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COUPLAGE BOLTZMANN / NAVIER-STOKES

P. LE TALLEC, F. MALLINGER

Résumé

Nous présentons une méthode de couplage des équations de Boltz-
mann et de Navier-Stokes. Cette méthode se déduit d’une méthode
de décomposition de domaine appliquée a I’équation de Boltzmann et
d’une interprétation cinétique des flux Navier-Stokes. Cette approche
est testée numériquement pour un écoulement en dimension deux d’un
gaz semi-dense.

1 Introduction

Durant ces dernieres années les scientifiques ont montré un réel inté-
rét pour le calcul d’écoulements a grandes vitesses et hautes altitudes. Un
exemple d’application concerne la phase de réentrée dans ’atmosphére d’un
véhicule spatial.

Actuellement le modeéle décrivant ces écoulement avec le plus de précision
est I’équation de Boltzmann. Malheureusement les méthodes numériques de
type Monte-Carlo, utilisées pour résoudre cette équation, sont trés onéreuses
deés que le libre parcours moyen devient trop petit, en particulier pour les
régimes transitionnels.

Il est alors classique d’introduire les équations de Navier-Stokes, obtenues
comme limites de I’équation de Boltzmann lorsque le nombre de Knudsen
tend vers zero. Dans ce cas le fluide est supposé proche de 1’état d’équilibre.
Ce modele n’est donc pas valide pour les écoulements transitionnels qui
nous intéressent. De plus des simulations numériques ont montré que les
équations de Navier-Stokes avec conditions d’adhérence sur 'obstacle ne
sont pas valides dans une couche limite autour de cet obstacle. On observe
en effet 3 la parol un saut de la température et de la vitesse tangentielle
(celle-ci n’est pas nulle).

Nous proposons une alternative basée sur une technique de décompo-
sition de domaine. Cette approche, développée dans le cadre et avec le fi-
nancement du projet Européen Hermes, consiste a utiliser simultanément le
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modele Boltzmann et le modele Navier-Stokes. Pour un domaine global fixé,
nous déterminons un petit sous domaine, proche de 'obstacle, le contenant
éventuellement, dans lequel nous résolvons I'équation de Boltzmann, et un
domaine plus éloigné de P'obstacle dans lequel nous résolvons les équations
de Navier-Stokes. Ces domaines peuvent ou non se recouvrir et leur réunion
est égale au domaine global. Le couplage des deux modeles est assuré par
le biais de nouvelles conditions aux limites. Grace a la théorie cinétique
les flux a l'interface des domaines peuvent se décomposer permettant ainsi
d’imposer pour chaque sous domaine le flux rentrant a ’interface.

Cet article est organisé de la maniere suivante. Dans la seconde section
nous présentons le couplage Boltzmann / Boltzmann qui est a 'origine de
notre méthode. La troisieme section est consacré a la méthode de Chapman-
Enskog qui permet de déterminer les équations de Navier-Stokes & partir
de I’équation de Boltzmann. Dans la quatrieme section nous décrivons le
couplage Boltzmann / Navier-Stokes. Enfin nous illustrons notre méthode de
couplage par des résultats numériques présentés dans la cinquieme section.

2 Le couplage Boltzmann / Boltzmann

Nous résolvons I’équation de Boltzmann dans un domaine borné en es-
pace en utilisant des techniques classiques de décomposition de domaine.
Une présentation générale de ces méthodes est donnée par Quarteroni dans
[8] et par Le Tallec dans [9]. Une analyse mathématique rigoureuse des
problémes continu et discret est proposée dans [11] pour le couplage des
équations d’advection-diffusion et d’advection pure, et dans [12] pour le cou-
plage des équations de transport. En raison de la complexité de I’équation
de Boltzmann (équation intégro-différentielle) nous ne considérerons qu’une
approche formelle du couplage Boltzmann / Boltzmann. Néanmoins nous
préciserons a la fin de cette section les difficultés mathématiques associées &
cette approche. ‘

Pour un gaz monoatomique ’équation de Boltzmann s’écrit

. , 1
Ouf+v-0.f==Q(f,f), dans [0,At]x Q x RN, (1)

