From almost sure local regularity to almost sure Hausdorff dimension for gaussian fields
ESAIM: Probability and Statistics, Tome 18 (2014) , pp. 418-440.

Fine regularity of stochastic processes is usually measured in a local way by local Hölder exponents and in a global way by fractal dimensions. In the case of multiparameter Gaussian random fields, Adler proved that these two concepts are connected under the assumption of increment stationarity property. The aim of this paper is to consider the case of Gaussian fields without any stationarity condition. More precisely, we prove that almost surely the Hausdorff dimensions of the range and the graph in any ball B(t0) are bounded from above using the local Hölder exponent at t0. We define the deterministic local sub-exponent of Gaussian processes, which allows to obtain an almost sure lower bound for these dimensions. Moreover, the Hausdorff dimensions of the sample path on an open interval are controlled almost surely by the minimum of the local exponents. Then, we apply these generic results to the cases of the set-indexed fractional Brownian motion on RN, the multifractional Brownian motion whose regularity function H is irregular and the generalized Weierstrass function, whose Hausdorff dimensions were unknown so far.

DOI : https://doi.org/10.1051/ps/2013044
Classification : 60G15,  60G17,  60G10,  60G22,  60G60
Mots clés : gaussian processes, Hausdorff dimension, (multi)fractional brownian motion, multiparameter processes, hölder regularity, stationarity
@article{PS_2014__18__418_0,
     author = {Herbin, Erick and Arras, Benjamin and Barruel, Geoffroy},
     title = {From almost sure local regularity to almost sure Hausdorff dimension for gaussian fields},
     journal = {ESAIM: Probability and Statistics},
     pages = {418--440},
     publisher = {EDP-Sciences},
     volume = {18},
     year = {2014},
     doi = {10.1051/ps/2013044},
     mrnumber = {3333997},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2013044/}
}
Herbin, Erick; Arras, Benjamin; Barruel, Geoffroy. From almost sure local regularity to almost sure Hausdorff dimension for gaussian fields. ESAIM: Probability and Statistics, Tome 18 (2014) , pp. 418-440. doi : 10.1051/ps/2013044. http://www.numdam.org/articles/10.1051/ps/2013044/

[1] R.J. Adler, Hausdorff Dimension and Gaussian fields. Ann. Probab. 5 (1977) 145-151. | MR 426123 | Zbl 0366.60050

[2] R.J. Adler and J.E. Taylor, Random Fields and Geometry. Springer (2007). | MR 2319516 | Zbl 1149.60003

[3] A. Ayache and J. Lévy Véhel, Processus à régularité locale prescrite. C.R. Acad. Sci. Paris, Ser. I 333 (2001) 233-238. | MR 1851631 | Zbl 0988.60028

[4] A. Ayache, N.-R. Shieh and Y. Xiao, Multiparameter multifractional brownian motion: local nondeterminism and joint continuity of the local times. Ann. Inst. H. Poincaré Probab. Statist (2011). | Numdam | MR 2884223 | Zbl 1268.60048

[5] A. Ayache and Y. Xiao, Asymptotic Properties and Hausdorff Dimensions of Fractional Brownian Sheets. J. Fourier Anal. Appl. 11 (2005) 407-439. | MR 2169474 | Zbl 1088.60033

[6] D. Baraka, T. Mountford and Y. Xiao, Hölder properties of local times for fractional Brownian motions. Metrika 69 (2009) 125-152. | MR 2481918

[7] A. Benassi, S. Cohen and J. Istas, Local self-similarity and the Hausdorff dimension. C.R. Acad. Sci. Paris, Ser. I 336 (2003) 267-272. | MR 1968271 | Zbl 1023.60043

[8] A. Benassi, S. Jaffard and D. Roux, Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 (1997) 19-90. | MR 1462329 | Zbl 0880.60053

[9] S.M. Berman, Gaussian sample functions: Uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46 (1972) 63-86. | MR 307320 | Zbl 0246.60038

[10] B. Boufoussi, M. Dozzi and R. Guerbaz, Sample path properties of the local time of multifractional Brownian motion. Bernoulli 13 (2007) 849-867. | MR 2348754 | Zbl 1138.60032

[11] R.M. Dudley, Sample Functions of the Gaussian Process. Ann. Probab. 1 (1973) 66-103. | MR 346884 | Zbl 0261.60033

[12] K. Falconer, Fractal Geometry: Mathematical Foundation and Applications, 2nd edn. Wiley (2003). | MR 2118797 | Zbl 1285.28011

[13] E. Herbin, From N-parameter fractional Brownian motions to N-parameter multifractional Brownian motions. Rocky Mountain J. Math. 36 (2006) 1249-1284. | MR 2274895 | Zbl 1135.60020

[14] E. Herbin, Locally Asymptotic Self-similarity and Hölder Regularity. In preparation.

