interpretation of the known laws of nature — whereby

the use of experimental data concerning the interaction between heat, light,

magnetism, and electricity would make possible an investigation of their

interrelationship. I was led to this primarily through the study of the works

of Newton, Euler and, on the other side, Herbart”.9

As for the latter, it is worth noting here that Riemann could agree

“almost completely” with the results of Herbart’s early research while

he rejected his philosophy “at an essential point” which involved Natur-

philosophie. In particular, Herbart’s psychology10 inspired both Riemann’s

model of the substance (or ether) and his principles of Naturphilosophie.

Herbart had defined the “psychic act” (or representation) as an act

of self-preservation with which the ego opposed the perturbations coming

from the external world. He imagined a continuous flow of representations

going from the ego to the conscious and back and studied the connections

between different representations in mechanical terms as compositions

of forces.

Riemann’s more coherent attempt to give a systematic presentation

of his ideas on the propagation of physical phenomena like gravitation

9 Riemann wrote in fact: “Meine Hauptarbeit betrifft eine neue Auffassung der bekan-
nten Naturgesetze - Ausdruck derselben mittelst anderer Grundbegriffe — wodurch
die Benutzung der experimentellen Data über die Wechselwirkung zwischen Wärme,
Licht, Magnetismus und Electricität zur Erforschung ihres Zusammenhangs möglich
wurde. Ich wurde dazu hauptsächlich durch das Studium der Werke Newton’s, Euler’s

und — anderseits — Herbart’s geführt” [1876a, p. 507].

10 “Was [Herbart ] betrifft — Riemann wrote — so konnte ich mich den frühesten
Untersuchungen Herbart’s, deren Resultate in seinen Promotions — und Habilitation-
sthesen (vom 22. u. 23. Oktober 1802) ausgesprochen sind, fast völlig anschliessen,

musste aber von dem späteren Gange seiner Speculation in einem wesentlichen Punkte
abweichen, wodurch eine Verschiedenheit in Bezug auf seine Naturphilosophie und
diejenigen Sätze der Psychologie, welche deren Verbindung mit der Naturphilosophie
betreffen, bedingt ist” [1876a, pp. 507–508]. Riemann summarized his philosophical
views by saying: “Der Verfasser ist Herbartianer in Psychologie und Erkenntnis-
stheorie (Methodologie und Eidologie), Herbart’s Naturphilosophie und den darauf
bezüglichen metaphysischen Disciplinen (Ontologie und Synechologie) kann er meis-
tens nicht sich anschliessen” [1876a, p. 508].
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and light was made in March 1853 in a paper which, echoing Newton’s

Principia, he did not hesitate to entitle Neue mathematische Principien

der Naturphilosophie (New mathematical principles of natural philoso-

phy). Indeed, Riemann himself regarded his writings on Naturphilosophie

as fundamental and intended to publish them, as he wrote to his brother

Wilhelm in December 1853 (see [Dedekind 1876, p. 547]).

In his paper Riemann began by claiming that the basis of the general

laws of motion for ponderable bodies, which are posed at the beginning of

Newton’s Principia, lies in the internal state of the bodies [1853, p. 528].

Led by the analogy with Herbart’s psychology Riemann made the hypoth-

esis that the universe (Weltraum) was filled with a substance (Stoff ) flow-

ing continually through atoms and there disappearing from the material

world (Körperwelt) [1853, p. 529].11

On the basis of this rather obscure idea Riemann tried to build a

mathematical model of the space surrounding two interacting particles

of substance. He introduced a cartesian coordinate system and considered

a single particle of substance as concentrated at the point O(x1, x2, x3) at

the time t and at the point O′(x′
1, x

′
2, x

′
3) at the time t′, where x′

1, x
′
2, x

′
3

are functions of x1, x2, x3. Then, “according to a well known theorem”,

the two homogeneous differential forms

ds2 = dx21 + dx22 + dx23 and ds′2 = dx′2
1 + dx′2

2 + dx′2
3

could be expressed in the following way

ds′2 = G21ds
2
1 +G22 ds

2
2 +G23ds

2
3,

ds2 = ds21 + ds22 + ds23,

where ds1, ds2, ds3 was an appropriate new basis [Riemann 1853, p. 530].12

Riemann called the quantities G1− 1, G2− 1, G3− 1 the main dilatations

(Hauptdilatationen) of the particle at O and denoted them by λ1, λ2, λ3.

11 In a footnote Riemann added that: “In jedes ponderable Atom tritt in jedem
Augenblick eine bestimmte, der Gravitationskraft proportionale Stoffmenge ein und
verschwindet dort. Es ist die Consequenz der auf Herbart’schem Boden stehenden
Psychologie, dass nicht der Seele, sondern jeder einzelnen in uns gebildeten Vorstel-
lung Substantialität zukomme” [1853, p. 529].

12 The conditions according to which the equation ds′2 = ds2 is satisfied are the Lamé
equations. They were first published by Lamé [1859, pp. 99, 101].



NATURPHILOSOPHIE AND ITS ROLE IN RIEMANN’S MATHEMATICS 13

Riemann’s result can be interpreted in terms of the classical theory of

elasticity. Supposing, as Riemann did, that the ether is an elastic, homo-

geneous, isotropic medium, then one can consider an elastic deformation

changing P (x1, x2, x3) andQ(x1+dx1, x2+dx2, x3+dx3) to P ′(x′
1, x

′
2, x

′
3)

and Q′(x′
1 + dx′

1, x
′
2 + dx′

2, x
′
3 + dx′

3) respectively. Under these assump-

tions, it is possible to compare the distance ds between P and Q with the

corresponding distance ds′ after the deformation.13

If x′
i = xi + ui (where ui is the displacement of P due to the

deformation) one has

dx′
i = dxi + dui = dxi +

3∑

k=1

∂ui

∂xk
dxk.

Then

ds′2 = ds2 +
3∑

k,�=1

∂u�

∂xk
dxk dx� +

3∑

k,�,i=1

∂u�

∂xi

∂u�

∂xk
dxi dxk.

