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A C =~ algebra Approach to Field Theory

This talk is a report of a common work with R. Haag which will be
published elsewhere in extenso [1]. The main ideas are Haag's, my role consisted
in bringing them into contact with the mathematiecal literature. You know that
I.E. Segal was the first to recommend the use of a C* ~ algebra for quantum
mechanics : he proposed to interpret its self adjoint elements as physical
observables and its positive forms a physicel states [2]. On the other hand
C* = algebras appear naturally in all the works concerned with the representation
of the canonieal commutation relations. A quantum mechanical freme based on a
C* =~ algebra has the appealing feature of being purely algebraie, since one knows
that the norm of a C* - algebra is algebraically determined. Our objective in this
work is the theory of coupled fields and we offer

1) an analysis of the eoncept of physicél equivalence of two theories which,
drawing upon mathematical results of J.M.G. Fell [3], leads to a purely algebrale

setting for general quantum mechanies

2) a purely algebraic approach to field theory whose basic mathematical structure
appears to be "the algebra of quasi loecal observables" faithfully represented in
each super selection sector. This approach is obtained by combining 1) with
Haag's "prineciple of locality" for field theory. I shall discuss at the end the
relation of the present C* - algebra approach with the theory of local Von Neuman
rings [4], [5] , [12]. For self containment we add a mathematical eppendix descri-
bing Fell's results.



§ 1.Physical equivalence of representations . A purely algebraic

setting for Quantum Meclmics . Our aim in this paragraph 1s to show that

two quantum mechanical theories can be physically equivalent (that is ,

they can convey the same physical information) without being unitarily
equivalent. Physical equivalence will be shown to cofncide with "weak

equivalence" as defined by J.M.G. Fell [3] . Fell's "equivalence theo-

rem " then implies the possibility of a purely algebraic setting for quan=
tum mechanics.

We start from the usual hypothesis (which we here accept uncri-
tically) that the observables of quantum mechanics are the self adjoint
elements of a % - algebra gz% which can be realised as a % - algebra
of bounded operators on some Hilbert space. We assume furthermore that
g& is complete with respect to the operator norm , 1i.,e, that QE“ is
a C*—algebra (if g&,were not complete we would get a C*—algebra by the
standard process of completion - we would assume in that case that the
elements of the completion still correspond to physical observables -
and would take the completion for QE: itself). Now we are confronted with
two possibilities as to the relevant mathematical objeect for the descrip-
tion of physics. It can be :

- (1) either gﬁ» as a concrete (norm closed) x - algebra of bounded ope-
rators on an Hilbert space # (up to unitary equivalence)

- (2) or Qﬁ' as an abstract Cx—algebra without reference to some particu-
lar realization as a norm-closed operater algebra on some Hilbert space.

Traditionally the choice made for the frame of quantum mecha-
nics is that of possibility (1). The pure states of the physical system
are described by the vectors of # . The "mixtures" are described by
density matrices, i.e, positive operators & on # with finite traces,

the expectation value of A € g%é in the state & ©being given by
d(A) = Tr { 34}

This frame obviously contains more structure than possibility (2) since

it needs not only the specification of the Cx—algebra ﬁ%ﬁ (as in (2) )
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but also the specification of its concrete realization on the Hilbert
space # (that is, of a certain faithful =% - representation of éﬂf
up to unitary equivalence) . Contrasting with the choice of (2) as a fra-
me for quantum mechanics implies that the specification of a special repre-
sentation is., physically irrelevant, all the physical information being
contained in the algebraic structure of the abstract algebra g%» alone,

In order to decide between (1) and (2) let us consider the abstract
C* -algebra gzé and two representations R and R, of QZ on Hilbert

1 2

spaces &, and &, (for generality, we do not take R, and R,

to be faithful or irreducible). What shall we require from R1 and R2
in order for them to be physically equivalent ? We want the results of
any finite set of measurements on a physical state to be equally well
describable in terms of a density matrix on %1Or6'density matrix on %2.
As measurements are never totally accurate the wording : equally well is
to be understoecd as : to any desired degree of accuracy. We are thus led
to the following statement