€
La fonction inconnue f = f(t,z,v) est une distribution de particules re-
présentant le nombre de particules localisées en z, avec une vitesse v au

temps t. Le nombre de Knudsen ¢, apparaissant apres adimensionnement de
P’équation de Boltzmann, est le rapport du libre parcours moyen divisé par
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une longueur caractéristique de I’écoulement. Le processus des collisions est
modélisé par le terme quadratique Q(f, f)

A Non= [ [ (= ) e = 0, w) do dw.
mneR w652

Dans cette expression g(v — vy, w) est la section efficace de probabilité de

collision. De plus nous avons utilisé la notation suivante

f] = f(t,.’E,Ul),
f/ f(t,a:,v’),
fll = f(t7z’vll)7

ou (v,v1) et (v/,v'1) sont les vitesses avant et aprés une collision de para-
métre w appartenant a la sphére S2. Pour plus de détails le lecteur pourra
consulter Cercignani [4], Kogan [5], Vincenti-Kruger [6].

L’ équation (1) est complétée par la condition initiale

Il

f(0,z.0) = folz,v) sur @ xRV, (2)

et une condition a l'infini qui impose la distribution de particules entrant
dans le domaine Q

f(t,z,v) = @(t,z,v) sur L7, (3)
ol X~ est défini par

ST =[0,At)x T,
[~ = {(z,v) €00 x RN /n(z)v < 0}.

Le vecteur n(z) est la normale extérieure au domaine 9Q. De plus en présence
d’un obstacle nous imposons comme condition sur 'obstacle une combinai-
son linéaire d’une réflexion spéculaire et d’une réflexion par accomodation
thermique. En d’autres termes, chaque particule qui subit une collision avec
I’obstacle est réémise avec une nouvelle vitesse de la forme

vV = (1 —a)'s + av's. (4)

Le nombre a € [0, 1] est le coefficient d’accomodation, v/, est la vitesse de la
particule apres une réflexion spéculaire et v’, la vitesse de la particule émise
selon une distribution Maxwellienne & une température imposée.

Nous appellons ( P) le probleéme de Cauchy [(1),(2),(3)).
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Pour définir une formulation par sous domaine équivalante au probleme
(P) nous commencons par décomposer le domaine spatial {2 en deux sous
domaines € et g, voir figure 1, de telle sorte que

Q = QI U 627
QN =0 Tip= N,
I'f, = {(z,v) € I'12 x RN /v.n(z) > 0},

I'y, = {(z,v) € T2 x RY Jv.n(z) < 0},

ol n est la normale extérieure & 0y sur ['yy.

Q

NP

n

91 QZ

Fic. 1 - Décomposition du domaine Boltzmann

Nous considérons maintenant la restriction de fa [0, At]xQy xRN, notée
fi, et 3 [0, At] x Q2 x RY, notée f,. Alors le probléme (P) est formellement
équivalent au probleme suivant

1
Ohfi+v-0.f1 = A Q(fi, f1), dans [0,A8] x Q; x RV,

1 (5)
Ocfa+v-0cfu = ; Q(f2,f2), dans [O’At] x s X RV,
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Nous ajoutons a ce systeme la condition de compatibilité
fi = foy sur [0, x T'yy x RV, (6)

et les mémes conditions initiales et aux limites que pour le probleme global.
Cette condition de compatibilité est naturelle d’un point de vue physique.
Elle exprime la conservation du flux de particules a Pinterface des deux
domaines. Pour obtenir un systeme couplé nous décomposons cette condition
d’interface (6) en

fi = fo sur [0,At] x T, x RV, (7)
f2 = fi sur [0,Af] x T'f, x RV, (8)

Les conditions (7) et (8) expriment que la distribution entrant dans Q a
travers ['1, est exactement la distribution sortant du domaine 2,, et de la
meéme maniere la distribution entrant dans €25 & travers I'y; est la distribu-
tion sortant du domaine (2.