Now it is possible to calculate the variation δ(ds2) = ds′2 − ds2

(2.1) δ(ds2) =
3∑

k,i=1

eik dxidxk,

where

eik =
∂ui

∂xk
+

∂uk

∂xi
+

3∑

�=1

∂u�

∂xi

∂u�

∂xk
·

This quantity defines the deformation and coincides with the strain

tensor in elasticity theory. If the deformation is supposed infinitely small,

the strain tensor becomes eik =
∂ui

∂xk
+

∂uk

∂xi
. Since it is symmetric, it is

possible to find a basis such that eik = 0 if i �= k.

Riemann compared ds′2 and ds2 by a direct calculation on the same

basis ds1, ds2, ds3, with respect to which both ds′2 and ds2 were orthog-

onal. He found that

(2.2) δ(ds2) = ds′2 − ds2 = (G21 − 1)ds21 + (G22 − 1)ds22 + (G23 − 1)ds23.

13 See for instance Brillouin [1938, ch. X].
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In this case for the components of the strain tensor one has

e11 = G21 − 1, e22 = G22 − 1, e33 = G23 − 1, eik = 0 if i �= k.

Since the linear extensions after the deformation with respect to the axes

x1, x2, x3 are defined as ∆"i =
√
1 + eii − 1, for i = 1, 2, 3, then

∆"1 = G1 − 1, ∆"2 = G2 − 1, ∆"3 = G3 − 1.

They coincide with Riemann’s Hauptdilatationen λ1, λ2, λ3, which there-

fore can be studied in the conceptual framework given by the theory of

elasticity.

Riemann then supposed that the variation δ(ds2) produced a force able

to modify the particle in such a way that the particle itself, opposing this

deformation, would propagate the physical forces through the space.14 In

order to describe the reaction of the particle, Riemann introduced the

hypothesis that the dilatations were infinitely small, and so the produced

forces were linear functions of λ1, λ2, λ3. By assuming the homogeneity of

the substance, the moment of force (Kraftmoment) was given by

1
2
δ
[
a(λ1 + λ2 + λ3)

2 + b(λ21 + λ22 + λ23)
]

where a, b were constants.

Riemann regarded this moment as a resultant of the forces which tend

to lengthen or shorten the line elements ending at O [1853, p. 531]. He

formulated the following “law of effects” (Wirkungsgesetz): if dV and dV ′

represent the volumes of the particle at time t and t′ respectively, then

the force arising from two different states (Stoffzustände) of the substance

in different times t, t′ can be described in the following way

(2.3) a
dV − dV ′

dV
+ b

ds− ds′

ds
·

Moreover, since the two addenda in (2.3) are independent of each other,

the two actions produce different effects, whose development follows

different laws. One could observe that if the Hauptdilatationen λ1, λ2, λ3,

of the particle of ether were equal to zero, the distance between two

infinitely close points of ether remains constant after the deformation

14 See footnote 15 below.
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at issue. In this case no physical phenomenon could occur in the space

surrounding the particle, and the Kraftmoment given by (2.3) vanishes.

Riemann calculated the variation of ds during the time dt and found

that the quantity δds/dt was equal to

∫ t

−∞

dV ′ − dV

dV
ψ(t− t′) δt′ +

∫ t

−∞

ds′ − ds

ds
ϕ(t− t′) δt′.

But how can we choose the functions ψ and ϕ in order that gravity,

heat and light propagate through space? This was the question Riemann

left open [1853, p. 532]. In this connection he limited himself to state that

“the effects of ponderable matter on ponderable matter were attractive and

repulsive forces inversely proportional to the square of the distance” or

“light and radiant heat”. They could be explained by assuming that every

particle of the homogeneous substance filling space has a direct effect only

on its neighbourhood.15 The mathematical law (2.3) according to which

this happens, can be divided into:

“1) the resistance with which a particle opposes a change of its volume,

and

2) the resistance with which a physical line element opposes a change

of length.

Gravity and electric attraction and repulsion are founded on the first

part, light, heat propagation, electrodynamic and magnetic attraction and

repulsion on the second part”.16

15 “Es kann also die Wirkung der allgemeinen Gravitation auf ein ponderables Atom
durch den Druck des raumerfüllenden Stoffes in der unmittelbaren Umgebung desselben
ausgedrückt und von demselben abhängig gedacht werden. Aus unserer Hypothese folgt
nothwendig, dass der raumerfüllende Stoff die Schwingungen fortpflanzen muss, welche
wir als Licht und Wärme wahrnehmen” [Riemann 1853, p. 529].

16 “Beide Classen von Erscheinungen lassen sich erklären, wenn man annimt, dass
den ganzen unendlichen Raum ein gleichartiger Stoff erfüllt, und jedes Stofftheilchen
unmittelbar nur auf seine Umgebung einwirkt.

Das mathematische Gesetz, nach welchem dies geschieht, kann zerfällt gedacht wer-

den
1) in den Widerstand, mit welchem ein Stofftheilchen einer Volumänderung, und
2) in den Widerstand, mit welchem ein physisches Linienelement einer Längen-

änderung widerstrebt.
Auf dem ersten Theil beruht die Gravitation und die electrostatische Anziehung und

Abstossung, auf dem zweiten die Fortpflanzung des Lichts und der Wärme und die elec-
trodynamische oder magnetische Anziehung und Abstossung” [Riemann 1853, p. 532].
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In Gravitation und Licht which constitutes the last section of his Frag-

mente on Naturphilosophie [1876a, pp. 532–538], Riemann presented a

mathematically more sophisticated attempt at a unified explanation of

both gravitation and light. Facing the problem of explaining Newton’s

theory of gravitation, Riemann supposed that a determinate cause (bes-

timmte Ursache) existed at every point of space. In virtue of this cause

the point was able to interact with other ponderable bodies by means of

a force, which was inversely proportional to the square of their distance.

He assumed that this cause should be sought in “the form of motion

of a substance spread continuously through the entire infinite space. . . .

This substance can therefore be conceived as a physical space whose points

move in geometrical space”.17 By means of this assumption, it was pos-

sible to explain the propagation of phenomena through space and then

light and gravitation had to be explained by means of the motion of this

substance.18

The further development he drew from this hypothesis divided in two

parts:

(a) to find the mathematical laws of motion of this substance which

can be used for explaining the phenomena;

(b) to clarify the causes (Ursachen) by means of which one could

explain these motions.

In commenting upon the second point, which was metaphysical in

character, Riemann observed that, contrary to Newton’s own opinion, his

law of attraction had not been thought to need any further explanation

for long time. Riemann was pleased to add in a footnote the celebrated

passage of Newton’s third letter to Bentley where Newton stated that

believing in action at a distance “without the mediation of anything else”

was “so great an absurdity” [1876a, p. 534].

