Multiscale Piecewise Deterministic Markov Process in infinite dimension: central limit theorem and Langevin approximation
ESAIM: Probability and Statistics, Tome 18 (2014), pp. 541-569.

In [A. Genadot and M. Thieullen, Averaging for a fully coupled piecewise-deterministic markov process in infinite dimensions. Adv. Appl. Probab. 44 (2012) 749-773], the authors addressed the question of averaging for a slow-fast Piecewise Deterministic Markov Process (PDMP) in infinite dimensions. In the present paper, we carry on and complete this work by the mathematical analysis of the fluctuations of the slow-fast system around the averaged limit. A central limit theorem is derived and the associated Langevin approximation is considered. The motivation for this work is the study of stochastic conductance based neuron models which describe the propagation of an action potential along a nerve fiber.

DOI : 10.1051/ps/2013051
Classification : 60B12, 60J75, 35K57
Mots clés : piecewise deterministic Markov process, averaging principle, neuron model
@article{PS_2014__18__541_0,
     author = {Genadot, A. and Thieullen, M.},
     title = {Multiscale {Piecewise} {Deterministic} {Markov} {Process} in infinite dimension: central limit theorem and {Langevin} approximation},
     journal = {ESAIM: Probability and Statistics},
     pages = {541--569},
     publisher = {EDP-Sciences},
     volume = {18},
     year = {2014},
     doi = {10.1051/ps/2013051},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2013051/}
}
TY  - JOUR
AU  - Genadot, A.
AU  - Thieullen, M.
TI  - Multiscale Piecewise Deterministic Markov Process in infinite dimension: central limit theorem and Langevin approximation
JO  - ESAIM: Probability and Statistics
PY  - 2014
SP  - 541
EP  - 569
VL  - 18
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2013051/
DO  - 10.1051/ps/2013051
LA  - en
ID  - PS_2014__18__541_0
ER  - 
%0 Journal Article
%A Genadot, A.
%A Thieullen, M.
%T Multiscale Piecewise Deterministic Markov Process in infinite dimension: central limit theorem and Langevin approximation
%J ESAIM: Probability and Statistics
%D 2014
%P 541-569
%V 18
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2013051/
%R 10.1051/ps/2013051
%G en
%F PS_2014__18__541_0
Genadot, A.; Thieullen, M. Multiscale Piecewise Deterministic Markov Process in infinite dimension: central limit theorem and Langevin approximation. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 541-569. doi : 10.1051/ps/2013051. http://www.numdam.org/articles/10.1051/ps/2013051/

[1] T. Austin, The emergence of the deterministic hodgkin-huxley equations as a limit from the underlying stochastic ion-channel mechanism. Ann. Appl. Probab. 18 (2008) 1279-1325. | MR | Zbl

[2] R. Azaïs, A recursive nonparametric estimator for the transition kernel of a piecewise-deterministic Markov process, preprint arXiv:1211.5579 (2012).

[3] M. Benaïm, S. Le Borgne, F. Malrieu and P.-A. Zitt, Qualitative properties of certain piecewise deterministic markov processes, preprint arXiv:1204.4143 (2012). | MR

[4] M. Benaïm, S. Le Borgne, F. Malrieu and P.-A. Zitt, Quantitative ergodicity for some switched dynamical systems. Electron. Commun. Probab. 17 (2012) 1-14. | MR

[5] N. Berglund and B. Gentz, Noise-induced phenomena in slow-fast dynamical systems: a sample-paths approach, vol. 246. Springer Berlin (2006). | MR | Zbl

[6] A. Brandejsky, B. De Saporta and F. Dufour, Numerical methods for the exit time of a piecewise-deterministic markov process. Adv. Appl. Probab. 44 (2012) 196-225. | MR | Zbl

[7] C.-E. Bréhier, Strong and weak order in averaging for spdes. Stochastic Processes Appl. (2012). | MR | Zbl

[8] E. Buckwar and M.G. Riedler, An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution. J. Math. Biol. 63 (2001) 1051-1093. | MR | Zbl

[9] S. Cerrai and M. Freidlin, Averaging principle for a class of stochastic reaction-diffusion equations. Probab. Theory Relat. Fields 144 (2009) 137-177. | MR | Zbl

[10] O. Costa and F. Dufour, Singular perturbation for the discounted continuous control of piecewise deterministic markov processes. Appl. Math. Optim. 63 (2011) 357-384. | MR | Zbl

[11] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Cambridge University Press (2008). | MR | Zbl

[12] M.H. Davis. Piecewise-deterministic markov processes: A general class of non-diffusion stochastic models. J. Roy. Statist. Soc. Ser. B (Methodological) (1984) 353-388. | MR | Zbl

[13] M.H. Davis, Markov Models & Optimization, vol. 49. Chapman & Hall/CRC (1993). | MR | Zbl

[14] M. Doumic, M. Hoffmann, N. Krell and L. Robert, Statistical estimation of a growth-fragmentation model observed on a genealogical tree, preprint arXiv:1210.3240 (2012).