R and R' are physically equivalent if for any finite subset A1 )
A2,...An of §%~ , any positive operator with finite trace &, on %y
and any e>0 there should exist a positive operator with finite trace

@2 on %2 such that

lo, (a)-2,(a)) =l 8, Ry(A) Y ~Tr{ e, R, (&) [ <e
k=1,2,4een

and vice versa , This statement means that the respective sets of positi-

ve linear forms on the C° - algebra oL defined by the density matrices

Paasal

in the representations R and R2 should have the same closure as sub-

1
sets of the dual space 0[% of CZC equipped with its weak topology (with
" Py >V .
respect to ﬁ%& ) . This is the sitvatidn described by Fell as the "weak

equivalence" of the representations R1 and R2. Now Fell's "equivalence

theorem" asserts that R1 and R2 will be weakly equivalent (for us, phy-

sically equivalent) if and only if they have the same kernel i.e. if the

abstract elements of oL with zero representations are the same for R1

R % R



and R2. This is exactly the result needed to conclude our discussion in
favour of the choice of (2) for the frame of quantum mechanics : it shows
indeed that the physically relevant object is not a concrete relizations
of g%? but the algebra gZZ-itself since any two different concrete reali-
zations ( = faithful x-representations, or representations with zero ker-
nel) will be physically equivalent.

Haag's notion of "physical equivalence" as described above arose
in the course of a work on infra-particles [ 6 ]. Fell developped the
same notion, to which he gave the name of "weak equivalence", in [3].
Fell's "equivalence theorem" characterizing weak equivalence on a purely
algebraic way effects the passage from the discussion of physical equiva-
lence, to a purely algebraic frame for quantum mechanics.

In the case of irreducible representations R1 and R2 we could
have given the same argument replacing mixtures by pure states. (Fell's
equivalence theorem can namely be stated for irreducible representations
replacing density matrices by vectors of the corresponding spaces).

Note that if CI& is separable, which is natural to assume, the weak
topology of £§¥ i;m;etrizable on its unit ball. In that case the subs-
titute ¢2 in the R,.-description of a & in the R1—description can be

2 4
chosen out of a Cauchy sequence {@?n}

of density matrices on %2
converging weakly towards ¢1 . S0 one should not feel uncomfortable about
the fact that & 5> a priori depends on the set A, and on @1

The above discussion presents the algebraic frame (2) as resulting
from the traditional frame (1) through the recognition that all concrete
realization OfégZ‘ are physically equivalent. This might be approfriate in
brder to convincéﬂn supporters of frame (1) but is philoscphically unduly
short ranged. For a direct introduction of frame (2) based on an analysis
of the way in which physical states are prepared and monitored, we refer

to reference [1] .



§ 2 . The principle of locality. A purely algebraic approach

to field theory. Relation to superselection.

We now turn our attention to the quantum theory of coupled
fields. In order to provide a description of physics the general frame
discussed above must be substanciatedl by(i) a precise mathematical
specification of algebra §Z~(ii) a dictionary stating the meaning of
each element of gzé in terms of laboratory procedures. Both (i, and
(ii) are pro-ided to a certain extent by "Heag's " principle of locality"
first put forward iné[4] . This principle ¢.ates that it is meaningful
to consider measurements within localized regions and th;%ﬁﬁgésurements
correspond to the gelf zljointelements of a "local algebra"., In the
present frame this principle leads to the following axioms (which are
the transcription of Haag's Von Neumannring axioms to the (more. general)

*
C - algebra sétting

To each "region" B (i.e. open space-time demain with compact
. 4
closure) there corresponds uniquely a C -algebra QE(B) so that one

has

I) Isotony : B, € B, implies QE(B1) C CX(B2)

1 2 e
' »
As a result of this axion éw’CX(B) is an incomplete C -algebra whose
" At

completion we derote by (jZand call the algebra of quasi local obser-

Paas 2 04

vables.