In this connection, it is worth noting that in the General Scholium

17 “Die nach Grösse und Richtung bestimmte Ursache . . . suche ich in der Bewe-
gungsform eines durch den ganzen unendlichen Raum stetig verbreiteten Stoff. . . .
Dieser Stoff kann also vorgestellt werden als ein physischer Raum, dessen Punkte sich
in dem geometrischen bewegen” [Riemann 1876a, p. 533].

18 “Nach dieser Annahme müssen alle von ponderablen Körpern durch den leeren
Raum auf ponderable Körper ausgeübte Wirkungen durch diesen Stoff fortgepflanzt
werden. . . . Diese beiden Erscheinungen, Gravitation und Lichtbewegung durch den
leeren Raum, aber sind die einzigen, welche bloss aus Bewegungen dieses Stoffes erklärt
werden müssen” [Riemann 1876a, p. 533].
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at the end of the third edition of the Principia, Newton himself had

spoken about “a certain most subtle spirit which pervades and lies hid

in all gross bodies”, through which one could explain both the attraction

of the “particles of bodies” and the action of the electric bodies and

light [1726/1934, p. 547]. The hypothesis about ether had also been

advanced by Euler, “in his magnificent attempt” — as A. Speiser defined

it [1927, p. 106] — to draw up a unified theory of gravitation, light,

electricity and magnetism. Euler’s related papers, together with his Lettres

à une princesse d’Allemagne, are included in the 1838 Brussels edition of

his works. Both these papers and the Lettres are likely to have been the

source of inspiration to which Riemann referred in his undated manuscript

note.19

From the mathematical point of view, Riemann supposed that the real

motion of the substance v was composed of two motions u and w, that

is v = u + w, which were responsible for the propagation of gravitation

and light respectively. Then, he proposed to find the “laws of motion of

substance in empty space” [1876a, p. 537]. To this end he identified the

forces with the motion caused by them and observed that the gravitational

force u, deduced from the potential V by means of the relation u = gradV ,

had to satisfy both the conditions of being a closed form and the equation

∆V = −4πρ as well [Riemann 1876a, pp. 534–535].

The differential equations which characterized the propagation of light

were a continuity equation

divw = 0

and a wave equation for transwerse oscillations in velocity w

∂2w

∂x21
+

∂2w

∂x22
+

∂2w

∂x23
=

1

c2
∂2w

∂t2
,

where c was the speed of the light.

As N. Wise has remarked, “combining the two motions for gravity

and light produced a well-behaved velocity function, which confirmed the

possibility of uniting the two processes” [1981, p. 290]. As a consequence

of the conditions valid for u and w, Riemann found for the motion of the

19 See above footnote 9.
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substance in empty space, v, the following equations

div v = 0,(2.4)





[ 1

c2
∂2

∂t2
−
( ∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

)]( ∂v2
∂x3

− ∂v3
∂x2

)
= 0,

[ 1

c2
∂2

∂t2
−
( ∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

)]( ∂v3
∂x1

− ∂v1
∂x3

)
= 0,

[ 1

c2
∂2

∂t2
−
( ∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

)]( ∂v1
∂x2

− ∂v2
∂x1

)
= 0.

(2.5)

According to Riemann, these equations show how the motion of a

single particle of the substance depends only on the motions of the

particles around it.20 Equation (2.4) proves that the density is not changed

during the motion of the substance while the condition expressed by the

equations (2.5) coincides with the condition that

[ 1

c2
∂2

∂t2
−
( ∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

)]
(v1 dx1 + v2 dx2 + v3 dx3)

is an exact differential dW .

Starting from a set of relations which were valid in the infinitely small,

Riemann succeeded in formulating a theory valid in finite regions. In fact,

the solution of the differential system (2.4, 2.5) determined the motion of

the ether propagating light and gravity through the space. According to

his student Schering, by means of his model of the ether Riemann hoped

to eliminate from the laws of interaction those “specifications which refer

to action at a distance” as they “always depend on the properties of the

surrounding space” [1866/1991, p. 838].

3. PHYSICAL RESEARCHES

In 1854 during his Easter holidays, while preparing his Habilitationsvor-

trag on the principles of geometry, Riemann met the experimental physi-

cist Kohlrausch, who told him about an “unexplored phenomenon” con-

cerning the electric residuum in Leyden jars. Riemann intended to explain

20 “Diese Gleichungen zeigen, dass die Bewegung eines Stoffpunktes nur abhängt von
den Bewegungen in den angrenzenden Raum- und Zeittheilen, und ihre (vollständigen)
Ursachen in den Einwirkungen der Umgebung gesucht werden können” [Riemann
1876a, p. 537].
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Kohlrausch’s experiment, as he wrote to his brother, by means of his

research on the connections between electricity, gravity, light and mag-

netism. In such a way, Riemann hoped that his “main work could achieved

a favourable reception”.21

According to Kohlrausch’s experiment, in a Leyden jar which had been

charged, then discharged and left isolated for some time, a residual charge

appeared. Kohlrausch [1854, pp. 61–62] divided the total charge in the jar

into two parts: the free charge, L, which could be discharged, and the

charge r that appeared (at least in part) only after the exhaustion of the

free charge (r was called das Residuum or der Rückstand). The “hidden”

residuum was a quantity of r that could no longer be traced in the jar,

while the “reappearing” residuum was the portion of residuum which came

back again after the discharge. Kohlrausch observed the “reappearing”

residuum by means of the Sinuselektrometer, an ingenious instrument

invented and built by Kohlrausch himself [1853].

In September 1854, lecturing at a meeting of the German “natural

philosophers”, Riemann tried to give an explanation of Kohlrausch’s

experiment. To this end, he assigned to every ponderable body a certain

conductivity coefficient β, observing that in nature neither complete

insulators nor perfect conductors exist.22 If u is the potential and ρ the

charge density, he deduced for the components of the electromotive force

at the point (x, y, z) at time t the following expressions

(3.1)
(
− ∂u

∂x
− β2

∂ρ

∂x
,− ∂u

∂y
− β2

∂ρ

∂y
,− ∂u

∂z
− β2

∂ρ

∂z

)
.

