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COUPLAGE BOLTZMANN / NAVIER-STOKES 

P. LE TALLEC, F. MALLINGER 

Résumé 

Nous présentons une méthode de couplage des équations de Boltz-
mann et de Navier-Stokes. Cette méthode se déduit d'une méthode 
de décomposition de domaine appliquée à l'équation de Boltzmann et 
d'une interprétation cinétique des flux Navier-Stokes. Cette approche 
est testée numériquement pour un écoulement en dimension deux d'un 
gaz semi-dense. 

1 Introduction 

Durant ces dernières années les scientifiques ont montré un réel inté­
rêt pour le calcul d'écoulements à grandes vitesses et hautes altitudes. Un 
exemple d'application concerne la phase de réentrée dans l 'atmosphère d'un 
véhicule spatial. 

Actuellement le modèle décrivant ces écoulement avec le plus de précision 
est l 'équation de Boltzmann. Malheureusement les méthodes numériques de 
type Monte-Carlo, utilisées pour résoudre cette équation, sont très onéreuses 
dès que le libre parcours moyen devient trop petit , en particulier pour les 
régimes transitionnels. 

Il est alors classique d'introduire les équations de Navier-Stokes, obtenues 
comme limites de l'équation de Boltzmann lorsque le nombre de Knudsen 
tend vers zero. Dans ce cas le fluide est supposé proche de l 'état d'équilibre. 
Ce modèle n'est donc pas valide pour les écoulements transitionnels qui 
nous intéressent. De plus des simulations numériques ont montré que les 
équations de Navier-Stokes avec conditions d'adhérence sur l'obstacle ne 
sont pas valides dans une couche limite autour de cet obstacle. On observe 
en effet à la paroi un saut de la température et de la vitesse tangentielle 
(celle-ci n'est pas nulle). 

Nous proposons une alternative basée sur une technique de décompo­
sition de domaine. Cette approche, développée dans le cadre et avec le fi­
nancement du projet Européen Hermes, consiste à utiliser simultanément le 
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modèle Boltzmann et le modèle Navier-Stokes. Pour un domaine global fixé, 
nous déterminons un petit sous domaine, proche de l'obstacle, le contenant 
éventuellement, dans lequel nous résolvons l'équation de Boltzmann, et un 
domaine plus éloigné de l'obstacle dans lequel nous résolvons les équations 
de Navier-Stokes. Ces domaines peuvent ou non se recouvrir et leur réunion 
est égale au domaine global. Le couplage des deux modèles est assuré par 
le biais de nouvelles conditions aux limites. Grâce à la théorie cinétique 
les flux à l'interface des domaines peuvent se décomposer permettant ainsi 
d'imposer pour chaque sous domaine le flux rentrant à l'interface. 

Cet article est organisé de la manière suivante. Dans la seconde section 
nous présentons le couplage Boltzmann / Boltzmann qui est à l'origine de 
notre méthode. La troisième section est consacré à la méthode de Chapman-
Enskog qui permet de déterminer les équations de Navier-Stokes à partir 
de l'équation de Boltzmann. Dans la quatrième section nous décrivons le 
couplage Boltzmann / Navier-Stokes. Enfin nous illustrons notre méthode de 
couplage par des résultats numériques présentés dans la cinquième section. 

2 Le couplage Boltzmann / Boltzmann 

Nous résolvons l'équation de Boltzmann dans un domaine borné en es­
pace en utilisant des techniques classiques de décomposition de domaine. 
Une présentation générale de ces méthodes est donnée par Quarteroni dans 
[8] et par Le Tallec dans [9]. Une analyse mathématique rigoureuse des 
problèmes continu et discret est proposée dans [11] pour le couplage des 
équations d'advection-diffusion et d'advection pure, et dans [12] pour le cou­
plage des équations de transport . En raison de la complexité de l 'équation 
de Boltzmann (équation intégro-différentielle) nous ne considérerons qu'une 
approche formelle du couplage Boltzmann / Boltzmann. Néanmoins nous 
préciserons à la fin de cette section les difficultés mathématiques associées à 
cette approche. 