1I) Local commutativity B B, (i.e. B, and B, lie space-like to each other)

1 1 2
implies that CM(B1)(: Cﬁ(Bz)' ( GQ(BQ)' denotes the commutant of CE(BZ)

. PRl
in OJL).
At

III)Lorentz invariance. The inhomogeneous connected Lorentz group 1is represen-

ted in the auvtomor . hism jroup of C)Zin such a way that

QUL B) = QUB)”



(L being a Lorentz transformation, L B is the region resulting from

B by applying L, Aegé@ AIE.(,:;being the automorphism of Q/« induced by
1)

These axioms give a partial answer to (i) and (ii). (ii) is
satisfied in_as much as all experiments on elementary particles ultima-
tel§e§%ltgeometric measurements (for instance it will be sufficient for
calculating cross sections - see [7] ). On the other hand it is hoped that
a structure theory of axioms I), II) and I1I) and possibly other axioms

to be added will give an answer to requirement (i).

0Of course one expects that the correspondance B——*Q}(B) will
have an extension to more general domainsthan bounded "regions" in a
way similar to what is done in measure theory. 4 problem of particular
interest is the following. Take two domains D1 and D2 space like to each
other (D1 and D, are or are not bounded regions).(\ﬂ:’(%) and %Dz) are
then expected to commute as an extension of property II). Letjé be . -the
sub C*—algebra Of,@g’ generated by {Z(D1) and Q{(Dz) Under which circums-.
tances is ;o(j the direct product of ;:C(D1) and {‘:\/_(Dz) in the sense of
Turumary [ 8] ? In particular does one have the property QL:Q(D)@Q(D')"
This would be possible even if ,LZLL(D) and ;Z,:(D’) do not give rise to
assoclated factors of type I in certain representations (for this we re-
fer to [9] ).A safer conjecture is that Q}(DT) and (Q,(D2 ) "combine
tensorially" when the causal shadows of D1 and D2 have disjoint clo-
sures s¢o that "contact effects" are excluded.

It is important to realize that the definition of Q’% excludes
from it the "global quantities" like the total energy, the to’tal charge
Ch

ete *+ Neither are the Lorentz automorphisms L ~¥ AL implementable
by elements of ngince a Lorentz transformation is a global operation
(in other words the Lorentz automorphisms are outer automorphims). The
distinction between local and global quantities is particularly striking
in connection with superselection rules. Let Rk be the "superselec-

tion S ectors" of standard field theory invariant under all operators



of the theory. The algebra ég: will have a %®-representation Rk on
each %k , the direct sum of which is the faithful representation
usually considered in field theory. A simple physical argument shows
that the representations Rk are all mutually physically equivalent

any density matrix on a given @ector can be simulated with arbitrary
accuracy by a density matrix in any other preassigned gector by adding
to the system which it describes some particles or antiparticles in a
remote portion of space-time so as to compensate appropriately the value
of the superselecting quantities. We thus come out with the conclusion
that all representations Rk are faithful, each of them taken separa-
tely being a complete description of physics. The direct sum of the Rk
has a umformly closed range since SZ% is a C*—algebra. It is important
to realige that it is not weakly closed and that i®® weak closure con-
tains the global operators : we know that we obtain the weak closure by
taking the double commutant. Now the Rk being irreducible and mutually
inequivalent the commutant of their sum consists in all bounded linear
combination of the projectors Pk on the %k . So the bicommutant
consists in the direct product of all full operator rings ( %k)

on the different %k: and so contains all the operators of the standard
theory - but it has no interesting algebraic structure.

Note that the algebra (f, in NGCR in the sense of Glinn [10] since
it has many irreducible non ézngalent faithful representations. According
to R.V.Kadison in [11] the set of those rocpresentations has then the power of
continuun. What singles out +the discreteset of "3apergeleoction sectors ?°. -
Perkats the reguireient that the Lorentz autonmorphisms should be

impleientable by unitaries on the representation spaces.