Nous en déduisons la formulation couplée finale du probleme ( P) en deux
sous problemes (Py) et (P;)

1
atfl +v azf] = —E— Q(flafl)v dans [OvAt] X Ql X IRN’
(9)
h=15 sur [0, At] x Ty, x RY,

1
Oifa+v-0cfa==Q(fs. fr), dans[0,A]x Qy x RV,
) (10)
fo=h sur [0, At] x Tf, x RV,
avec les mémes conditions initiales et aux limites que pour le probleme glo-
bal.
La résolution du probleme couplé (P;) et (P) est obtenue par 'algo-
rithme itératif suivant

) 1
Ouft +v-0.f1 = = Q(fI /1), dans [0,A8] x Q5 x RV,
¢ (11)
o= ! sur [0, At] x Tp, x RY,
I .
B fy +v- 0 f = = Q(fY, 1), dans [0, Af] x Qy x RV,
€ ‘
(12)
»=fr sur [0, At] x T, x RV,
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oil ;_l est connu pour n—1 > 0. Si algorithme converge, notant f et f; les

limites respectives de fi" et f3', alors f; et f, sont solutions respectivement
des problemes (P;) et (F»), et par conséquent sont les restrictions de la
solution globale f de (P).

Nous pouvons maintenant appliquer cet algorithme pour résoudre ’équa-
tion de Boltzimann. En effet, considérant un algorithme de marche en temps,
le probleme pour chaque pas de temps est ramené au probléme précédent.
Plus précisément nous partitionnons Pintervalle de temps [0,7] en M inter-
valles de longueur At = T/ M. Ensuite nous résolvons successivement M
problemes équivalents a (P), c’est & dire que sur chaque intervalle
kAt (k+1)At], k> 0, nous résolvons

Ofu+v-ufrn = %Q(fn,fn), dans KA 6 (k+ 1AL x 2 x RY,

falkAY) = fu(kAT) sur Q@ x RV,

(13)
pour k£ > 1. Pour chaque sous probleme nous appliquons Ialgorithme itératif
précédent. D’un point de vue mathématique la convergence de I’algorithme
précédent est encore un probléme ouvert.

Revenant au probléeme initial (P), la condition (3) a un sens dans
LY(Z™, |v.n(z)|do,dv dt) (do, étant la mesure surfacique sur 8R), si f et
d(f)/0t+v.0(f)/dz sont dans L1([0, At] x @ x RN). Une preuve est donnée
par Ukai dans [13], voir aussi Cessenat [19] et [20]. L’existence d’une solu-
tion globale du probleme (P) est établie par Hamdache [14], suivant I'idée
introduite par Diperna et Lions [15], [16] pour le probleme de Cauchy. Is
ont montré P'existence d’une solution faible sans hypothese trop restrictive
sur la donnée initiale. La question de 1’'unicité reste un probleme ouvert.
L’équivalence entre les problemes (P) et ( P),(P2) se déduit de la définition
de la trace et de la formule de Green due & Ukai [13]. Dans notre analyse
mathématique, nous utilisons le modele simplifié de BGK. Récemment Per-
thame et Pulvirenti [21] ont prouvé existence et I'unicité de la solution de
P’équation de BGK dans un domaine borné pour des conditions aux limites
périodiques. Nous avons étendu ces résultats a des conditions aux limites
plus générales et nous étudions la convergence de ’algorithme itératif pré-
cédent en remplacant le modele Boltzmann par le modele BGK.
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3 La méthode de Chapman-Enskog

Nous considérons a nouveau I’équation de Boltzmann adimensionnée (1).
Pour les régime fluides, le nombre de Knudsen ¢ est trés petit. Il semble alors
naturel de chercher la distribution f comme un développement en puissances
de €. A 'ordre un en ¢ nous obtenons la distribution de Chapman-Enskog
que nous écrivons

f=f(l+ep), (14)

oll fy et ¢ sont des fonctions inconnues. Remplagant f par (14) dans I’équa-
tion de Boltzmann nous obtenons a 'ordre —1 en ¢

