Extremal and additive processes generated by Pareto distributed random vectors
ESAIM: Probability and Statistics, Tome 18 (2014) , pp. 667-685.

Pareto distributions are most popular for modeling heavy tailed data. Here, we obtain weak limits of a sequence of extremal and a sequence of additive processes constructed by a series of Bernoulli point processes with bivariate Pareto space components. For the limiting processes we derive the one dimensional distributions in explicit forms. Some of the main properties of these distributions are also proved.

DOI : https://doi.org/10.1051/ps/2014001
Classification : 62E20
Mots clés : additive process, extremal process, limit theorems, pareto distribution
@article{PS_2014__18__667_0,
     author = {Mitov, Kosto V. and Nadarajah, Saralees},
     title = {Extremal and additive processes generated by Pareto distributed random vectors},
     journal = {ESAIM: Probability and Statistics},
     pages = {667--685},
     publisher = {EDP-Sciences},
     volume = {18},
     year = {2014},
     doi = {10.1051/ps/2014001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2014001/}
}
Mitov, Kosto V.; Nadarajah, Saralees. Extremal and additive processes generated by Pareto distributed random vectors. ESAIM: Probability and Statistics, Tome 18 (2014) , pp. 667-685. doi : 10.1051/ps/2014001. http://www.numdam.org/articles/10.1051/ps/2014001/

[1] B.C. Arnold and S.J. Press, Bayesian-inference for Pareto populations. J. Econom. 21 (1983) 287-306. | MR 699225 | Zbl 0503.62027

[2] A. Balkema and E. Pancheva, Decomposition of multivariate extremal processes. Commun. Stat Theory Methods 25 (1996) 737-758. | MR 1380616 | Zbl 0875.60010

[3] V. Barnett, Some outlier tests for multivariate samples. South African Stat. J. 13 (1979) 29-52. | Zbl 0407.62032

[4] N. Bingham, C. Goldie and J. Teugels, Regular Variation. Cambridge University Press, Cambridge (1987). | MR 898871 | Zbl 0667.26003

[5] E. Bouyé, Multivariate extremes at work for portfolio risk measurement. Finance 23 (2002) 125-144.

[6] A.C. Cebrián, M. Denuit and P. Lambert, Analysis of bivariate tail dependence using extreme value copulas: An application to the SOA medical large claims database. Belgian Actuarial Bull. 3 (2003) 33-41.

[7] S.G. Coles and J.A. Tawn, Statistical methods for multivariate extremes: An application to structural design (with discussion). J. Appl. Stat. 43 (1994) 1-48. | Zbl 0825.62717

[8] S. Demarta and A.J. Mcneil, The t copula and related copulas. Int. Stat. Rev. 73 (2005) 111-129. | Zbl 1104.62060

[9] A. Dias and P. Embrechts, Dynamic copula models for multivariate high-frequency data in finance. Working Paper, ETH Zurich (2003).

[10] P. Embrechts and M. Maejima, Self-similar Processes. Princeton University Press, Princeton (2002). | Zbl 1008.60003

[11] S. Eryilmaz and F. Iscioglu, Reliability evaluation for a multi-state system under stress-strength setup. Commun. Stat. Theory Methods 40 (2011) 547-558. | MR 2765847 | Zbl 1208.62156

[12] L. Fawcett and D. Walshaw, Markov chain models for extreme wind speeds. Environmetrics 17 (2006) 795-809. | MR 2297626

[13] J. Galambos, Order statistics of samples from multivariate distributions. J. Amer. Stat. Assoc. 70 (1975) 674-680. | MR 405714 | Zbl 0315.62022

[14] A. Ghorbel and A. Trabelsi, Measure of financial risk using conditional extreme value copulas with EVT margins. J. Risk 11 (2009) 51-85.

[15] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 7th edition. Academic Press, San Diego (2007). | MR 2360010 | Zbl 0918.65001

[16] W. Hürlimann, Fitting bivariate cumulative returns with copulas. Comput. Stat. Data Anal. 45 (2004) 355-372. | MR 2045637

[17] J. Hüsler and R.-D. Reiss, Maxima of normal random vectors: Between independence and complete dependence. Stat. Probab. Lett. 7 (1989) 283-286. | MR 980699 | Zbl 0679.62038

[18] T.P. Hutchinson, Latent structure models applied to the joint distribution of drivers' injuries in road accidents. Stat. Neerlandica 31 (1977) 105-111.