Pour un gaz monoatomique l'équation de Boltzmann s'écrit 

dtf + v- dxf = 
1 

ε 
Q ( / , / ) , clans [0, At] χ Ω χ WLN. (1) 

La fonction inconnue / = f(t,x,v) est une distribution de particules re­
présentant le nombre de particules localisées en £, avec une vitesse υ au 
temps t. Le nombre de Knudsen ε, apparaissant après adimensionnement de 
l'équation de Boltzmann, est le rapport du libre parcours moyen divisé par 
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une longueur caractéristique de l'écoulement. Le processus des collisions est 

modélisé par le terme quadratique Q(f^f) 

Q(f,f)(x,v,t) = J f (f\f'-ffl)q(v-vuw)dvïdw. 

Dans cette expression q(v - v\,w) est la section efficace de probabilité de 

collision. De plus nous avons utilisé la notation suivante 

h = f(t,x,vi), 

/ Ί = / ( ί , Χ , ϋ ' ι ) , 

où (v,v\) et (ν',ν'χ) sont les vitesses avant et après une collision de para­

mètre ω appartenant à la sphère S2. Pour plus de détails le lecteur pourra 

consulter Cercignani [4], Kogan [5], Vincenti-Kruger [6]. 

L' équation (1) est complétée par la condition initiale 

f(Q,x,v) = f0(x*v) sur Ω χ 1R N , (2) 

et une condition à l'infini qui impose la distribution de particules entrant 
dans le domaine Ω 

/ ( ί , χ , ν ) = <p(t,x,v) sur Σ , (3) 

οΐι Σ est défini par 

Σ~ = [Ο,Δί] χ Γ " , 

Γ" = {(χ, ν) e dil χ IR j V / η(χ).ν < θ} 

Le vecteur η(χ) est la normale extérieure au domaine dû. De plus en présence 

d'un obstacle nous imposons comme condition sur l'obstacle une combinai­

son linéaire d'une réflexion spéculaire et d'une réflexion par accomodation 

thermique. En d'autres termes, chaque particule qui subit une collision avec 

l'obstacle est réémise avec une nouvelle vitesse de la forme 

ν1 - (1 - a)v's + av'a. (4) 

Le nombre a G [0,1] est le coefficient d'accomodation, v's est la vitesse de la 
particule après une réflexion spéculaire et ν'a la vitesse de la particule émise 

selon une distribution Maxwellienne à une température imposée. 

Nous appelions (P) le problème de Cauchy [(1),(2),(3)]. 
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Pour définir une formulation par sous domaine équivalante au problème 
(P) nous commençons par décomposer le domaine spatial Ω en deux sous 
domaines Ωι et Ω 2 , voir figure 1, de telle sorte que 

Ω = Ωι U Ω"2, 

Ωι η ω 2 = 0, r 1 2 = Ω! η « 2 , 

Γΐ2 = {0, υ) € Γ12 Χ Β,Ν / ν.η(χ) > 0} , 

ΓΓ2 = {{Χ, ν) e Γ 1 2 χ IR" / ν.η(χ) < 0} , 

où η est la normale extérieure à Ωι sur IY 2 . 

Ω 

Γΐ2 

η 

Ωι Ω 2 

F I G . 1 - Décomposition du domaine Boltzmann 

Nous considérons maintenant la restriction de / à [0, Δ ί ]χΩχ x l R ^ , notée 
/ i , et à [0, At] χ Ω 2 χ WLN, notée / 2 . Alors le problème (P) est formellement 
équivalent au problème suivant 

dtfi + ν • dxfi = 
1 
- ι 
ε 

dans [Ο,Δί] Χ Ω χ x ELN, 

dth + ν • dxf2 

1 
ε 

? ( / 2 , / 2 ) , dans [Ο,Δί] χ Ω 2 xUN. 

(5) 
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Nous ajoutons à ce système la condition de compatibilité 

h = h, sur [Ο,Δί] χ Γ 1 2 χ m", (6) 

et les mêmes conditions initiales et aux limites que pour le problème global. 
Cette condition de compatibilité est naturelle d'un point de vue physique. 
Elle exprime la conservation du flux de particules à l'interface des deux 
domaines. Pour obtenir un système couplé nous décomposons cette condition 
d'interface (6) en 

fi = h sur [Ο,Δί] χ ΐ γ 2 χ E t " , 

h = h sur [Ο,Δί] χ Γ+ χ MN. 