Q(fo, fo) = 0. (15)
Il en résulte que fy est une distribution Maxwellienne locale. Cette distri-
bution s’écrit ,
p (v—u)
- _ . 1
fo = GrrTYR ""”’( 2 RT > (16)
Substituant f par (14) dans I’équation de Boltzmann, celle-ci devient
L(p) = (Oufo + v -0:00) + 0(5)7 (17)
ol I est opérateur linéaire défini par
L(¢) = 2Q(fo, fo). (18)

Finalement en supposant que L est inversible, nous en déduisons ’expression
de ¢
¢ = L7 [(9fo + v-0:f0) + O(e) . (19)

Les équations de conservation de la masse, de la quantité de mouvement et
de Pénergie sont données par ’expression

0 . 0 L
E/fo(l-i-scp)lxdv—kb—a—c/fg(1+ecp)ledv_O, (20)

obtenue en multipliant ’équation de Boltzmann par K = (1,v,v?/2) et en
intégrant sur le domaine des vitesses.

La détermination de ¢ nécessite les trois hypotheses suivantes

(i) Le terme de droite de (19) est déterminé a P'ordre 1 en £ en écrivant
les équations de conservation a ['ordre 0 en ¢
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(ii)) La fonction ¢ vérifie la condition

/focpKdv =0,

qui signifie que les quantités p,u et T, parametres de la Maxwellienne
fo, sont la densité, la vitesse moyenne et la température du fluide.

(iii) L’équation de perturbation

Le) = P+ 06,

est résolue dans I’espace généré seulement par les premiers polyndmes
de Laguerre-Sonine.

Sous toutes les hypotheéses précédentes nous déduisons I'approximation
suivante fog de f

2 A ¢? 5 )
fee = fo [1 + 5 p(RT) <2RT - 5) ¢ 0;T —

1
- ﬁ (c@c— gczld> :8xu].

. v - . ;1. .
Dans cette expression ¢ = est la vitesse réduite. Les coeflicients de

viscosité A et u dépendent du noyau de collision et du degré des polynomes
de Sonine choisi pour le calcul de ¢.

Les équations de Navier-Stokes sont obtenues en remplagant f par fcg
dans les équations de conservation (20). On obtient

a7 g P
5| P +5; pu®u + pld — 17 | =0, (21)
pE (PE+ plu+tgq

ot £ = u%/2+ (3/2)p est I’énergie totale. Le tenseur des contraintes et le
flux de chaleur sont donnés par

T = —/5f0<,oc®cdc
- ouw  dury 2.
= ,u,[(ax-i-(aa:)) 3dw(u)[d],

or

q = /efogoc2cdc = —/\8—.
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4 Le couplage Boltzmann Navier-Stokes

4.1 La condition d’interface: couplage par demi-flux

Revenons au couplage Boltzmann / Boltzmann introduit dans la seconde
section. Nous supposons vérifiées, dans un des sous domaines, par exemple
@4, les hypotheéses permettant de développer la méthode de Chapman-
Enskog. Dans 7 nous remplagons donc I’équation de Boltzmann par les
équations de Navier-Stokes. Ainsi la distribution de particules est donnée
par la distribution de Chapman-Enskog. Les conditions de compatibilité
(7), (8) sur linterface I'yy deviennent alors

fo(v) = fop(v) sivn >0, (22)

fee(v) = folv) siv.n < 0. (23)

Pour le modele Boltzmann la condition (22) exprime que la distribution
rentrant dans le domaine Boltzmann est égale a celle sortant du domaine
Navier-Stokes. Le probleme qui en résulte dans ce domaine est bien posé.
Pour le modele Navier-Stokes la condition (23) ne peut étre considérée qu’en
moyenne. Pour ce faire nous reprenons 'expression cinétique du flux Navier-
Stokes considéré a travers Uinterface I'y9. 1l s’écrit

F(U).n/FIZ = /uem3 v.n K fop dv, (24)
ol n est la normale & I'jy extérieure & Q,. Grace & cette formulation ciné-
tique nous décomposons F(U).n/r]2 en un flux sortant du domaine Navier-
Stokes & travers I'y, noté F(U)t.n, et un flux rentrant dans le domaine
Navier-Stokes a travers I'1p, noté F(U)™.n. I suffit pour cela de décompo-
ser le domaine d’intégration dans (24) en {v.n < 0} et {v.n > 0}. Ainsi
F(U).np,, sécrit

F(U).n/Flz = / v.n K fogpdv + v.n K fogdv
v.n >0 vn <0 (25)

= FY*U)n+ F(U).n.