§ 3 - Cx-algebra formalism versus theory of local Von Neuman

algebras. We shall now briefly discuss the relation of the present
formalism to the theory of local Von Neumam algebras [&4] . [5] , [12]

( for brevity we refer to thosevformalisms respectively as the
Cx~theory and the W*—theory). The wx—theory was originally stated in
terms of a *-represecntation on a Hilbert space. However, nothing prevents
from considering the local Von Ncumannalgebras as abstract algebfas : the
axioms of the W -theory arc then obtained by replacing in axioms I),II),
IIT) above the local C*-algebras é%kB) by local Von Neumanmnalgebras
ﬁ?(B) (writing Von Neumam algebra for Cx—algebra wherever the word
5;;urs). Note that the theory thus obtained is, like the C*—theory )
purely algebraically defined since the strongest topology of a Von Neumn
algebra is determined by the algebraic structure alone (its continuous
linear forms being differences of normal positive forms). Consider a

f 3(5) = R 1\355 where

¥-representation R of the Cx—theory and put ';¥
the bar denotes the closure in the strongest toﬁgiogy of operators., If

R 1is such that the Lorentz automorphisms are continuous in the strongest
topology of operators, thcy can be extended to the CZ(B) which will

then fulfill the axioms of the w*—theory.ln s c;;; under what condi-~
tions will two =-representations R and R' of the Cx—theory thus lead
to *-representations of the same wx—theory ? If and only if for each re-
gion B the s-automorphism R( L (B)) <~ R'( QZ(B)) which they defi-
ne 1s extendable to x-automorphisms ﬁ??ﬁ:?%37 4v>§TG§Z(§77 (the bars
denote closures in the strongest topolog;gs respectivé;;'defined by R
and R'). This can be expressed by requiring that R and R' be locally

gquasi equivalent in the sense that their restriction to all local algebras

éﬁ;(B) be quasi equivalent in the scnse of Mackey. At the present stage
13

we do not yet understand the role played by local quasi equivalence in
field theory. A compariscn of the different supersclection sectors with

respect to charge in free fermion field theory under this angle would

be desirable 25 ~ first exploration in this connection.
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MATHEWATICAL  APPENDIX 1)

Preorder relation. A relation x o y between the elements of a

A
set;i‘_)c is called a preorder relation if
AAA

d) X < y end y '>< z implies x c><z for any x,y,z e\ﬁ

B) x0< X for all x E\YT// ’

Fa o’

Note that it is not required that the preordering be total , i.e. , that given

any two X,y € m they be preordered (that x >< y or y o< x).

Order relation. 4~ preorder relation o is called an order rela-

tion if one has the additional condition
¥) x ‘\ ¥s¥ye{x imply that x =y (that x and y be identical).

Given any preorder relation m{ on a set JR and defining x~ y
. ~ AN '
to mean that x > ¥ and y ”>< x one gets an equivalence relation called

the gguivalence associated with the preordering cn(. One sees immediately that

the preorder relation o< induces an order relation on the set!f7, of equiva=-
. n . INAA.

lenee classes of "V, modulo ~ . This is called the quotient ordering of the

[N

preordering f}( .

Join and Meet. Let {'( be an ordered set (a set equipped with an
. A AR, .
-order relatlon_'>< Y. One says that the element a € ){ is the Jjoin (meet)
N AN
of a subset X € I}, if
S o "8
1) x = 2 (ar\/x) for all xe¥%

ii) any b e WL with the same property (x o b (b o x) for all
AR

xe i) is smaller (greater) than o.

The condition y) implies the uniqueness of the join (meet) if it exists. The

Joint (meet) of Y e W are respectively denoteg by \/ x (/X X)e
L€ 00 ¥ e

P

1) The material contained in this appendix is borrowed from G.Birkhoff,Lattice
Theory Amer.Math.Soc.ColloguePub«Chap.I,IIT and IV and from the above quoted
article by J.d.G. Fell.We express Fell'sresults in a lattice theoretic language
and give some variants of his teorems udeful for our purposes.



They are sometimes called l.u.b.(gslcb.) of 3.