(7) 

(8) 

Les conditions (7) et (8) expriment que la distribution entrant dans Ωι à 
travers Γ12 est exactement la distribution sortant du domaine Ω2, et de la 
même manière la distribution entrant dans Ω2 à travers Γι2 est la distribu­
tion sortant du domaine Ωχ. 

Nous en déduisons la formulation couplée finale du problème (P) en deux 
sous problèmes (P\) et (P2) 

dtfi +v-dxf1 = - Q ( / i , / i ) , dans [Ο,Δί] Χ Ωι χ UN, 
c 

fx = f2 sur [0, Δ ί ] χ ΐ γ 2 χ m.N, 
(9) 

dtfi + ν • dxf2 = - Q{f2, / 2 ) , dans [0, Δ ί ] χ Ω 2 χ ΤΆΝ, 

h = h s u r [0, Δ ί ] χ Γ£, χ JELN, 

(10) 

avec les mêmes conditions initiales et aiix limites que pour le problème glo­
bal. 

La résolution du problème couplé (P\) et ( P 2 )
 e s t obtenue par l'algo­

rithme itératif suivant 

dtf? + ν • dxft = - Q(/r, / " ) , dans [0, Δ ί ] χ ί ΐ , χ JRN, 

/Γ = / Γ 1 sur [Ο,Δί] χ Γ- 2 χΚΛ, 
( H ) 

dtft + ν • dxft = - Q(fi, fi1), dans [0, Δ ί ] χ Ω 2 x JR.", 

ft = f\l sur [0, Δ ί ] χ Γ+ χ ΈΙΝ, 

(12) 
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où f^~l e s t connu pour n—l > 0. Si l'algorithme converge, notant }\ et les 

limites respectives de f[l et / ^ , alors f\ et fa sont solutions respectivement 

des problèmes (Pi ) et ( P 2 ) , et par conséquent sont les restrictions de la 

solution globale / de ( P ) . 

Nous pouvons maintenant appliquer cet algorithme pour résoudre l'équa­

tion de Boltzmann. En effet, considérant un algorithme de marche en temps, 

le problème pour chaque, pas de temps est ramené au problème précédent. 

Plus précisément nous partitionnons l'intervalle de temps [0,T] en M inter­

valles de longueur At = Τ / M. Ensuite nous résolvons successivement M 
problèmes équivalents à ( P ) , c'est à dire que sur chaque intervalle 

[k A (k + 1) Δ £], k > 0, nous résolvons 

dtfn + V · dxfn = - Q(fnJn), dans [k A i, (k + 1 ) Δ ί] Χ Ω Χ Κ*, 

fn(kAt) = fn-l{kAt) sur Ω χ ΜΝ. 
(13) 

pour k > 1. Pour chaque sous problème nous appliquons l'algorithme itératif 
précédent. D'un point de vue mathématique la convergence de l'algorithme 
précédent est encore un problème ouvert. 

Revenant au problème initial ( P ) , la condition (3) a un sens dans 
Ιν1(Σ~y\v.7i(x)\daxdvdt) (dax étant la mesure surfacique sur $Ω), si / et 
d(f)/dt+v.d(f)/dx sont dans ^ ( [ O , Δ ί ] χ Ω χ WLN). Une preuve est donnée 
par Ukai dans [13], voir aussi Cessenat [19] et [20]. L'existence d'une solu­
tion globale du problème (P ) est établie par Hamdache [14], suivant l'idée 
introduite par Diperna et Lions [15], [16] pour le problème de Cauchy. us 
ont montré l'existence d'une solution faible sans hypothèse trop restrictive 
sur la donnée initiale. La question de l'unicité reste un problème ouvert. 
L'équivalence entre les problèmes ( P ) et (P i ) , (P2 ) se déduit de la définition 
de la trace et de la formule de Green due à Ukai [13]. Dans notre analyse 
mathématique, nous utilisons le modèle simplifié de BGK. Récemment Per-
thame et Pulvirenti [21] ont prouvé l'existence et l'unicité de la solution de 
l'équation de BGK dans un domaine borné pour des conditions aux limites 
périodiques. Nous avons étendu ces résultats à des conditions aux limites 
plus générales et nous étudions la convergence de l'algorithme itératif pré­
cédent en remplaçant le modèle Boltzmann par le modèle BGK. 
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3 La méthode de Chapman-Enskog 