En intégrant la condition (23), nous obtenons alors

F~(B).n :/ v K fodv = / v K fepdo=F~(U)n. (26)
v.n <0 v.n <0
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Finalement en combinant (25) et (26), nous obtenons P’expression suivante
du flux & travers I'1 pour le probléme local dans £

F(U)nr, = FU)t.n + F(B)™ .n. (27)

La condition (27) est la condition aux limites & imposer aux équations de
Navier-Stokes sur I'interface I'y3.

Ainsi nous avons introduit, par (22) et (27), un couplage des équations
de Boltzmann et de Navier-Stokes, qui semble naturel d’un point de vue phy-
sique. Nous P’appelons le couplage par demi flux. Il est clair que ce couplage
est valide lorsque "approximation Navier-Stokes est valide. Il est donc néces-
saire pour réaliser des simnulations numériques de déterminer correctement
les différents domaines de calcul.

4.2 L’algorithme de couplage

Dans cette section nous introduisons de nouvelles notations décrivant
de maniere générale la géométrie du probleme. Nous considérons un écou-
lement autour d'un obstacle de frontiere 'y, dans un domaine global §2
(fig. 2). Le domaine global est décomposé en deux sous domaines Qg (do-
maine Navier-Stokes) et Qp (domaine Boltzmann). Le domaine local Qp,
de frontiére interne 'y et de frontiére externe I'g C Qyg, contient le corps.
Dans ce domaine. on résoud ’équation de Boltzmann. Dans le domaine Qg
nous résolvons les équations de Navier-Stokes. Sa frontiere externe ['gy; est
la frontiére externe du domaine global. Sa frontiere interne I';,; C Qg en-
globe le corps. Les deux sous domaines peuvent ou non se recouvrir. Nous
désignerons tourjours par n la normale extérieure au domaine Navier-Stokes
et par ng la normal intérieure au domaine Boltzmann dans le cas d’un re-
couvrement. La partition est ici définie apriori.

Avec ces notations, Le probleme couplé que nous voulons étudier s’écrit

— dans la domaine Qpg, nous résolvons I’'équation de Boltzmann

J J
b—tf + U%f = Q(f, f)
avec comme conditions initiales

friz=o = Mazw(po, oo, Too),s
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recouvrement

FiG. 2 - géométrie

la fonction d’équilibre dont les parametres sont les valeurs & 'infini. Sur
le corps I'wy, nous imposons comme condition aux limites une réflexion
selon le modeéle de Maxwell (4). Sur la frontieére 'y nous imposons une
distribution de particules rentrantes. Cette distribution est

firs = Mazw(pns,uns,Tns),
ou les parametres sont donnés par la solution Navier-Stokes.

dans le domaine Qxg, nous résolvons les équations de Navier-Stokes

oU OF(U)
ot + or 0,

ou U = (p,pu,pE) sont les variables conservatives. Nous ajoutons la
condition initiale suivante

U/t:() - (Pom Pooleos ,oooEoo)

Sur le bord extérieur .z, nous imposons les conditions usuelles de
Dirichlet. Sur le bord intérieur T;,; , nous utilisons la condition de
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décomposition des flux (27)
F(U)m = F(U)*.n + F(B)™ .n.

Les demi-flux sortants F(U)*.n sont donnés par une formule explicite, et
dépendent seulement des variables macroscopiques (p,u,T) et de leurs gra-
dients. Les demi-flux rentrants F(B)™.n sont calculés dans le code Boltz-
mann et imposés comme conditions aux limites dans le code Navier-Stokes.

L’algorithme que nous associons au probléme couplé précédent est ’algo-
rithme de marche en temps introduit dans la seconde section pour le cou-
plage Boltzmann / Boltzmann dans lequel nous remplagons un des modéles
Boltzmann par le modéle Navier-Stokes.

