Stochastic algorithm for bayesian mixture effect template estimation
ESAIM: Probability and Statistics, Volume 14  (2010), p. 382-408

The estimation of probabilistic deformable template models in computer vision or of probabilistic atlases in Computational Anatomy are core issues in both fields. A first coherent statistical framework where the geometrical variability is modelled as a hidden random variable has been given by [S. Allassonnière et al., J. Roy. Stat. Soc. 69 (2007) 3-29]. They introduce a bayesian approach and mixture of them to estimate deformable template models. A consistent stochastic algorithm has been introduced in [S. Allassonnière et al. (in revision)] to face the problem encountered in [S. Allassonnière et al., J. Roy. Stat. Soc. 69 (2007) 3-29] for the convergence of the estimation algorithm for the one component model in the presence of noise. We propose here to go on in this direction of using some “SAEM-like” algorithm to approximate the MAP estimator in the general bayesian setting of mixture of deformable template models. We also prove the convergence of our algorithm toward a critical point of the penalised likelihood of the observations and illustrate this with handwritten digit images and medical images.

DOI : https://doi.org/10.1051/ps/2009001
Classification:  60J22,  62F10,  62F15,  62M40
Keywords: stochastic approximations, non rigid-deformable templates, shapes statistics, MAP estimation, bayesian method, mixture models
@article{PS_2010__14__382_0,
     author = {Allassonni\`ere, St\'ephanie and Kuhn, Estelle},
     title = {Stochastic algorithm for bayesian mixture effect template estimation},
     journal = {ESAIM: Probability and Statistics},
     publisher = {EDP-Sciences},
     volume = {14},
     year = {2010},
     pages = {382-408},
     doi = {10.1051/ps/2009001},
     zbl = {pre05873002},
     language = {en},
     url = {http://www.numdam.org/item/PS_2010__14__382_0}
}
Allassonnière, Stéphanie; Kuhn, Estelle. Stochastic algorithm for bayesian mixture effect template estimation. ESAIM: Probability and Statistics, Volume 14 (2010) , pp. 382-408. doi : 10.1051/ps/2009001. http://www.numdam.org/item/PS_2010__14__382_0/

[1] S. Allassonnière, Y. Amit and A. Trouvé, Toward a coherent statistical framework for dense deformable template estimation. J. Roy. Stat. Soc. 69 (2007) 3-29.

[2] S. Allassonnière, E. Kuhn and A. Trouvé, Map estimation of statistical deformable templates via nonlinear mixed effects models: Deterministic and stochastic approaches. In Proc. Int. Workshop on the Mathematical Foundations of Computational Anatomy (MFCA-2008), edited by X. Pennec and S. Joshi (2008).

[3] S. Allassonnière, E. Kuhn and A. Trouvé, Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study. Bernoulli 16 (2010) 641-678.

[4] Y. Amit, U. Grenander and M. Piccioni, Structural image restoration through deformable templates. J. Am. Statist. Assoc. 86 (1989) 376-387.

[5] C. Andrieu, R. Moulines and P. Priouret, Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44 (2005) 283-312 (electronic). | Zbl 1083.62073

[6] T.F. Cootes, G.J. Edwards and C.J. Taylor, Actives appearance models. In 5th Eur. Conf. on Computer Vision, Berlin, Vol. 2, edited by H. Burkhards and B. Neumann. Springer (1998) 484-498.

[7] B. Delyon, M. Lavielle and E. Moulines, Convergence of a stochastic approximation version of the EM algorithm. Ann. Statist. 27 (1999) 94-128. | Zbl 0932.62094

[8] A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. 1 (1977) 1-22. | Zbl 0364.62022

[9] C. Dorea and L. Zhao, Nonparametric density estimation in hidden Markov models. Statist. Inf. Stoch. Process. 5 (2002) 55-64. | Zbl 1005.62032

[10] C.A. Glasbey and K.V. Mardia, A penalised likelihood approach to image warping. J. Roy. Statist. Soc., Ser. B 63 (2001) 465-492. | Zbl 1040.62054

[11] J. Glaunès and S. Joshi, Template estimation form unlabeled point set data and surfaces for computational anatomy. In Proc. Int. Workshop on the Mathematical Foundations of Computational Anatomy (MFCA-2006), edited by X. Pennec and S. Joshi (2006) 29-39.

[12] U. Grenander, General Pattern Theory. Oxford Science Publications (1993). | Zbl 0827.68098

[13] P. Hall and C.C. Heyde, Martingale limit theory and its application. Probab. Math. Statist. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980). | Zbl 0462.60045

[14] E. Kuhn and M. Lavielle, Coupling a stochastic approximation version of EM with an MCMC procedure. ESAIM: PS 8 (2004) 115-131 (electronic). | Zbl 1155.62420

[15] H.J. Kushner and D.S. Clark, Stochastic approximation methods for constrained and unconstrained systems, volume 26 of Appl. Math. Sci. Springer-Verlag, New York (1978). | Zbl 0381.60004

[16] S. Marsland, C. Twining and C. Taylor, A minimum description length objective function for groupwise non rigid image registration. Image and Vision Computing (2007).

[17] S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability. Communications and Control Engineering Series. Springer-Verlag, London Ltd. (1993). | Zbl 0925.60001

[18] M.I. Miller, T.A. and L. Younes, On the metrics and Euler-Lagrange equations of computational anatomy. Ann. Rev. Biomed. Eng. 4 (2002) 375-405.

[19] C. Robert, Méthodes de Monte Carlo par chaînes de Markov. Statistique Mathématique et Probabilité. [Mathematical Statistics and Probability]. Éditions Économica, Paris (1996). | Zbl 0917.60007

[20] M. Vaillant, I. Miller, M.A. Trouvé and L. Younes, Statistics on diffeomorphisms via tangent space representations. Neuroimage 23 (2004) S161-S169.