On the time constant in a dependent first passage percolation model
ESAIM: Probability and Statistics, Tome 18 (2014) , pp. 171-184.

We pursue the study of a random coloring first passage percolation model introduced by Fontes and Newman. We prove that the asymptotic shape of this first passage percolation model continuously depends on the law of the coloring. The proof uses several couplings, particularly with greedy lattice animals.

DOI : https://doi.org/10.1051/ps/2013032
Classification : 60K35,  82B43
Mots clés : first passage percolation, percolation, time constant, random coloring
@article{PS_2014__18__171_0,
     author = {Scholler, Julie},
     title = {On the time constant in a dependent first passage percolation model},
     journal = {ESAIM: Probability and Statistics},
     pages = {171--184},
     publisher = {EDP-Sciences},
     volume = {18},
     year = {2014},
     doi = {10.1051/ps/2013032},
     mrnumber = {3230873},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2013032/}
}
Scholler, Julie. On the time constant in a dependent first passage percolation model. ESAIM: Probability and Statistics, Tome 18 (2014) , pp. 171-184. doi : 10.1051/ps/2013032. http://www.numdam.org/articles/10.1051/ps/2013032/

[1] P. Billingsley, Probability and Measure. Wiley-Interscience (1995). | MR 1324786 | Zbl 0822.60002

[2] D. Boivin, First passage percolation: the stationary case. Probab. Theory Related Fields 86 (1990) 491-499. | MR 1074741 | Zbl 0685.60103

[3] J.T. Cox, The time constant of first-passage percolation on the square lattice. Adv. Appl. Probab. 12 (1980) 864-879. | MR 588407 | Zbl 0442.60096

[4] J.T. Cox, A. Gandolfi, P.S. Griffin and H. Kesten, Greedy lattice animals. I. Upper bounds. Ann. Appl. Probab. 3 (1993) 1151-1169. | MR 1241039 | Zbl 0818.60039

[5] J.T. Cox and H. Kesten, On the continuity of the time constant of first-passage percolation. J. Appl. Probab. 18 (1981) 809-819. | MR 633228 | Zbl 0474.60085

[6] L. Fontes and C.M. Van Newman, First passage percolation for random colorings of Zd. Ann. Appl. Probab. 3 (1993) 746-762. | MR 1233623 | Zbl 0780.60101

[7] A. Gandolfi and H. Kesten, Greedy lattice animals. II. Linear growth. Ann. Appl. Probab. 4 (1994) 76-107. | MR 1258174 | Zbl 0824.60100

[8] G. Grimmett, Percolation, in vol. 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], second edition. Springer-Verlag, Berlin (1999). | MR 1707339

[9] J.M. Hammersley and D.J.A. Welsh, First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory, in Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif. Springer-Verlag, New York (1965) 61-110. | MR 198576 | Zbl 0143.40402

[10] C.D. Howard, Models of first-passage percolation, in Probability on discrete structures, vol. 110 of Encyclopaedia Math. Sci. Springer, Berlin (2004) 125-173. | MR 2023652 | Zbl 1206.82048

[11] H. Kesten, Analyticity properties and power law estimates of functions in percolation theory. J. Stat. Phys. 25 (1981) 717-756. | MR 633715 | Zbl 0512.60095

[12] H. Kesten, Aspects of first passage percolation. In École d'été de probabilités de Saint-Flour, XIV-1984, vol. 1180 of Lect. Notes in Math. Springer, Berlin (1986) 125-264. | MR 876084 | Zbl 0602.60098

[13] H. Kesten, First-passage percolation. From classical to modern probability, in vol. 54 of Progr. Probab. Birkhäuser, Basel (2003) 93-143. | MR 2045986 | Zbl 1041.60077

[14] J.F.C. Kingman, The ergodic theory of subadditive stochastic processes. J. Roy. Stat. Soc. Ser. B 30 (1968) 499-510. | MR 254907 | Zbl 0182.22802

[15] T.M. Liggett, An improved subadditive ergodic theorem. Ann. Probab. 13 (1985) 1279-1285. | MR 806224 | Zbl 0579.60023

[16] J.B. Martin, Linear growth for greedy lattice animals. Stoch. Process. Appl. 98 (2002) 43-66. | MR 1884923 | Zbl 1060.60045