Connaissant la solution a ’itération (n) (n > 0 ), c’est-a-dire la solution

Navier-Stokes (pg\ys, uN;, T(")) dans s et la solution Boltzmann fB ™) dans

B, nous procédons de la maniere suivante pour calculer la solution globale
a litération (n + 1)

— Itération Boltzmann locale (n + 1)

— Résoudre ’équation de Boltzmann avec la condition initiale

n+1 n
i) = 1,

le modeéle de réflexion de Maxwell sur le corps I'yy et la condition
de compatibilité

A = Masw(plh, vy, TV,
sur I'g, si v.ng > 0.
- Calculer (F(B)‘.7z)("+1) connaissant f(n+1)
— Itération Navier-Stokes locale (n + 1)
— Résoudre les équations de Navier-Stokes avec la condition initiale
Uity = U,

une condition de Dirichlet sur T'.;; et la condition de compatibilité
sur '

FU™ ) = F(U™Y*m + F(B™)
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En pratique, pour une itération Boltzmann locale, nous résolvons un
nombre fixé Np de pas de temps de ’aigorithme Boltzmann, et pour une
itération Navier-Stokes locale un nombre fixé Nyg de pas de temps de
I’algorithme Navier-Stokes. L’algorithme précédent est stoppé deés que les
conditions aux limites sur I'g sont stationnaires; ¢’est-a-dire lorsque les pa-
rametres (p,u,T)ns, qui déterminent la maxwellienne sur I'g, le sont. On
se contente de contréler uniquement les variations de la densité. Le résidu
est calculé par la formule suivante,

1
Résidu = Zmelal P =1
Z$1€FB plo

Il est difficile d’atteindre une précision numérique supérieure & 1072 car la
méthode de Monte-Carlo engendre beaucoup de bruit. Enfin on notera que
si la solution Boltzmann est stationnaire il en est de méme de la solution
Navier-Stokes puisque les demi-flux entrant dans le domaine Qyg sont éga-
lement stationnaires.

Nous utilisons dans nos simulations un code Navier-Stokes basé sur une
méthode d’éléments finis de type "least-square Galerkin”. Ce code a été
fourni par Dassault Aviation. Le code Boltzmann est basé sur la méthode
FPM (the "finite pointset method”) développée a I'université de Kaiserslau-
tern par le goupe de H. Neunzert [7].

5 Reésultats numériques

Nous considérons un écoulement externe, d’un gaz monoatomique, au-
tour d’une ellipse. Le premier résultat présenté est un calcul Boltzmann sur
un domaine global. Cette solution, considérée comme une solution de réfé-
rence, nous permettra de valider les résultats de couplage. Pour le calcul de la
solution couplée, les domaines Boltzmann et Navier-Stokes sont déterminés
de maniéere automatique. Pour cela nous avons implémenté un critere per-
mettant de déterminer la validité de la solution Navier-Stokes en tout point
du domaine global. Lors d'une étape d’initialisation de ’algorithme de cou-
plage nous calculons une solution Navier-Stokes sur le domaine global, avec
les conditions classiques d’adhérence, solution & laquelle nous appliquons le
critere. Ces techniques ne sont pas développées dans cet article, voir [25].
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5.1 Parametres de ’écoulement

Nous choisissons d’étudier un écoulement hypersonique autour d’une el-
lipse dans des conditions proches de celles d’un vol réel. Les parametres
correspondants sont

M., = 20.

Too = 1673 K
Uoo = DBT2. M/
Poo = L.