[15] S. Ethier and T. Kurtz, Markov processes. characterization and convergence, vol. 9. John Willey and Sons, New York (1986). | MR | Zbl

[16] A. Faggionato, D. Gabrielli and M.R. Crivellari, Averaging and large deviation principles for fully-coupled piecewise deterministic markov processes and applications to molecular motors, preprint arXiv:0808.1910 (2008). | MR | Zbl

[17] A. Genadot and M. Thieullen, Averaging for a fully coupled piecewise-deterministic markov process in infinite dimensions. Adv. Appl. Probab. 44 (2012) 749-773. | MR | Zbl

[18] D. Goreac, Viability, invariance and reachability for controlled piecewise deterministic markov processes associated to gene networks, preprint arXiv:1002.2242 (2010). | Numdam | MR

[19] E. Hausenblas and J. Seidler, Stochastic convolutions driven by martingales: Maximal inequalities and exponential integrability. Stochastic Anal. Appl. 26 (2007) 98-119. | MR | Zbl

[20] D. Henry, Geometric theory of semilinear parabolic equations, vol. 840. Springer-Verlag Berlin (1981). | MR | Zbl

[21] B. Hille, Ionic channels of excitable membranes. Sinauer associates Sunderland, MA (2001).

[22] M. Jacobsen, Point process theory and applications: marked point and piecewise deterministic processes. Birkhauser Boston (2006). | MR | Zbl

[23] A. Lopker and Z. Palmowski, On time reversal of piecewise deterministic markov processes. Electron. J. Probab. 18 (2013) 1-29. | MR | Zbl

[24] M. Métivier, Convergence faible et principe d'invariance pour des martingales à valeurs dans des espaces de sobolev. In Ann. Inst. Henri Poincaré, Probab. Stat., vol. 20. Elsevier (1984) 329-348. | Numdam | MR | Zbl

[25] C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35 (1981) 193-213.

[26] K. Pakdaman, M. Thieullen and G. Wainrib, Asymptotic expansion and central limit theorem for multiscale piecewise-deterministic markov processes. Stochastic Proc. Appl. (2012). | MR | Zbl

[27] G.A. Pavliotis and A.M. Stuart, Multiscale methods: averaging and homogenization, vol. 53. Springer Science (2008). | MR | Zbl

[28] M.G. Riedler, Spatio-temporal stochastic hybrid models of biological excitable membranes. Ph.D. thesis, Heriot-Watt University (2011).

[29] M.G. Riedler, Almost sure convergence of numerical approximations for piecewise deterministic markov processes. J. Comput. Appl. Math. (2012). | MR | Zbl

[30] M.G. Riedler and E. Buckwar, Laws of large numbers and langevin approximations for stochastic neural field equations. J. Math. Neurosci. (JMN) 3 (2013) 1-54. | MR | Zbl

[31] M.G. Riedler, M. Thieullen and G. Wainrib, Limit theorems for infinite-dimensional piecewise deterministic markov processes. applications to stochastic excitable membrane models, preprint arXiv:1112.4069 (2011). | MR | Zbl

[32] M. Tyran-Kamińska, Substochastic semigroups and densities of piecewise deterministic markov processes. J. Math. Anal. Appl. 357 (2009) 385-402. | MR | Zbl

[33] G. Wainrib, Randomness in neurons: a multiscale probabilistic analysis. Ph.D. thesis, Ecole Polytechnique (2010).

[34] W. Wang, A. Roberts and J. Duan, Large deviations for slow-fast stochastic partial differential equations, preprint arXiv:1001.4826 (2010). | Zbl

[35] W. Wang and A.J. Roberts, Average and deviation for slow-fast stochastic partial differential equations. J. Differ. Equ. (2012). | Zbl

[36] G. G. Yin and Q. Zhang, Continuous-time Markov chains and applications, vol. 37. Springer (2013). | MR | Zbl

[37] G.G. Yin and C. Zhu, Hybrid switching diffusions: properties and applications, vol. 63. Springer (2010). | MR | Zbl

Cité par Sources :