[19] Hutchinson, T.P. and Satterthwaite, S.P. (1977). Mathematical-models for describing clustering of sociopathy and hysteria in families. British J. Psychiatry 130 294-297.

[20] D. Jansen, and C. De Vries, On the frequency of large stock market returns: Putting booms and busts into perspective. Rev. Econ. Stat. 23 (1991) 18-24.

[21] S. Jäschke, Estimation of risk measures in energy portfolios using modern copula techniques. Discussion Paper No. 43, Dortmund (2012).

[22] H. Joe, and H. Li, Tail risk of multivariate regular variation. Methodology Comput. Appl. Probab. 13 (2011) 671-693. | MR 2851832 | Zbl 1239.62060

[23] H. Joe, R.L. Smith and I. Weissman, Bivariate threshold methods for extremes. J. R. Stat. Soc. B 54 (1992) 171-183. | MR 1157718 | Zbl 0775.62083

[24] R.B. Langrin, Measuring extreme cross-market dependence for risk management: The case of Jamaican equity and foreign exchange markets. Financial Stability Department, Research and Economic Program. Division, Bank of Jamaica (2004).

[25] L. Lescourret and C. Robert, Estimating the probability of two dependent catastrophic events. ASTIN Colloquium. International Acturial Association, Brussels, Belgium (2004).

[26] L. Lescourret, and C.Y. Robert, Extreme dependence of multivariate catastrophic losses. Scandinavian Actuarial J. (2006) 203-225. | MR 2267262 | Zbl 1151.91058

[27] K.-G. Lim, Global financial risks, CVaR and contagion management. J. Business Policy Res. 7 (2012) 115-130.

[28] D.V. Lindley and N.D. Singpurwalla, Multivariate distributions for the life lengths of components of a system sharing a common environment. J. Appl. Probab. 23 (1986) 418-431. | MR 839996 | Zbl 0603.60084

[29] X. Luo and P.V. Shevchenkoa, The t copula with multiple parameters of degrees of freedom: Bivariate characteristics and application to risk management. Quant. Finance 10 (2010) 1039-1054. | MR 2738826 | Zbl 1210.91060

[30] M. Ma, S. Song, L. Ren, S. Jiang and J. Song, Multivariate drought characteristics using trivariate Gaussian and Student t copulas. Hydrological Proc. 27 (2013) 1175-1190.

[31] K.V. Mardia, Multivariate Pareto distributions. Ann. Math. Stat. 33 (1962) 1008-1015. | MR 150885 | Zbl 0109.13303

[32] M.F. Mcgrath, D. Gross and N.D. Singpurwalla, A subjective Bayesian approach to the theory of queues I Modeling. Queueing Systems 1 (1987) 317-333. | MR 899679 | Zbl 0651.60098

[33] M.M. Meerschaert, and E. Scalas, Coupled continuous time random walks in finance. Phys. A: Stat. Mech. Appl. 370 (2006) 114-118. | MR 2263769

[34] M.M. Meerschaert and H.-P. Scheffler, Limit Distributions for Sums of Independent Random Vectors: Heavy Tails Theory Practice. Wiley, New York (2001). | MR 1840531 | Zbl 0990.60003

[35] M.M. Meerschaert and H.-P. Scheffler, Portfolio modeling with heavy tailed random vectors, in Handbook of Heavy-Tailed Distributions in Finance, edited by S.T. Rachev. Elsevier, New York (2003) 595-640.

[36] B.V.M. Mendes and A.R. Moretti, Improving financial risk assessment through dependency. Stat. Model. 2 (2002) 103-122. | MR 1920753 | Zbl 0999.62086

[37] I. Mitov, S. Rachev and F. Fabozzi, Approximation of aggregate and extremal losses within the very heavy tails framework. Technical Report, University of Karlsrhue, University of California, Santa Barbara, submitted to Quant. Finance (2008). | MR 2739092 | Zbl 1201.91233

[38] M. Mohsin, G. Spöck and J. Pilz, On the performance of a new bivariate pseudo Pareto distribution with application to drought data. Stochastic Environmental Research and Risk Assessment 26 (2011) 925-945.