Tw = 1000. K
RC/m = 5000.
v=3
Pr = §

La viscosité suit une loi de Sutherland et le modele des collisions est le
modele des spheres dures.
Nous précisons maintenant quelques données pour le calcul Boltzmann

MFP, = 0.0066 m

Accomodation totale

Nombre de particules dans une cellule infini 25

Nombre de particules pour subdivision d’une cellule 100

Enfin nous précisons quelques grandeurs geométriques du domaine global

Taille du domaine en x = 2.25 m
Taille du domaine en y = 2. m
Longeur de l'ellipse = 1. m

5.2 Solution Boltzmann de référence

La validation des résultats de couplage se fera par comparaison des gran-
deurs suivantes, calculées a la paroi

— coeflicient de frottement (¢
P (e-n)-T

Lo f Y
’ 0.5 poo u2,
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~ coeflicient de force normale C'g,

, (o-n)-n
Crn = o 27
0.5 poo uz,

~ coefficient de chaleur (),

_(g-m)

3
0.5 poo U3,

Ch =

ou n et 7 sont le vecteur normal et le vecteur tangent a ellipse. Notons
que les valeurs négatives qui apparaitront sur les courbes représentant le
coefficient de force normale et la vitesse tangentielle résultent de ’orientation
du vecteur tangent prise systématiquement dans le sens rétrograde.

Le domaine de calcul est le domaine global. Le maillage est constitué de
100 fois 100 cellules. Nous avons fait 1200 pas de temps et calculée les gran-
deurs moyennes sur les 600 derniers pas de temps. Le temps de calcul est de
2h30mn. Les figures (3) et (4) représentent les iso-valeurs de la température
et de la densité.

5.3 Solution couplée Boltzmann/Navier-Stokes

Le code a calculé dix itérations globales de couplage. Le premier cal-
cul Boltzmann est initialisé par une maxwellienne dont les parameétres sont
calculés a partir de la solution Navier-Stokes initiale. Pour ce premier cal-
cul le nombre d’itérations de ’algorithme Boltzmann est fixé a 500 et les
moyennes sont calculées sur 200 pas de temps. Pour les itérations suivantes
les moyennes sont toujours calculées sur 200 pas de temps pour un nombre
total d’itérations fixé a 400.

Pour le calcul Navier-Stokes le maillage discrétisant le domaine Navier-
Stokes est obtenu par une adaptation isotrope selon la température, avec
comme maillage et solution de fond ceux d’une solution Navier-Stokes cal-
culée préalablement. Il est constitué de 1758 noeuds pour 3233 triangles (5) .
Le nombre d’itérations pour 'algorithme Navier-Stokes est fixé, pour chaque
itération globale, a 500 itérations explicites avec un nombre de CFL de 0.1
. Le temps de calcul d’une itération globale est de 30mn.

Le résidu global est stable a partir de la troisiéme itération (voir figure
(6)). Les figures (7) et (8) représentent les iso-valeurs de la température et
de la densité. Les figures (9), (10) , (11) et (12) représentent des coupes
transversales de la température et de la densité. Elles sont comparées par



superposition & celles de la solution Boltzmann de référence. Les figures (13),
(14) , (15) et (16) représentent les coefficients de frottement, de chaleur, de
force normale et la vitesse tangentielle a la paroi. Nous remarquons que ces
résultats restent toujours comparables a ceux de la solution Boltzmann de
référence.

6 CONCLUSION

La technique de couplage Boltzmann/Navier-Stokes par demi-flux semble
naturelle dans son principe et dans son implémentation comme solution
possible des écoulements externes hypersoniques semi-raréfiés. Cette mé-
thode peut s’appliquer indépendamment de ’approximation des équations
de Navier-Stokes choisie. Pour les résultats numériques, nous avons effectué
les calculs avec un code Navier-Stokes de type éléments finis. En particulier,
nous avons pu prendre en compte les effets visqueux dans le domaine global.
On observe aussi que 'algorithime de couplage semble converger indépen-
damment des conditions aux limites imposées sur le corps, de la discrétisa-
tion du domaine Qg et de la position de la frontiére I'g.

Le couplage permet d’étudier des écoulements hypersoniques pour des petits
nombres de Knudsen et ceci pour un cofit de calcul raisonnable, puisque le
modele cinétique n’est utilisé que preés du corps.

Présenté ici pour le cas de gaz monoatomique cette méthode peut se géné-
raliser au cas des gaz polyatomiques monotempératures.
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FiG. 5 - Maillage Navier-Stokes du couplage 2
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