Adaptive tests of qualitative hypotheses
ESAIM: Probability and Statistics, Tome 7 (2003), pp. 147-159.

We propose a test of a qualitative hypothesis on the mean of a n-gaussian vector. The testing procedure is available when the variance of the observations is unknown and does not depend on any prior information on the alternative. The properties of the test are non-asymptotic. For testing positivity or monotonicity, we establish separation rates with respect to the euclidean distance, over subsets of n which are related to Hölderian balls in functional spaces. We provide a simulation study in order to evaluate the procedure when the purpose is to test monotonicity in a functional regression model and to check the robustness of the procedure to non-gaussian errors.

DOI : https://doi.org/10.1051/ps:2003006
Classification : 62G10,  62G20
Mots clés : adaptive test, test of monotonicity, test of positivity, qualitative hypothesis testing, nonparametric alternative, nonparametric regression
@article{PS_2003__7__147_0,
     author = {Baraud, Yannick and Huet, Sylvie and Laurent, B\'eatrice},
     title = {Adaptive tests of qualitative hypotheses},
     journal = {ESAIM: Probability and Statistics},
     pages = {147--159},
     publisher = {EDP-Sciences},
     volume = {7},
     year = {2003},
     doi = {10.1051/ps:2003006},
     zbl = {1014.62052},
     mrnumber = {1956076},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2003006/}
}
TY  - JOUR
AU  - Baraud, Yannick
AU  - Huet, Sylvie
AU  - Laurent, Béatrice
TI  - Adaptive tests of qualitative hypotheses
JO  - ESAIM: Probability and Statistics
PY  - 2003
DA  - 2003///
SP  - 147
EP  - 159
VL  - 7
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps:2003006/
UR  - https://zbmath.org/?q=an%3A1014.62052
UR  - https://www.ams.org/mathscinet-getitem?mr=1956076
UR  - https://doi.org/10.1051/ps:2003006
DO  - 10.1051/ps:2003006
LA  - en
ID  - PS_2003__7__147_0
ER  - 
Baraud, Yannick; Huet, Sylvie; Laurent, Béatrice. Adaptive tests of qualitative hypotheses. ESAIM: Probability and Statistics, Tome 7 (2003), pp. 147-159. doi : 10.1051/ps:2003006. http://www.numdam.org/articles/10.1051/ps:2003006/

[1] Y. Baraud, Model selection for regression on a fixed design. Probab. Theory Related Fields 117 (2000) 467-493. | MR 1777129 | Zbl 0997.62027

[2] Y. Baraud, S. Huet and B. Laurent, Adaptive tests of linear hypotheses by model selection. Ann. Statist. 31 (2003). | MR 1962505 | Zbl 1018.62037

[3] Y. Baraud, S. Huet and B. Laurent, Tests for convex hypotheses, Technical Report 2001-66. University of Paris XI, France (2001).

[4] H.D. Brunk, On the estimation of parameters restricted by inequalities. Ann. Math. Statist. 29 (1958) 437-454. | MR 132632 | Zbl 0087.34302

[5] L. Dümbgen and V.G. Spokoïny, Multiscale testing of qualitative hypotheses. Ann. Statist. 29 (2001) 124-152. | MR 1833961 | Zbl 1029.62070

[6] S. Ghosal, A. Sen and A. Van Der Vaart, Testing monotonicity of regression. Ann. Statist. 28 (2000) 1054-1082. | MR 1810919 | Zbl 1105.62337

[7] I. Gijbels, P. Hall, M.C. Jones and I. Koch, Tests for monotonicity of a regression mean with guaranteed level. Biometrika 87 (2000) 663-673. | MR 1789816 | Zbl 0956.62039

[8] P. Hall and N. Heckman, Testing for monotonicity of a regression mean by calibrating for linear functions. Ann. Statist. 28 (2000) 20-39. | MR 1762902 | Zbl 1106.62324

[9] I.A. Ibragimov and R.Z. Has'Minskii, Statistical estimation. Asymptotic theory. Springer-Verlag, New York-Berlin, Appl. Math. 16 (1981). | Zbl 0467.62026

[10] A. Juditsky and A. Nemirovski, On nonparametric tests of positivity/monotonicity/convexity. Ann. Statist. 30 (2002) 498-527. | MR 1902897 | Zbl 1012.62048

[11] B. Laurent and P. Massart, Adaptive estimation of a quadratic functional by model selection. Ann. Statist. 28 (2000) 1302-1338. | MR 1805785 | Zbl 1105.62328

Cité par Sources :