On dependence structure of copula-based Markov chains
ESAIM: Probability and Statistics, Tome 18 (2014) , pp. 570-583.

We consider dependence coefficients for stationary Markov chains. We emphasize on some equivalencies for reversible Markov chains. We improve some known results and provide a necessary condition for Markov chains based on Archimedean copulas to be exponential ρ-mixing. We analyse the example of the Mardia and Frechet copula families using small sets.

DOI : https://doi.org/10.1051/ps/2013052
Classification : 60J20,  60J35,  37A30
Mots clés : Markov chains, copula, mixing, reversible processes, ergodicity, small sets
@article{PS_2014__18__570_0,
     author = {Longla, Martial},
     title = {On dependence structure of copula-based Markov chains},
     journal = {ESAIM: Probability and Statistics},
     pages = {570--583},
     publisher = {EDP-Sciences},
     volume = {18},
     year = {2014},
     doi = {10.1051/ps/2013052},
     zbl = {1308.60087},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2013052/}
}
Longla, Martial. On dependence structure of copula-based Markov chains. ESAIM: Probability and Statistics, Tome 18 (2014) , pp. 570-583. doi : 10.1051/ps/2013052. http://www.numdam.org/articles/10.1051/ps/2013052/

[1] B.K. Beare, Archimedean copulas and temporal dependence. Econ. Theory 28 (2012) 1165-1185. | MR 2998469 | Zbl 1281.62143

[2] B.K. Beare, Copulas and Temporal Dependence. Econometrica 78 (2010) 395-410. | MR 2642867 | Zbl 1202.91271

[3] R.C. Bradley, Introduction to strong mixing conditions. Vol. 1, 2. Kendrick press (2007). | MR 2325294 | Zbl 1134.60004

[4] K. Chan and H. Tong, Chaos: A Statistical Perspective. Springer, New York (2001). | MR 1851668 | Zbl 0977.62002

[5] P. Doukhan, P. Massart and E. Rio, The functional central limit theorem for strongly mixing processes. Ann. Inst. Henri Poincaré, Section B, Tome 30 (1994) 63-82. | Numdam | MR 1262892 | Zbl 0790.60037

[6] M. Longla and M. Peligrad, Some Aspects of Modeling Dependence in Copula-based Markov chains. J. Multiv. Anal. 111 (2012) 234-240. | MR 2944418 | Zbl 1301.60089

[7] M. Longla, Remarks on the speed of convergence of mixing coefficients and applications. Stat. Probab. Lett. 82 (2013) 2439-2445. | MR 3093836

[8] R.B. Nelsen, An introduction to copulas. 2nd edition. Springer, New York (2006). | MR 2197664 | Zbl 0909.62052