Nous considérons à nouveau l'équation de Boltzmann adimensionnée (1). 
Pour les régime fluides, le nombre de Knudsen ε est très petit . Π semble alors 
naturel de chercher la distribution / comme un développement en puissances 
de ε. A l'ordre un en ε nous obtenons la distribution de Chapman-Enskog 
que nous écrivons 

/ = / o ( l + εφ), (14) 

où /o et φ sont des fonctions inconnues. Remplaçant / par (14) dans l'équa­
tion de Boltzmann nous obtenons à l'ordre —1 en ε 

Q(foJo) = o. (15) 

Il en résulte que fo est une distribution Maxwellienne locale. Cette distri­
bution s'écrit 

fo = 
Ρ 

(2π AT) 3 / ' 2 
exp (v - u)2 N 

2 AT 
(16) 

Substituant / par (14) dans l'équation de Boltzmann, celle-ci devient 

ί{Ψ) = (dtfo + vdxfo) + 0(e), (17) 

où L est l 'opérateur linéaire défini par 

L(V) = 2Q(/„,.M. (18) 

Finalement en supposant que L est inversible, nous en déduisons l'expression 

de φ 
ψ = L " 1 [(djo + v-Ôxfo) + 0(e)). (19) 

Les équations de conservation de la masse, de la quantité de mouvement et 
de l'énergie sont données par l'expression 

dt J 
fo(l + e<p)Kdv ^ 

dx J 
/0(1 + εφ)νΚάν = 0, (20) 

obtenue en multipliant l 'équation de Boltzmann par Κ = ( l , v , v 2 / 2 ) et en 
intégrant sur le domaine des vitesses. 

La détermination de φ nécessite les trois hypothèses suivantes 

(i) Le terme de droite de (19) est déterminé à l'ordre 1 en ε en écrivant 
les équations de conservation à l'ordre 0 en ε 
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(ii) La fonction ψ vérifie la condition 

/ fo<pKdv - 0, 

qui signifie que les quantités p,u et T, paramètres de la Maxwellienne 

/o , sont la densité, la vitesse moyenne et la température du fluide. 

(iii) L'équation de perturbation 

Hv>) = ^ + 0(e), 

est résolue dans l'espace généré seulement par les premiers polynômes 
de Laguerre-Sonine. 

Sous toutes les hypothèses précédentes nous déduisons l 'approximation 

suivante fcE de / 

fcE = fo 1 + 
2 λ 
5 p{RTf 

c 2 5 
2 RT 2 

c-dxT -

- i é r ? ( c ® c - r 2 l d ) :d*\ • 
ν — u 

Dans cette expression c = . est la vitesse réduite. Les coefficients de 
viscosité λ et μ dépendent du noyau de collision et du degré des polynômes 
de Sonine choisi pour le calcul de φ. 

Les équations de Navier-Stokes sont obtenues en remplaçant / par / C E 
dans les équations de conservation (20). On obtient 

d_ 
dt 

ρ 
pu 

dx 

ρ u 
pu® u + ρ Id — τ 
(ρ Ε + p)u+ q 

- 0, (21) 

où Ε — u2/2 + (3/2)p est l'énergie totale. Le tenseur des contraintes et le 
flux de chaleur sont donnés par 

τ — — J ε /οφ c(S) cdc 
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4 Le couplage Boltzmann Navier-Stokes 

4.1 La condition d'interface: couplage par demi-flux 

Revenons an couplage Boltzmann / Boltzmann introduit dans la seconde 
section. Nous supposons vérifiées, clans un des sous domaines, par exemple 
Ωι, les hypothèses permettant de développer la méthode de Chapman-
Enskog. Dans Ωι nous remplaçons donc l'équation de Boltzmann par les 
équations de Navier-Stokes. Ainsi la distribution de particules est donnée 
par la distribution de Chapman-Enskog. Les conditions de compatibilité 
(7), (8) sur l'interface Γ12 deviennent alors 

f'2(v) = fcE(v) siv.n>0, (22) 