Quantity (3.1) has to be proportional to the components of the current

intensity vector (ξ, η, ζ), and therefore the last expression is equal to

21 “Kohlrausch hatte nun einige Zeit vorher sehr genaue Messungen über eine bis

dahin unerforschte Erscheinung (den electrischen Rückstand in der Leidener Flasche)
gemacht und veröffentlicht und ich hatte durch meine allgemeinen Untersuchungen
über den Zusammenhang zwischen Electricität, Licht und Magnetismus die Erklärung
davon gefunden. . . . Mir ist diese Sache deshalb wichtig, weil es das erste Mal ist,
wo ich meine Arbeiten auf eine vorher noch nicht bekannte Erscheinung anwenden
konnte, und ich hoffe, dass die Veröffentlichung dieser Arbeit dazu beitragen wird,
meiner grösseren Arbeit eine günstige Aufnahme zu verschaffen” (in [Dedekind 1876,
pp. 548–549]).

22 Laplace in his Mécanique céleste had already associated to each medium a grav-
itational coefficient α, and had deduced the attraction law between the two masses
m1 and m2: G(m1m2/r2) exp(−αr), where G is the constant of universal gravitation
and r the distance between m1 and m2 [Œuvres 5, pp. 445–452].
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(αξ, αη, αζ), where α is a constant depending on the nature of the body

at issue. By means of both the principle of conservation of charge

∂ρ

∂t
+

∂ξ

∂x
+

∂η

∂y
+

∂ζ

∂z
= 0,

and the formula

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= −ρ,

Riemann deduced

(3.2) α
∂ρ

∂t
+ ρ− β2

( ∂2ρ

∂x2
+

∂2ρ

∂y2
+

∂2ρ

∂z2

)
= 0.

He then compared “the consequences of the law in certain particu-

lar cases with experience” [Riemann 1854c, p. 51] and found well known

expressions in the case when the bodies were metallic and perfect conduc-

tors. The law (3.2) was also in accordance with the experimental data of

Kohlrausch about the free charge and the “reappearing” residuum.

In the last part of this paper, Riemann presented the two theories on

the nature of electric force, both discussed at that time — the unitary

conception and the dualistic one. According to the dualistic conception,

two opposite electricities existed in a body, a positive electricity and a

negative one. Riemann rejected this theory since, on Weber’s advice,

he had submitted it to calculations “without obtaining any satisfactory

results” [Riemann 1854c, p. 54]. Then Riemann chose Franklin’s unitary

theory that attaches a certain quantity of electricity to every body and

defines a positive or a negative electric state of a body as an excess or a

defect of this electricity respectively.

Riemann intended to publish an extended version of his results in

Annalen der Physik und Chemie but then, as Dedekind [1876, p. 550]

and Weber (in [Riemann 1876d, p. 367]) have reported, he changed his

mind because of the substantial changes requested by Kohlrausch, the

editor of the review.23 Eventually his original manuscript was published by

Weber [Riemann 1876d] and it includes a section crossed out by Riemann

23 Instead of it, Riemann published in Kohlrausch’s Annalen his 1855 paper on Nobili’s
rings.
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himself.24 In this section, he developed a physical explanation of the

electromotive force and of electric propagation through a body on the

basis of the model of ether exposed in the Fragmente. Thus, instead

of Franklin’s unitary theory of electricity, Riemann assumed that the

electric current was caused by a reaction the body opposed to its own

electric state. This reaction was proportional to the charge density ρ

multiplied by the coefficient β2, and it decreased or increased the electric

density according as the body contained positive or negative electricity.

Therefore, the transmission of electricity could not be instantaneous but,

Riemann continued, the electricity moves “against ponderable bodies” with

a speed which equals the electromotive force deriving from the potential u.

Moreover, this law of motion must be changed in order to show its

connection with heat and magnetism.25

In a note dated July 1835 Gauss had already suggested a new theory of

electrodynamics. According to Gauss, two elements of electricity attract

and repulse each other with a force depending on their moving state.26 He

gave for the force between two electric particles ε and ε′ placed in (x, y, z)

and in (x′, y′, z′) respectively, the following formula

(3.3) F =
εε′

r2

[
1 +

1

c2

(
v2 − 3

2

( dr

dt

)2)]
,

where r is the distance from ε to ε′, c is a constant velocity,27 and v

is the velocity of ε(x, y, z) with respect to ε′(x′, y′, z′). As Maxwell

24 “Dieser ganze Artikel — Weber observed in a footnote — ist im Manuscript
durchgestrichen, wahrscheinlich nur aus dem Grunde, weil der Verfasser durch die
Eigenthümlichkeit der hier vorgetragenen Auffassung, welche auf das Innigste mit
seinen naturphilosophischen Principien zusammenhängt, bei den Physikern damals
Anstoss zu erregen befürchtete” [Riemann 1876d, p. 371].

25 “Die Electricität bewegt sich gegen die ponderabeln Körper mit einer Geschwindigkeit,
welche in jedem Augenblicke der aus diesen Ursachen hervorgehenden electromoto-
rischen Kraft gleich ist [the cause is the potential u which satisfies the equa-
tion ∆u = −ρ].

Uebrigens müssen diese Bewegungsgesetze der Electricität, wenn deren Verhältniss
zu Wärme und Magnetismus in Rechnung gezogen werden soll, vorbemerktermassen
selbst noch abgeändert und umgeformt werden, und dann wird eine veränderte Auf-
fassung dieser Erscheinungen nöthig” [Riemann, 1876d, p. 371].

26 “Zwei Elemente von Electricität in gegenseitiger Bewegung ziehen einander an oder
stossen einander ab nicht eben so als wenn sie in gegenseitiger Ruhe sind” [Gauss 1835,
p. 616].

27 Within the limit of observation, this is the velocity of light.
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[1873, p. 484] showed, the formula (3.3) is inconsistent with the principle

of the conservation of energy.

In 1845, in a letter to Weber, Gauss [1845, p. 629] supposed that elec-

tricity propagated from one point to another not instantaneously, but in

time, as in the case of light. Gauss never published his ideas about elec-

trodynamics during his lifetime, and W. Weber’s theory of electrodynam-

ics, published in his celebrated Elektrodynamische Maassbestimmungen

(1846), was the first result of this kind known to the scientific world.