[15] E. Herbin and E. Merzbach, A set-indexed fractional Brownian motion. J. Theoret. Probab. 19 (2006) 337-364. | MR 2283380 | Zbl 1120.60035

[16] E. Herbin and E. Merzbach, The Multiparameter fractional Brownian motion, in Math Everywhere. Edited by G. Aletti, M. Burger, A. Micheletti, D. Morale. Springer (2006). | MR 2281427 | Zbl 1130.60046

[17] E. Herbin and J. Lévy-Véhel, Stochastic 2-microlocal analysis. Stoch. Process. Appl. 119 (2009) 2277-2311. | MR 2531092 | Zbl 1175.60032

[18] B. Hunt, The Hausdorff dimension of graphs of Weierstrass functions. Proc. Amer. Math. Soc. 126 (1998) 791-800. | MR 1452806 | Zbl 0897.28004

[19] J.-P. Kahane, Some random series of functions. Cambridge studies in advanced mathematics. Cambridge University Press, 2nd edn. (1985). | MR 833073 | Zbl 0571.60002

[20] D. Khoshnevisan, Multiparameter processes: An Introduction to Random Fields. Springer Monographs in Mathematics. Springer-Verlag, New York (2002). | MR 1914748 | Zbl 1005.60005

[21] D. Khoshnevisan and Y. Xiao, Lévy processes: capacity and Hausdorff dimension. Ann. Probab. 33 (2005) 841-878. | MR 2135306 | Zbl 1072.60040

[22] G.F. Lawler and F.J. Viklund, Optimal Hölder exponent for the SLE path. Duke Math. J. 159 (2011) 351-383. | MR 2831873 | Zbl 1230.60086

[23] M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer (1991). | MR 1102015 | Zbl 0748.60004

[24] J.R. Lind, Hölder regularity of the SLE trace. Trans. Amer. Math. Soc. 360 (2008) 3557-3578. | MR 2386236 | Zbl 1141.60066

[25] L. Liu, Stable and multistable processes and localisability. Ph.D. thesis of the University of St. Andrews (2010). | Zbl 1270.60047

[26] M.B. Marcus and J. Rosen, Markov Processes, Gaussian Processes and Local Times. Cambridge University Press (2006). | MR 2250510 | Zbl 1129.60002

[27] M.M. Meerschaert, W. Wang and Y. Xiao, Fernique-type inequalities and moduli of continuity of anisotropic Gaussian random fields. Trans. Amer. Math. Soc. 365 (2013) 1081-1107. | MR 2995384

[28] M. Meerschaert, D. Wu and Y. Xiao, Local times of multifractional Brownian sheets. Bernoulli, 14 (2008) 865-898. | MR 2537815 | Zbl 1186.60036

[29] S. Orey and W.E. Pruitt, Sample functions of the N-parameter Wiener process. Ann. Probab. 1 (1973) 138-163. | MR 346925 | Zbl 0284.60036

[30] R.F. Peltier and J. Lévy-Véhel, Multifractional brownian motion: Definition and preliminary results. Rapport de recherche INRIA (RR-2645) (1995) 39.

[31] W. Pruitt, The Hausdorff dimension of the range of a process with stationary independent increments. J. Math. Mech. 19 (1969) 371-378. | MR 247673 | Zbl 0192.54101

[32] S. Stoev and M. Taqqu, How rich is the class of multifractional Brownian motions? Stoch. Proc. Appl. 116 (2006) 200-221. | MR 2197974 | Zbl 1094.60024

[33] V. Strassen, An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964) 211-226. | MR 175194 | Zbl 0132.12903

[34] S.J. Taylor, The α-dimensional measure of the graph and set of zeroes of a Brownian path, Math. Proc. Cambridge Philos. Soc. 51 (1955) 265-274. | MR 74494 | Zbl 0064.05201

[35] C.A. Tudor and Y. Xiao, Sample path properties of bifractional Brownian motion. Bernoulli 13 (2007) 1023-1052. | MR 2364225 | Zbl 1132.60034

[36] D. Wu and Y. Xiao, Geometric properties of fractional Brownian sheets. J. Fourier Anal. Appl. 13 (2007) 1-37. | MR 2296726 | Zbl 1127.60032

[37] Y. Xiao, Dimension results for Gaussian vector fields and index-α stable fields. Ann. Probab. 23 (1995) 273-291. | MR 1330771 | Zbl 0834.60040

[38] Y. Xiao, Sample path properties of anisotropic Gaussian random fields, in A Minicourse on Stochastic Partial Differential Equations. Edited by D. Khoshnevisan and F. Rassoul-Agha. Springer, New York. Lect. Notes Math. 1962 (2009) 145-212. | MR 2508776 | Zbl 1167.60011

[39] Y. Xiao, On uniform modulus of continuity of random fields. Monatsh. Math. 159 (2010) 163-184. | MR 2564392 | Zbl 1181.60074

[40] M.I. Yadrenko, Local properties of sample functions of random fields. Selected translations in Mathematics, Statistics and probab. 10 (1971) 233-245. | Zbl 0267.60038

[41] L. Yoder, The Hausdorff dimensions of the graph and range of the N-parameter Brownian motion in d-space. Ann. Probab. 3 169-171, 1975. | MR 359033 | Zbl 0321.60060