ÎCE(V) = f2(v) siv.n < 0. (23) 

Pour le modèle Boltzmann la condition (22) exprime que la distribution 
rentrant dans le domaine Boltzmann est égale à celle sortant du domaine 
Navier-Stokes. Le problème qui en résulte dans ce domaine est bien posé. 
Pour le modèle Navier-Stokes la condition (23) ne peut être considérée qu'en 
moyenne. Pour ce faire nous reprenons l'expression cinétique du flux Navier-
Stokes considéré à travers l'interface Γ12 . Π s'écrit 

ρ(υ)·η/Γπ = / v.nKfcEdv, 
' 1 2 Jv e H 3 

(24) 

où η est la normale à Γ12 extérieure à Ωι. Grâce à cette formulation ciné­
tique nous décomposons F(U).7i^i2 en un flux sortant du domaine Navier-
Stokes à travers Γι2, noté F( [/)+.?£, et un flux rentrant dans le domaine 
Navier-Stokes à travers Γ 1 2 , noté F(U)~ .n. Il suffit pour cela de décompo­
ser le domaine d'intégration dans (24) en {v.n < 0} et {v.n > 0} . Ainsi 
F(U).7i/ri2 sécrit 

F(U).n/Ti2 = / v.nKfcEdv+ / v.nKfcEdv 
Jv.n > 0 Jv.n < 0 (25) 

= F+(U).Ji + F~{U).n. 

En intégrant la condition (23), nous obtenons alors 

F~{B).n= j v.nKf2dv = ί v.n KfCEdv = F~(U).n. (26) 
Jv.n<0 Jv.7i<0 
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Finalement en combinant (25) et (26), nous obtenons l'expression suivante 
du flux à travers Γι2 pour le problème local dans û\ 

F{U).nITl2 = F(U)+.n + F(B)~ .n. (27) 

La condition (27) est la condition aux limites à imposer aux équations de 

Navier-Stokes sur l'interface Γ12 . 
Ainsi nous avons introduit, par (22) et (27), un couplage des équations 

de Boltzmann et de Navier-Stokes, qui semble naturel d'un point de vue phy­
sique. Nous l'appelons le couplage par demi flux. Π est clair que ce couplage 
est valide lorsque l 'approximation Navier-Stokes est valide. Π est donc néces­

saire pour réaliser des simulations numériques de déterminer correctement 

les différents domaines de calcul. 

4.2 L'algorithme de couplage 

Dans cette section nous introduisons de nouvelles notations décrivant 

de manière générale la géométrie du problème. Nous considérons un écou­

lement autour d'un obstacle de frontière I V , dans un domaine global Ω 
(fig. 2). Le domaine global est décomposé en deux sous domaines ΩΝ s (do­
maine Navier-Stokes) et Ωβ (domaine Boltzmann). Le domaine local Ω#, 
de frontière interne T\y et de frontière externe Τ Β C ÙNSI contient le corps. 

Dans ce domaine, on résoud l'équation de Boltzmann. Dans le domaine ΩΝ s 
nous résolvons les equations de Navier-Stokes. Sa frontière externe Text est 

la frontière externe du domaine global. Sa frontière interne Tint C Ωβ en­
globe le corps. Les deux sous domaines peuvent ou non se recouvrir. Nous 
désignerons tourjours par η la normale extérieure au domaine Navier-Stokes 

et par la normal intérieure au domaine Boltzmann dans le cas d'un re­

couvrement. La partition est ici définie apriori. 

Avec ces notations, Le problème couplé que nous voulons étudier s'écrit 

- dans la domaine Ω#, nous résolvons l'équation de Boltzmann 

avec comme conditions initiales 

f/t=o = Μ α χ ^ ρ ο ο , ^ ο ο , Τ ο ο ) , 
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Ω 

Ω Β 

—Lmi 

c o r p s 

r e c o u v r e m e n t 

^ext 

F I G . 2 - géométrie 

la fonction d'équilibre dont les paramètres sont les valeurs à l'infini. Sur 
le corps Tjy, nous imposons comme condition aux limites une réflexion 
selon le modèle de Maxwell (4). Sur la frontière Τ Β nous imposons une 
distribution de particules rentrantes. Cette distribution est 

f/rB = Maxw(pNS,uNs,TNS), 

oil les paramètres sont donnés par la solution Navier-Stokes. 