According to Weber, the force between the two particles ε and ε′ was

given by

(3.4) F =
εε′

r2

[
1 +

1

c2

(
r
d2r

dt2
− 1

2

( dr

dt

)2)]
.

The expressions (3.3) and (3.4) lead to the same result for mechanical

force between two electric currents, and this result coincides with that of

Ampère’s. Maxwell remarked that the formula (3.4) satisfied the principle

of the conservation of energy on assuming for the potential energy

(3.5) P =
εε′

r2

[
1− 1

2c2

( dr

dt

)2]
.

But, as he pointed out, “an indefinite amount of work cannot be generated

by a particle moving in a periodic manner under the action of the force

assumed by Weber” [Maxwell 1873, p. 484]. So Weber’s formula must be

rejected too.

As a follower of Gauss and Weber, Riemann himself tried to formulate

a new theory of electrodynamics in his 1858 paper Ein Beitrag zur

Elektrodynamik. He supposed that electric phenomena travel with the

velocity of light and that the differential equations for electric force are the

same of those valid for light and heat propagation [Riemann 1858, p. 288].

Riemann considered the electrodynamic system of two conductors C

and C′ moving one with respect to the other, and the galvanic currents

running through them. He studied the interaction of two particles ε and ε′,

the first in C and the latter in C′, with coordinates (x, y, z) and (x′, y′, z′)

respectively. “With admirable directness — Rosenfeld has remarked — he

[wrote] down the generalised Poisson equation [for the potential ] involving

the operator now called ‘D’Alembertian’ and the expression for its solution

in the form of retarded potential” [1956, p. 139].
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Riemann indeed gave the following equation for the potential func-

tion U

(3.6)
∂2U

∂t2
− α2

( ∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2

)
+ 4α2πρ = 0,

where ρ was the charge density in the point (x, y, z) and α the velocity

of propagation of electricity. According to (3.6), the potential U travels

with a velocity α and it reaches a point distant r from (x, y, z) after the

time r/α. As Reiff and Sommerfeld [1902, p. 46] wrote, the interest in this

work is based on this result which makes Riemann appear as a “precursor”

of Maxwell.

Riemann supposed that the current was due to the positive and

negative electricities running through the wire, and that the two sums∑
εf(x, y, z),

∑
ε′f(x′, y′, z′) extended to all the charges were negligible

with respect to the same sums extended only to the positive or negative

charges. On these assumptions, Riemann found that the potential function

at the point (x, y, z) due to the point (x′, y′, z′) was f(t − r/α)/r, if the

charge −f(t) was placed in the point in question at time t, and r was the

distance between ε and ε′. Moreover, if the coordinates of ε at the time t

were (xt, yt, zt), and those of ε′ at time t′ were (x′
t′ , y

′
t′ , z

′
t′), he set

F (t, t′) =
[
(xt − x′

t′)
2 + (yt − y′t′)

2 + (zt − z′t′)
2
]− 1

2 ,

and deduced the potential expressing the total effect of the conductor C

on the conductor C′ from the time 0 to the time t

(3.7) P = −
∫ t

0

∑∑
εε′F

(
t− r

α
, τ
)
dτ.

Riemann tried to obtain the electrodynamic potential derived from the

Weber’s law from (3.7). But, as Clausius [1868] was to point out, Riemann

committed a mistake in the permutation of two integrations. According

to Weber (see [Riemann 1858, p. 293]), the mistake was discovered by

Riemann himself and this was the reason that convinced him to withdraw

the paper.

In Betti’s opinion however Riemann did not publish this paper because

it was in contrast with what he had stated in [Riemann 1854c, p. 54].28

28 “Questo concetto della corrente elettrica, tutto ideale — Betti observed — è poco in
armonia con ciò che si conosce di essa, e pare che Riemann non ne fosse soddisfatto”
[1868, p. 242].
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Betti himself suggested a new theory of electrodynamics. He supposed the

closed circuits to consist of polarized elements which acted on one another

as little magnets. According to Betti, the polarized elements interacted

not instantaneously but only after a time proportional to the distance

between the elements.29

Maxwell was aware of Riemann’s and Betti’s electrodynamic researches,

and even he could not agree with “these eminent men”. In their theories,

indeed, the action travelled in a manner similar to that of light but,

Maxwell asked:

“If something is transmitted from one particle to another at a distance,

what is its condition after it has left the one particle and before it has

reached the other?” [1873/1954, II, p. 493].

In his 1858 paper Riemann did not mention any medium which prop-

agated the electric phenomena. He tried however to describe the ether

surrounding two interacting electric particles in his lectures on electric-

ity, gravity and magnetism, held in 1861 and published by Hattendorff

in 1876. Here, Riemann tackled the electrodynamic problem of two con-

ductors moving one with respect to the other by using the calculus of

variations. He deduced from the principle of conservation of energy the

“extended theorem of Lagrange”

(3.8) δ

∫ t

0

(T −D + S)dt = 0,

where T is the kinetic energy, S the potential depending only on the

coordinates (electrostatic potential) and D the potential depending on

the velocities too (electrodynamic potential) [Riemann, 1876e, p. 316].

If ε and ε′ were two electric particles in C and in C′ at the points

(x, y, z) and (x′, y′, z′) respectively, S and D were expressed by the

following equations

D =
εε′

r

u2

2c2
, S = − εε′

r
,

where r was the distance between ε and ε′, u the velocity of one particle

with respect to the other, and c the velocity of light.

29 Clausius also criticized some parts of Betti’s calculations.
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By solving the Euler-Lagrange equations deduced from (3.8), Riemann

obtained the following expression for the force acting on ε and ε′

(3.9)





Fx =
εε′

r2

(
1 +

u2

2c2

) ∂r

∂x
+

εε′

c2
d

dt

( x− x′

r

)
,

Fy =
εε′

r2

(
1 +

u2

2c2

) ∂r

∂y
+

εε′

c2
d

dt

( y − y′

r

)
,

Fz =
εε′

r2

(
1 +

u2

2c2

) ∂r

∂z
+

εε′

c2
d

dt

( z − z′

r

)
.

If D is Weber’s electrodynamic potential, the interaction between ε

and ε′ deduced from (3.8) is given by Weber’s law (3.4) (see [Reiff and

Sommerfeld 1902, pp. 48–49]).