Lattice An ordered set n(’ 1s called a lattice if all its finite
—_—= yle == s .
subsets % have a joint and a meet in mf « If this is the case for all
A
subsets F without restriction \fﬁ is called a complete lattice.
Ar A AR

Lattice theoretic closure operation.Let M be an arbitrary set
and m be the collection of all the subsets of M. 3“161 is a complete lattice

e

for the ordering C defined by the inclusion of subsets, the joint (meet)

being the set-theoretic union (intersection). We now defirea lattice theoretic

glosure operatlon on \'75() to be the assigrment to each subset X C M of ano-

ther subset A C 1 VI Y called its (lathce theoretic ) closure, in such a wayf‘ndt

implies 4}51 C X2

1) XXy My X

2
2) XcX for each X C I

a&'f1 /VJ 2

3) X =X foreach XcCM

A subset X C M (element X e LJ:“"\( ) is said to be slosed if AX = -)Z . A)E cM
is closed if and only if 1t is the closure Y of some Y C M - The closed

subsets of }llv constitute a subcollection 11( of ’f ( ordered by C and it is

— A SV
not difficult to show that ..{L};, is a complete lattice with the following defi=-
i\
nition of Jjoins and meets :N

-..l__,______’_ A
X =& U ){ » //\\ X =

N
. M A s
PCAle S i LKL
leen the closure operation X -+ 2{”\ on (b Z , if we define the
relation }M@\ )\IM for A)&,X%C M, to reon that gg\g }'M (or equivelently .'2«(,\93;)
we get a preorder relation on m whe-e associated equivalence relation is
lz Y « The set of the correspoending equivalence classg s of \)}Z s equipped
with the quotient ordering of the preordering \ is then 1somorphlc (as a
eomplete latiice) with the above considered collection ﬂz of closed subsets
AAA
of I .

Examples of lattice theoretic closure operations : the linear w

or theconvexeclosure in » linear space ; the topologicalckosure in a topolo-~
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gical space. A standard way of generating a closure operation on ‘,7,(3 is to
Anny
start from a symmetric binary relation between the pamts of M (:/hich we
will write x¢>y ), define as the "polar' of a subset X C M the collection
- A P
of points of ;& which fulfil the relation <> with 2ll the points of 3‘(4 :

X' ={xe | x> ¥y for all ye/&(}

M
oy vl

Y~ /y1)tr - xn . s .
and put 3}1 = \;T\gu) -3& « Examples of physical interest :

a) Pake for }g‘ the Minkowski space of special relativity and for
x «> y the circumstance that x and y be space-like to ecach other. )5: is
then the region of ﬂl& lying space-like to the region }M and g’(‘:' is the "local

olosure" of X .
AN

b) Take for M a *-algebre (e+g+,0f operators) and define X as the
commutent of *he set X C 3‘@,\' X7 is the bicommutant of X . For the case of
a *=algebra ,fn\ of Lunded linear operators on a Hildert space containing the -
unit, the closure cperation 3«(.\ > é\" i3 the same as the topological e¢losure in
the weak opervator topology. The parallelism of examples a) and b) is one of
the appealing features of the local=ring approach to field theory.

The preceding method for generating closure operations on M,

can be somewh~t generalized by .considering a binary relation x <> ¢ between

the x ¢ Mand the element: ¢ of some other set ’1‘\;“. The repective "polars"

»*
of the subsets X c M and ® ¢ N are defined as the subsets X < N and
+ y bm ~pe AN “a, At B

d C M i b
3 n\lr\ ilve“} N

X:{me NI X > for all x € X

AN ’ . AN

§>+={ z € Ml X & ferall ¢ € &

P N ~¥

Jne sasily sees that X cC X, and & C imply respectively

* 5" that f“ﬁ?d(x*)*)* | Y st e bit
A}‘gﬂ(_"M and ’i,,claanduha one has ({X = >((2,,*+ —21 or arbitra-
ry XCM, &< N . It results that the operation X - Q‘(w) consisting of
ot o T oan A
taking the bipslar of 3&\ Ci‘i\is a lattice theoretic closure operation on W, .