- dans le domaine fiyvs, nous résolvons les équations de Navier-Stokes 

dU + dF(U) = 0 > 

dt dx ' 

où U = (ρ,ρη,ρΕ) sont les variables conservatives. Nous ajoutons la 
condition initiale suivante 

U/t=0 — {pool Ρ00^005 POQEOO) 

Sur le bord extérieur Text, nous imposons les conditions usuelles de 
Dirichlet. Sur le bord intérieur Tint , nous utilisons la condition de 
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décomposition des flux (27) 

F(U).n = F{U)+.n + F(B)~ai. 

Les demi-flux sortants F(i/)+.7i sont donnés par une formule explicite, et 
dépendent seulement des variables macroscopiques ( ρ , ^ , Τ ) et de leurs gra­
dients. Les demi-flux rentrants F(B)~ .n sont calculés dans le code Boltz­

mann et imposés comme conditions aux limites dans le code Navier-Stokes. 

L'algorithme que nous associons au problème couplé précédent est l'algo­

rithme de marche en temps introduit dans la seconde section pour le cou­

plage Boltzmann / Boltzmann dans lequel nous remplaçons un des modèles 

Boltzmann par le modèle Navier-Stokes. 

Connaissant la solution à l 'itération (η) ( n > 0 ), c'est-à-dire la solution 

Navier-Stokes ( p ^ , ^IvS' ^NS) ^ANS ^NS et la solution Boltzmann dans 
Ω#, nous procédons de la manière suivante pour calculer la solution globale 
à l 'itération (n + 1) 

- Itération Boltzmann locale (n + 1) 

- Résoudre l 'équation de Boltzmann avec la condition initiale 

An+1) _ An) 
JB/t=0 - JB > 

le modèle de réflexion de Maxwell sur le corps Tw et la condition 
de compatibilité 

Λη+l) 
J/rB 

sur Tj5, si v.riB > 0. 

- Calculer (F{B)~ .n)(n+1) connaissant ^ n + 1 ) . 

- Itération Navier-Stokes locale (n + 1) 

- Résoudre les équations de Navier-Stokes avec la condition initiale 

ττ(η+ι) _ rjn 
U/t=0 - U ' 

une condition de Dirichlet sur Text et la condition de compatibilité 
SUr Tint 

F(Un+1).n = F(Un+1)+.n + F(Bn+ly.n 
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En pratique, pour une itération Boltzmann locale, nous résolvons un 
nombre fixé Ν Β de pas de temps de l'algorithme Boltzmann, et pour une 
itération Navier-Stokes locale un nombre fixé Njvs de pas de temps de 
l'algorithme Navier-Stokes. L'algorithme précédent est stoppé dès que les 
conditions aux limites sur Τ Β sont stationnaires; c'est-à-dire lorsque les pa­
ramètres (y9,u,T)yv5, qui déterminent la maxwellienne sur Γ#, le sont. On 
se contente de contrôler uniquement les variations de la densité. Le résidu 
est calculé par la formule suivante, 

Résidu = W a l f r ~Pi\m 

z2xterB Pi 

Il est difficile d'atteindre une précision numérique supérieure à 10~ 3 car la 
méthode de Monte-Carlo engendre beaucoup de bruit. Enfin on notera que 
si la solution Boltzmann est stationnaire il en est de même de la solution 
Navier-Stokes puisque les demi-flux entrant dans le domaine ΩΝ s sont éga­
lement stationnaires. 

Nous utilisons dans nos simulations un code Navier-Stokes basé sur une 
méthode d'éléments finis de type "least-square Galerkin". Ce code a été 
fourni par Dassault Aviation. Le code Boltzmann est basé sur la méthode 
FPM (the "finite pointset method") développée à l'université de Kaiserslau­
tern par le goupe de H. Neunzert [7]. 