By considering the effect of all the particles of the conductor C′ on the

particle ε, Riemann set S = εV and found for the potential function V

the relation30

(3.10)
∂V

∂t
= div u =

∂u1
∂x

+
∂u2
∂y

+
∂u3
∂z

,

where u1 =
∑

ε′

ε′

r

dx′

dt
, u2 =

∑

ε′

ε′

r

dy′

dt
, u3 =

∑

ε′

ε′

r

dz′

dt
·

According to Riemann, “from this differential equation it would be

possible to derive the meaning of the functions V , u1, u2, u3. One

could assume that electricity is propagated by an ether. By means of

equation [(3.10)] V may be regarded as the density and u1, u2, u3 as

[the components of ] the intensity of the flux of this ether”.31 By this

identification, the principle of conservation of charge held for the ether too.

Riemann explained his model of ether in his 1853 paper on the princi-

ples of Naturphilosophie. However, he was not able to incorporate electro-

static and electromagnetic effects into it. In his 1861 lectures he assumed

that the ether satisfied physical properties which guaranteed electrical

propagation. As N. Wise has remarked: “a stable gradient in density would

30 For a discussion of this point see Wise [1981, p. 290].

31 “Auf Grund dieser Differentialgleichung könnte man über die Bedeutung der
Functionen V, u1, u2, u3 eine Annahme machen. Man kann annehmen, die elektrische
Wirkung werde durch einen Aether vermittelt. Vermöge der Gleichung [(3.10)] liessen
sich dann V als die Dichtigkeit, u1, u2, u3 als die Stromintensitäten dieses Aethers
ansehen” [Riemann 1876e, p. 330].
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then correspond to electrostatic force, whereas a time rate of change in

density, and associated fluxes, would correspond to electrodynamic effects”

[1981, p. 290]. Therefore, the hypothesis (in [Riemann 1858]) that the

same differential equation held for light and electric propagation, made the

ether responsible for the transmission of both the phenomena. Referring

to his 1858 paper Riemann wrote to his sister that, notwithstanding the

fact that Gauss had formulated another theory of the connection between

electricity and light, “I am sure that my theory is right and that in a

couple of years it will be generally recognized as such”.32

4. ON THE FOUNDATION OF GEOMETRY

The attempt undertaken by Riemann in the Fragmente at formulating

a theory which could explain the transmission of phenomena is in our

opinion among the basic motivations for the study of manifolds presented

by Riemann in his 1854 Habilitationsvortrag.

As Dedekind [1876, p. 547] reported, even though Riemann should

have thought about this subject for long time, the question concerning

the principles of geometry that Gauss choose as the subject of Riemann’s

Probevorlesung was certainly the least prepared of those Riemann had

proposed, as he wrote to his brother on December 28, 1853. In this letter

Riemann stated that after the completion of his Habilitationsschrift [Rie-

mann 1854a] he once more took up his “other research” on Naturphiloso-

phie, which was almost ready for printing.33 Some months later he con-

fessed to his brother to having been “so fully immersed” in his research on

Naturphilosophie that he was not able to rid himself of it when the subject

32 “Ich bin aber völlig überzeugt, dass die meinige die richtige ist und in ein paar
Jahren allgemein als solche anerkannt werden wird” (in [Dedekind 1876, p. 553]).

33 “Meine andere Untersuchung über den Zusammenhang zwischen Electricität, Gal-
vanismus, Licht und Schwere hatte ich gleich nach Beendigung meiner Habilitation-

sschrift wieder aufgenommen und bin mit ihr so weit gekommen, dass ich sie in
dieser Form unbedenklich veröffentlichen kann. Es ist mir dabei aber zugleich immer
gewisser geworden, dass Gauss seit mehreren Jahren auch daran arbeitet, und einigen
Freunden, u. A. Weber, die Sache unter dem Siegel der Verschwiegenheit mitgetheilt
hat, — Dir kann ich dies wohl schreiben, ohne dass es mir als Anmaassung ausgelegt
wird — ich hoffe, dass es nun für mich noch nicht zu spät ist und es anerkannt werden
wird, dass ich die Sachen vollkommen selbständig gefunden habe” (in [Dedekind 1876,
p. 547]).
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of his lecture (Probevorlesung) was proposed to him (see [Dedekind 1876,

pp. 547–548]). H. Weyl quoted this passage from Riemann’s letter for sup-

porting his claim that Riemann’s research “on the connection between

light, electricity, magnetism and gravity” was not “objectively in any rela-

tion” to the content of his lecture [1919b/1991, p. 741].

Contrary to Weyl’s claim, in our opinion these letters suggest that

Riemann’s 1854 lecture was deeply connected with his research in mathe-

matical physics. In fact, one can argue that in this lecture Riemann tried

to generalize the ideas stated in his 1853 paper on Naturphilosophie to

n-dimensional manifolds, extending the “local” investigation of particles

of ether to the “global” analysis of space. In this connection the reference

Riemann made to Gauss and Herbart is also worth noting [1854b, p. 273].

From this point of view one can explain the seeming anomalies with

respect to contemporary research in foundations of geometry and in non-

Euclidean geometry, often mentioned by historians of mathematics. To be

sure, in his lecture Riemann only made a cryptic allusion in passing to

the possibility of the elliptic geometry. Nor did he refer to the work of

Bolyai and Lobachevsky, even though a paper of the latter had appeared

in 1837 in Crelle’s Journal and his Geometrische Untersuchungen had

been published in Berlin in 1840. However one can argue that Riemann

probably knew Lobachevsky’s geometry, at least in the version that

appeared in that Journal. In fact, the relevant volume of Crelle’s Journal

included both Lobachevsky’s paper and Dirichlet’s 1837 paper on the

representation of “arbitrary” functions in series of Legendre polynomials.

Thinking of Riemann’s paper [1854a], it seems very likely that he had

this volume in his hands when he worked at his Habilitationsschrift.

Had Riemann limited himself to reading the first page of Lobachevsky’s

paper, he could have discovered that: “rien n’autorise, si ce ne sont les

observations directes, de supposer dans un triangle rectiligne la somme des

angles égale à deux angles droits, et que la géométrie n’en peut pas moins

exister, sinon dans la nature, au moins dans l’analyse, lorsqu’on admet

l’hypothèse de la somme des angles moindre que la demi-circonférence du

cercle” [Lobachevsky 1837, p. 295].