*

ACAA
Example : let AI'\L\ be a Banach space,ﬂl}‘&\ its topological dual space and define

x <> ¢ to mean

ce o(x) < 1



It is ¢ well known theorem of Mackey that (g:)+ coincides with the topolo-
gical closure in the weak topology of g&(with respect to ;E) of the convex
hull of zﬁj {0} . This result is at the origin of the eguivalence theorenm

discussed in the next .scetior., on which hinges the notion of physical equi~

¥alence of representations.

weok eontiinment ond we~k caquivnlence of repredcntoticns,

- *
Let Ll‘ be a C =algebra with or without unit and let us denote
SO
by Rep('CL) the collection of 211 its (continuous *) representations. We
PN - o
shall define on the subsets of Rep((l,) (the sets of representations of Cl, )

AN ALA
a preorder relation characterizing their being altogether more or less faith-

ful. Let us first, for a single representation S Of.gkx’ denote by #(S) its
representation space, by Ker(S) 1its kernel (i.e.,the set of all elements of
El\with vanishing representatives in S ) and by AgiS) the colleotion of all
expectation values Ly for all the vectors ¥ € #(S) (considered as positive

g o
linear forms on bi ,thus elements of the dual space (L, of U, ). Next,
DX

. - AnS o
considering a set d € Rep(tg,) of representations of (i, , we define its

o ~AAA
kernel and denote by Ker(4) the intersection of the kernels of all S € J

o

and call hull of its kernel and denote HK(J) the set of all representatlons
of LL whose kernels contain Ker(4). Thus Ker(d) is the set of elements of

A2, Anl

(L with vanishing representatives in all 8 € 4 and HK(J) is the set of

ARM
representationrs of

ﬁf, which send to zero all elements of(¢é sent to zero by a

all S e 4. It is ea511y verified that Kerng coincides w1th the kernel (in
AN
the usual sense) of the representation Ze S direct sum of all S eﬁf\
Sed
Asa,
and that the operation ¢ -~ HK(Ji) is a lattice~theoretic closure operation
on the subsets of Rep( ) as deseribed above - ., Consequently we get

a preorder relatlon on those subsets by setting the

Definition Given two sets of representations g, Q;e Rep(@%;) we
“\ren « o N
£ail xﬁ\ weakly contained inm ji. and write ’éA:<fAE if HKgé)g HK SE?.;Q
and T are said to be weakly or physically eguivalent if HK(J) = HK§§25

b’\lw

It should be obv1ous that requlrlng J - HK(t) , Or

Ker(d) 2 KerCC), or Ker( 22 8) _ Ker A give alternatlve definitions of
A Seé = ngg



W

the relation 4 OC T, This relation moans that the elements of (L with vae
nishing repregentatives in 21l representations Te SJW have a fortiori vanie
shing representativms in all representations S ei. We can thus express it
by saying that taken all together the representations of j\ are less faithe
ful $han those of T =-- er thot %is better separated by the T e T then
by the S G:fa in the sense of the separation of its elements by their «alues
in some representations.:

Note that if zf resp.e s each consists of one single »epresenw
tation S, resp.T , 4 X T sunply means Ker(S) = Ker(T),i.Es,that S
is less faithful than T. In this case we write S o4 T, o< being now a preor=
dering of the (single) representations.

New let us shif't our attention from the representations
S e Rep( Ct,) to the corresponding subsets w(S) ef (1’ For an arbitrary
subset X € O(, we denote by weorr{ X} (resp. 1im { }) the closure in
the weak topology of a, of the conv?x hull (recp mmé linear hull) of p3
It is immediate that x > mx} end Y+ lim (Y] define 1attloedtheoretle
closures of the subsets of a/ « Fellls g_q_tvalence theorem of which we

will quote several variants dlsplays a parallelism between those closure opere
P
tions performed on the subsets w(S) of the dual (L of (Xand the hull=
[ % AN A

kernel closure operation mentioned before. Precisely one has the

Theorem 1 + For ang two sets ef ‘C of representations of a,the following are
gquivalent (we recall that Z and Z denote,respectively the unif ball and