[39] M. Motamedi and R.Y. Liang, Probabilistic landslide hazard assessment using Copula modeling technique. Landslides 11 (2013) 565-573.

[40] A. Nazemi and A. Elshorbagy, Application of copula modelling to the performance assessment of reconstructed watersheds. Stochastic Environmental Research and Risk Assessment 26 (2013) 189-205.

[41] M.W. Ng and H.K. Lo, Regional air quality conformity in transportation networks with stochastic dependencies: A theoretical copula-based model. Networks and Spatial Economics 13 (2013) 373-397. | MR 3133856

[42] E. Pancheva and P. Jordanova, A functional extremal criterion. J. Math. Sci. 121 (2004) 2636-2644. | MR 2089020 | Zbl 1074.60056

[43] E. Pancheva and P. Jordanova, Functional transfer theorems for maxima of iid random variables. C. R. Acad. Bulgare Sci. 57 (2004b) 9-14. | MR 2102438 | Zbl 1059.60066

[44] E. Pancheva, E. Kolkovska and P. Jordanova, Random time-changed extremal processes. Theory Probab. Appl. 51 (2006) 752-772. | MR 2338065 | Zbl 1135.60030

[45] E. Pancheva, I. Mitov and Z. Volkovich, Sum and extremal processes over explosion area. C. R. Acad. Bulgare Sci. 59 (2006) 19-26. | MR 2296257 | Zbl 1120.60050

[46] E. Pancheva, I. Mitov and Z. Volkovich, Relationship between extremal and sum processes generated by the same point process. Serdika 35 (2009) 169-194. | MR 2567482 | Zbl 1224.60106

[47] E.N. Papadakis and E.G. Tsionas, Multivariate Pareto distributions: Inference and financial applications. Commun. Stat. Theory Methods 39 (2010) 1013-1025. | MR 2745357 | Zbl 1189.91228

[48] J. Pickands, Multivariate extreme value distributions (with a discussion). In: Proc. of the 43rd Session of the International Statistical Institute, Bull. Int. Stat. Institute 49 (1981) 859-878, 894-902. | MR 820979 | Zbl 0518.62045

[49] A.P. Prudnikov, Y.A. Brychkov and O.I. Marichev, Integrals and Series, vols. 1, 2 and 3. Gordon and Breach Science Publishers, Amsterdam (1986). | MR 874986 | Zbl 0733.00004

[50] S. Rachev and S. Mittnik, Stable Paretian Models in Finance. Wiley, Chichester (2000). | Zbl 0972.91060

[51] J.F. Rosco and H. Joe, Measures of tail asymmetry for bivariate copulas. Stat. Papers 54 (2013) 709-726. | MR 3072896

[52] J.A. Tawn, Bivariate extreme value theory: Models and estimation. Biometrika 75 (1988) 397-415. | MR 967580 | Zbl 0653.62045

[53] T. Tokarczyk and W. Jakubowsk, Temporal and spatial variability of drought in mountain catchments of the Nysa Klodzka basin. In: Climate Variability and Change - Hydrological Impacts, vol 308, Proc. of 15th FRIEND world conference held at Havana. Edited by S. Demuth, A. Gustard, E. Planos, F. Scatena and E. Servat. 308 (2006) 139-144.

[54] X. Yang, E.W. Frees and Z. Zhang, A generalized beta copula with applications in modeling multivariate long-tailed data. Insurance: Math. Econ. 49 (2011) 265-284. | MR 2811994 | Zbl 1218.62049

[55] M.A. Youngren, Dependence in target element detections induced by the environment. Naval Research Logistics 38 (1991) 567-577. | Zbl 0729.90534

[56] S. Yue, The Gumbel mixed model applied to storm frequency analysis. Water Resources Management 14 (2000) 377-389.

[57] Q. Zhang, V.P. Singh, J. Lia, F. Jiang and Y. Bai, Spatio-temporal variations of precipitation extremes in Xinjiang, China. J. Hydrology 434-435 (2012) 7-18.