5 Résultats numériques 

Nous considérons un écoulement externe, d'un gaz monoatomique, au­
tour d'une ellipse. Le premier résultat présenté est un calcul Boltzmann sur 
un domaine global. Cette solution, considérée comme une solution de réfé­
rence, nous permet t ra de valider les résultats de couplage. Pour le calcul de la 
solution couplée, les domaines Boltzmann et Navier-Stokes sont déterminés 
de manière automatique. Pour cela nous avons implementé un critère per­
met tant de déterminer la validité de la solution Navier-Stokes en tout point-
dû domaine global. Lors d'une étape d'initialisation de l'algorithme de cou­
plage nous calculons une solution Navier-Stokes sur le domaine global, avec 
les conditions classiques d'adhérence, solution à laquelle nous appliquons le 
critère. Ces techniques ne sont pas développées dans cet article, voir [25]. 
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5.1 Paramètres de l'écoulement 

Nous choisissons d'étudier un écoulement hypersonique autour d'une el­
lipse dans des conditions proches de celles d'un vol réel. Les paramètres 
correspondants sont 

Moo - 20. 

Too = 167.3 Κ 

Uoo = 5672. m/s 
Poo = 1. 

T V = 1000. κ 
Re/m = 5000. 

7 = 1 

La viscosité suit une loi de Sutherland et le modèle des collisions est le 
modèle des sphères dures. 

Nous précisons maintenant quelques données pour le calcul Boltzmann 

MFPQO = 0.0066 m 
Accomodation totale 
Nombre de particules dans une cellule infini 25 
Nombre de particules pour subdivision d'une cellule 100 

Enfin nous précisons quelques grandeurs géométriques du domaine global 

Taille du domaine e u x = 2.25 m 
Taille du domaine en y = 2. m 
Longeur de l'ellipse = 1. m 

5.2 Solution Boltzmann de référence 

La validation des résultats de couplage se fera par comparaison des gran­
deurs suivantes, calculées à la paroi 

- coefficient de frottement Cj 

c i = 

94 

(σ * η)- τ 

0 . 5 ρ η ' 



- coefficient de force normale CFU 

Cm = 
(σ · η) - η 
0.5 Poo u2^' 

- coefficient de chaleur C)x 

CH = 
(g · n ) 

0.5 poo 

où η et τ sont le vecteur normal et le vecteur tangent à l'ellipse. Notons 
que les valeurs négatives qui apparaîtront sur les courbes représentant le 
coefficient de force normale et la vitesse tangentielle résultent de l'orientation 
du vecteur tangent prise systématiquement dans le sens rétrograde. 

Le domaine de calcul est le domaine global. Le maillage est constitué de 
100 fois 100 cellules. Nous avons fait 1200 pas de temps et calculée les gran­
deurs moyennes sur les 600 derniers pas de temps. Le temps de calcul est de 
2h30mn. Les figures (3) et (4) représentent les iso-valeurs de la température 
et de la densité. 

5.3 Solution couplée Boltzmann/Navier-Stokes 

Le code a calculé dix itérations globales de couplage. Le premier cal­
cul Boltzmann est initialise par une maxwellienne dont les paramètres sont 
calculés à partir de la solution Navier-Stokes initiale. Pour ce premier cal­
cul le nombre d'itérations de l 'algorithme Boltzmann est fixé à 500 et les 
moyennes sont calculées sur 200 pas de temps. Pour les itérations suivantes 
les moyennes sont toujours calculées sur 200 pas de temps pour un nombre 
total d'itérations fixé à 400. 

Pour le calcul Navier-Stokes le maillage discrétisant le domaine Navier-
Stokes est obtenu par une adaptation isotrope selon la température, avec 
comme maillage et solution de fond ceux d'une solution Navier-Stokes cal­
culée préalablement. Il est constitué de 1758 noeuds pour 3233 triangles (5) . 
Le nombre d'itérations pour l 'algorithme Navier-Stokes est fixé, pour chaque 
itération globale, à 500 itérations explicites avec un nombre de CFL de 0.1 
. Le temps de calcul d'une itération globale est de 30mn. 