Wi
the unit sphere of Q,)
a) a’<><=c7
B) for eaeh Sed w(8) - 11m{ 9, m(T)}
AN As T cc- L)
an

y) for each S ¢ e w(S) < oonvI U w(T)j

§) for each S ¢ 4 ﬁ(s)(]i - conngezﬁ(T) ﬂﬂa}

#) for each S e 4 w(S){)g - conv { U w(T)ﬂg}
ren b A = Te;g‘ M
( -
8") Tim | U m(s)} CTmIU om}
< Sefil AN = [kE A //
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5') coanU w(S)nZ} conv

The equivalence of the primed and unprimed statements results
from property 3) of the closure operations conv , lim. The primed state~
ments manifestly define a preordering. To show the egquivalence of a),

p),y),&) one can first reduce them to the case of the single representations

S1 =§:® S and ’.I‘1 = Z@ Tyviz :
Sed Te

a,'-) S1Q<T1 or Ker(S1) 2 Ker(T1)
B,) w(s,) & Lim {w(7,)]

vy) w(s,) < conviw(T,)}

“w

51) ﬁ(s1)ﬂ§_ ¢ conv {fc&(’l‘,l) O ozl

(note that conv { U w(8)Ngl= conv fw(" £ s)n o, w(z ®5s) being even
Sed, Sed Sed
o

eontdined in the uniform closure of the convex hull of the .oi(S)). The :Z=-version
of Theorem 1 (statementse ) and #')) on the other hand results from the fact
¥het if X is o cone in g:z y € z-ﬁ}__{: and (peg_ imply ¢ € iﬂ (Ig_. Finally the
equivalence of oc,')»... 51) » using the fact that the range of the representation

fI.’1 is itself a representation, reduces to the basic:

Theorems For a concrete C -algebra R of operators on a Hllbert 3pace
the convex hull of w(R) (resp. w(R)N 2) is dense in R ¥ (respe ™ n E). This
theorem directly results by applyimg Mackey's theorem mentionned at the end
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paragraph
of the 128t/ to the subset X = w(R)ﬂ g of R equlpped with the weak

R-topology (the blpolar of X is easily seen to be R nz ) and notlng that
for any cone KCCL ,Z N econv i}i }= conv{ZnK} and E N conv YKZ =conv{ 2 nK i

The general equivalence theorem discussed so far is, from the
physical point of view, a result on density matrices. The following speciali=-

zations apply directly to state vectors :

Theorem 2.- Let S € Rep((l) be cyeclic with cyclie vector ¥ and let
T CRep (({)+S X% (i.es, the set consisting of the single representation S
is weakly contained inT) if and only if

w, € conv (U o(™  (or Tim §L&£(T)})
= Teg TeT

This theorem results from Theorem - 1 and the two folloW1ng facts : the set .

convi (u) () 1 is invarient by the multiplications t (those being the trans-

posed é%f the left multiplications t, in CZ. t,B = AB) and the set of all

tA@ , Ac Ct is uniformly (so weakly) dense in w(T)

For irreducible representations, for which all veectors are cyclie

we have the further specializations

Theorem 3. Let S and the T eE: be irreducible representations of é;,sn<:§;

is equivalent to

Q o=
oSN ¢ oT)n I
T TeT

o
This theorem is a consequence of the faect that any weakly closed subset of 32

¢ontains its external points.
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Let us call athe set of equivalence classes of irmreducible
representations. On che HK lattice-theoretic closure operation is a topolo=
Ao

gical closure. The two following results of Fell are of physical interest :

Theorem k. For anyd e Rep((l) there exist e unique closed subset of (L
which is weakly equivalent tod « It consists of all T €Rep(g_,) such that

T&io

’ t
Theorem b, It S = Ee S(t) is a direct integral of representations S( ) of (L,

defined topologieally, S is weakly equivalent to the set of all S(t) .