After summarizing his main results concerning the geometry of a non-

Euclidean rectilinear triangle, Lobachevsky concluded that:

“L’hypothèse de la somme des angles d’un triangle moindre que deux
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angles droits ne peut avoir d’application que dans l’analyse, puisque les

mesures directes ne nous montrent pas dans la somme des angles d’un

triangle la moindre déviation de deux angles droits. J’ai prouvé ailleurs, en

m’appuyant sur quelques observations astronomiques, que dans un triangle

dont les côtés sont de la même grandeur à peu près que la distance de

la terre au soleil, la somme des angles ne peut jamais différer de deux

angles droits d’une quantité qui puisse surpasser 0′′, 0003 en secondes

sexagésimales. Or cette différence doit être d’autant moindre que les côtés

d’un triangle sont plus petits” [1837, pp. 302–303].

In addition to the results of the geodetical observation that Gauss had

reported at the end of his 1827 paper, this could have given Riemann fur-

ther suggestions for the remarks on the “empirical certainty” of geometry

which can be read in the concluding lines of the introduction to [Riemann

1854b]. According to Riemann, Euclidean geometry was not a “necessity”

but merely an “empirical certainty” and the facts on which it was based

were only “hypotheses”, no matter how high their probability within the

limits of observation [Riemann 1854b, p. 273]. As he wrote in a manuscript,

“the word hypothesis now has a slightly different meaning than in Newton.

Today by hypothesis we tend to mean everything which is mentally added

to phenomena” [Riemann 1876a, p. 525].

As Gauss had done for the surfaces in his 1827 paper, Riemann too

attributed a crucial importance to the definition of the linear element ds

as starting point for the study of manifolds. With this in mind, we can

appreciate better the suggestions he could have drawn from the following

passage one can read in Lobachevsky’s paper:

“La géométrie imaginaire est conçue sur un plan plus général que la

géométrie usitée qui n’en est qu’un cas particulier, et qui en dérive dans

la supposition des lignes extrêmement petites; de sorte que cette dernière

géométrie n’est sous ce rapport qu’une géométrie différentielle.

Les valeurs des éléments différentiels des lignes courbes, des surfaces,

et du volume des corps sont les mêmes dans la géométrie imaginaire et

dans la géométrie usitée” [1837, p. 302].

Whatever the case may have been, apparently Riemann had no real

interest in the problem of the foundations of geometry as such, in research

concerning the axioms of geometry (and in particular that of parallels).

“However interesting it may be to consider the possibility of this approach
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to geometry, actually realising it would prove utterly sterile since in this

way we could never find new theorems”, he wrote in a note kept in his

Nachlass.34

In our opinion, Riemann’s Habilitationsvortrag can be interpreted as a

moment of both naturphilosophische and mathematical construction. In

an attempt to overcome “the shortcomings of the concepts” and to favour

progress “in recognizing the connection of things” [Riemann 1854b, p. 286],

he supplied a generalization to n-dimensional manifolds of what he had

elaborated concerning 3-dimensional space and the laws of propagation of

the phenomena as well.

Riemann defined a metric in the whole space by associating to the

n-dimensional manifold V n the fundamental form

Φ =

n∑

i,j=1

gij dx
i dxj (gij positive definite matrix).

In this way, it was always possible to compare distances between different

points and to study deformations of an elastic fluid filling the whole

universe. Riemann tried to calculate how much V n, with the fundamental

form Φ, differed from the Euclidean n-dimensional space En. More

generally, he proposed to find necessary and sufficient conditions such

that the forms Φ and Φ′ =

n∑

i,j=1

g′ij dx
′idx′j could transform into each

other. This was equivalent to determine n new coordinates such that the

differential system

(4.1)

n∑

i,j=1

gij dx
idxj =

n∑

i,j=1

g′ij dx
′i dx′j

was satisfied. System (4.1) was the generalization to a n-dimensional

manifold of the expression

dx21 + dx22 + dx23 = dx′2
1 + dx′2

2 + dx′2
3 ,

which had been introduced in his 1853 paper on Naturphilosophie (see § 2
above). If the solution of (4.1) existed, it involved 1

2
n(n+1) arbitrary con-

stants. As n equations were satisfied by the new coordinates so 1
2
n(n− 1)

34 “Wenn es aber auch interessant ist, die Möglichkeit dieser Behandlungsweise der
Geometrie einzusehen so würde doch die Ausführung derselben äusserst unfruchtbar
sein, denn wir würden dadurch keine neuen Sätze finden können” (in [Scholz 1982,
p. 229]).
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“functions of position” had to be deduced “by the nature of the manifold

to be represented” [Riemann 1854b/1979, p. 143]. In order to character-

ize these functions, Riemann introduced a system of normal coordinates,

which we denote x1, . . . , xn, and affirmed that if ds20 =
n∑

i=1

(dxi)2 then

there existed numbers cij,k� such that Φ became

Φ = ds20 +
∑

ij,k�

cij,k�(x
k dxi − xidxk)(x� dxj − xj dx�).

If Φ = ds20 the manifold was called plane.

In 1861, Riemann once more considered this problem, when trying to

answer a question proposed by the Paris Academy on heat conduction in

homogeneous solid bodies. According to Weber, Riemann did not win this

prize since he did not completely explain the ways according to which he

found his results (see [Riemann 1861, p. 391]).

Riemann sought to answer the following general question: “quales esse

debeant proprietates corporis motum caloris determinantes et distributio

caloris, ut detur systema linearum quae semper isothermae maneant”.

In the second part of the paper he studied the particular case of a

homogeneous body. Riemann stated that the problem proposed by the

Academy was equivalent to finding necessary and sufficient conditions

according to which

n∑

i,j=1

gij dx
i dxj =

n∑

i,j=1

aij dx
′idx′j

where aij are given constants. Since both the forms were positive definite,

the problem was to determine a new coordinate system in which Φ could

be expressed as the Euclidean form

n∑

i=1

(dx′i)2. To this end, Riemann

introduced the quantity (ij, k") which corresponded— but for the inessen-

tial factor 2 — to the curvature tensor

(4.2) Rij�k = 1
2

[ ∂2gik
∂xj∂x�

+
∂2gj�
∂xi∂xk

− ∂2gi�
∂xj∂xk

− ∂2gjk
∂xi∂x�

]

+
n∑

α,β=1

gαβ [j";α][ik;β]− [i";α][jk;β]
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where

[ij;k] = 1
2

( ∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)

is the Christoffel symbol of first kind. He found that the necessary

condition such that the system

(4.3)

n∑

i,j=1

gij dx
idxj =

n∑

i=1

(dx′i)2

is satisfied, is given by Rij�k = 0.