Le résidu global est stable à partir de la troisième itération (voir figure 
(6)). Les figures (7) et (8) représentent les iso-valeurs de la température et 
de la densité. Les figures (9), (10) , (11) et (12) représentent des coupes 
transversales de la température et de la densité. Elles sont comparées par 

95 



6 CONCLUSION 

La technique de couplage Boltzmann/Navier-Stokes par demi-flux semble 
naturelle dans son principe et dans son implementation comme solution 
possible des écoulements externes hypersoniques semi-raréfiés. Cette mé­
thode peut s'appliquer indépendamment de l 'approximation des équations 
de Navier-Stokes choisie. Pour les résultats numériques, nous avons effectué 
les calculs avec un code Navier-Stokes de type éléments finis. En particulier, 
nous avons pu prendre en compte les effets visqueux dans le domaine global. 
On observe aussi que l'algorithme de couplage semble converger indépen­
damment des conditions aux limites imposées sur le corps, de la discrétisa­
tion du domaine et de la position de la frontière F# . 
Le couplage permet d'étudier des écoulements hypersoniques pour des petits 
nombres de Knudsen et ceci pour un coût de calcul raisonnable, puisque le 
modèle cinétique n'est utilisé que près du corps. 

Présenté ici pour le cas de gaz monoatomique cette méthode peut se géné­
raliser au cas des gaz polyatomiques monotempératures. 
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aodulef : a a l l i n 26/01/94 

tetp b o l . r e f . 

»409 QUADRANGLES 

2 0 2 . 063 SE+04 
19 1.96SSE+04 
18 1.8S72E+04 
17 1.7489E+04 
16 1.6406E+04 
IS 1.S323E+04 
14 1.4241E+04 
13 1.31S8E+04 
12 1.207SE+04 
11 1.0992E+04 
10 9909. 

9 8826. 
8 7743 . 
7 6660. 
6 S578. 
S 449S. 
4 3412. 
3 2329. 
2 1246. 
1 163.2 

FlG. 3 - Lignes iso-Température 

modulef : Mllin 26/01/94 

d e n s i t e b o l . r e f . 

9409 QUADRANGLES 

20 33 .88 
19 32.27 
18 30 .49 
17 28 .71 

IS 2S.1S 
14 23.37 
13 21.S9 
12 1 9 . 8 1 
11 18.03 
10 16.2S 

9 14.47 
8 12 .69 
7 10 .91 
6 9.13 S 
S 7.3SS 
4 S . 57 6 
3 3.796 

F I G . 4 - Lignes iso-densité 
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F I G . 5 - Maillage Navier-Stokes du couplage 2 

0. 0396 

0. 02Θ9 

0. 01Θ2 

0. 0075 

RESIDU 

1. 4. 7. 10. 

F I G . 6 - Résidu du deuxième couplage B/NS 
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nodul«f : a a l i i n 29/01 

temp cp.2 

164 56 QUADRANGLES 

20 2.0S67E+04 
19 1.9590E+04 
1β 1.8511E+04 
17 1.7431E+04 
1β 1.63S2E+04 
14 1.S273E+04 
14 1.4193E+04 
13 1.3Π4Ε+04 
12 1 .2034E+04 
11 1.0955E+04 
10 987«. 

9 879«. 
8 7717. 
7 6637. 
6 5558. 
5 4478. 
4 3399. 

2 1240. 

20 ISOVALEURS 

F I G . 7 - Lignes iso-Température 

modulef : a a U i n 29/01/94 

dens . l t · cp .2 

164 56 QUADRANGLES 

20 35.02 
19 33.35 
18 31.51 
17 29.67 
16 27.83 
15 25.99 
14 24.15 
13 22.31 
12 20.47 
U 18.63 
10 16.79 

9 14.95 
8 13.10 
7 11.26 
6 9.424 
5 7 .583 
4 5.743 
3 3.902 

1 0.2214 

2 0 ISOVALEURS 

F I G . 8 - Lignes iso-densité 
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F I G . 9 - Coupe température 

F I G . 10 - Coupe température 
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F I G . 11 - Coupe densité 

F I G . 12 - Coupe densité 
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F I G . 1 3 - Coefficient de frottement Cf 

F I G . 1 4 - Coefficient de chaleur Ch 
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F I G . 15 - Coefficient de force normale Cpn 

FlG. 16 - Vitesse tangentielle 
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