If we suppose, as Riemann had done in his 1853 paper, that an

ethereal medium fills all the universe, then we can associate to space the

fundamental forms

Φ =
n∑

i,j=1

δij dx
idxj and Φ′ =

n∑

i,j=1

g′ij dx
′idx′j

at time t and t′ respectively.

Now, let us consider an elastic deformation changing P (x1, x2, . . . , xn)

and Q(x1 + dx1, x2 + dx2, . . . , xn + dxn) in P ′(x′
1, x

′
2, . . . , x

′
n) and

Q′(x′
1 + dx′

1, x
′
2 + dx′

2, . . . , x
′
n + dx′

n), and the distance ds between P

and Q in the distance ds′ between P ′ and Q′. On these assumptions

ds2 =

n∑

i,j=1

δij(P )dxi dxj =

n∑

i=1

(dxi)2,

ds′2 =
n∑

i,j=1

g′ij(P
′)dx′i dx′j .

Let a�i = ∂x′�/∂xi, then

ds′2 =
n∑

i,j=1

g′ij(P
′)a�ia

k
j dx

idxj =

n∑

i,j=1

hij(P
′)dxi dxj .

Since the system of coordinates is the same for ds2 and ds′2, we can

evaluate the virtual displacement

(4.4) δ(ds2) = ds′2 − ds2 =
n∑

i,j=1

eij(P
′)dxi dxj ,
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where eij = hij − δij . The variation (4.4) is the generalization to any

curvilinear n-coordinate system of the expression (2.2) given by Riemann

[1853, p. 530] in cartesian, orthogonal 3-coordinates.

By extending the same procedure to any particle of ether one obtains

the quantities eij (the strain tensor in elasticity theory) defined on

the whole space. Moreover, according to Riemann’s assumption that an

ether particle propagates physical phenomena reacting to the deformation

described by eij , one can suppose that the transmission of forces modifies

the fundamental form Φ. From this point of view (4.4) can be interpreted

as a deep connection between physical phenomena and the variation of the

fundamental form. No variation occurs if eij = 0: in this case no physical

force is propagated through space. The results obtained by Riemann in

his 1861 paper show that, if a solution of the system

(4.5)

n∑

i,j=1

δij dx
i dxj =

n∑

i,j=1

g′ij dx
′i dx′j

exists, then the curvature tensor R′
ij�k is equal to zero. On the contrary,

if the strain tensor is different from zero, then the fundamental form has

been modified and the curvature tensor does not vanish. Thus force and

curvature appear to be deeply connected, space being the responsible for

the transmission of phenomena by means of a variation of its fundamental

form. In other words, a force is always coupled to a change in the curvature

of space. This suggests a physical model of the space independent of

assumptions about the existence of the ether.

K. Pearson, the editor of Clifford’s book [1885], emphasized this point

asking the question “whether physicists might not find it simpler to assume

that space is capable of a varying curvature, and of a resistance to that

variation, than to suppose the existence of a subtle medium pervading

an invariable homaloidal [Euclidean] space” (in [Clifford 1885, p. 203]).

According to Clifford, “this variation of the curvature of space is what

really happens in that phenomenon which we call the motion of matter,

whether ponderable or ethereal” and “in the physical world nothing else

takes place but this variation, subject (possibly) to the law of continuity”

[Clifford 1876, p. 22].

Having this in mind and thinking of the research program on Natur-

philosophie which Riemann was pursuing at that time, we can try to
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understand the cryptic and prophetic conclusion he drew at the end of

the lecture:

“Now it seems that the empirical notions on which the metric determi-

nations of space are based, the concept of a solid body and that of a light

ray, lose their validity in the infinitely small; it is therefore quite definitely

conceivable that the metric relations of space in the infinitely small do not

conform to the hypotheses of geometry” [Riemann 1854b/1979, p. 152].

Thus, “the question of the validity of the hypotheses of geometry in the

infinitely small” was linked to the determination of “metric relations of

space”. This was a question which, in Riemann’s view, might “still be

ranked as a part of the study of space”.

In this connection Riemann contrasted discrete manifolds with contin-

uous manifolds: “Either the reality underlying space” is given by a discrete

manifold which has the principle of its metrical relations in itself or “the

basis for the metric relations must be sought outside it [space], in binding

forces acting upon it”. What has one to understand by this “reality”? Did

this involve Riemann’s speculations on ether which, as he wrote in the

manuscript Gravitation und Licht [Werke, p. 532 sq.], could be conceived

as “a substance spread continuously through the entire infinite space”,

“as a physical space whose points move in geometrical space”? Riemann

left open the questions he raised concerning the nature of space. According

to his concluding remarks, an answer “can be found only by starting from

that conception of phenomena which has hitherto been approved by expe-

rience, for which Newton laid the foundation, and gradually modifying it

under the compulsion of facts which cannot be explained by it” [Riemann

1854b/1979, pp. 152–153]. “This leads us away into the domain of another

science, the realm of physics”, he concluded.

According to Weyl [1919a/1922, p. 97], the “full purport” of Riemann’s

concluding remarks “was not grasped by his contemporaries” with the

exception of “a solitary echo” in Clifford’s writings. In Raum Zeit Materie

Weyl interpreted Riemann’s words in terms of Einstein’s theory of rela-

tivity: “Only now that Einstein has removed the scales from our eyes by

the magic light of his theory of gravitation do we see what these words

actually mean”. In this respect we cannot do better than referring to his

book (see in particular [Weyl 1919a/1922, pp. 96–102]). From a historical

point of view, however, Riemann’s statements seem to be better explained
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in the light of his own attempts “to unify nature on the basis of a geo-

metrically conceived system of continuous dynamic processes in ether”;

“the first attempt at a mathematically founded unified field theory, much

in the spirit of Einstein’s later attempts”, as N. Wise [1981, p. 289] defined

Riemann’s research on Naturphilosophie.
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[Œuvres]Œuvres complètes, 14 vols., Paris: Gauthier-Villars, 1878–1912.

LOBACHEVSKY (N.)
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