Poisson perturbations
ESAIM: Probability and Statistics, Volume 3 (1999), pp. 131-150.
@article{PS_1999__3__131_0,
     author = {Barbour, Andrew D. and Xia, Aihua},
     title = {Poisson perturbations},
     journal = {ESAIM: Probability and Statistics},
     pages = {131--150},
     publisher = {EDP-Sciences},
     volume = {3},
     year = {1999},
     zbl = {0949.62015},
     mrnumber = {1716120},
     language = {en},
     url = {http://www.numdam.org/item/PS_1999__3__131_0/}
}
TY  - JOUR
AU  - Barbour, Andrew D.
AU  - Xia, Aihua
TI  - Poisson perturbations
JO  - ESAIM: Probability and Statistics
PY  - 1999
DA  - 1999///
SP  - 131
EP  - 150
VL  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/PS_1999__3__131_0/
UR  - https://zbmath.org/?q=an%3A0949.62015
UR  - https://www.ams.org/mathscinet-getitem?mr=1716120
LA  - en
ID  - PS_1999__3__131_0
ER  - 
%0 Journal Article
%A Barbour, Andrew D.
%A Xia, Aihua
%T Poisson perturbations
%J ESAIM: Probability and Statistics
%D 1999
%P 131-150
%V 3
%I EDP-Sciences
%G en
%F PS_1999__3__131_0
Barbour, Andrew D.; Xia, Aihua. Poisson perturbations. ESAIM: Probability and Statistics, Volume 3 (1999), pp. 131-150. http://www.numdam.org/item/PS_1999__3__131_0/

[1] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions. Dover, New York ( 1964).

[2] R. Arratia, A.D. Barbour and S. Tavaré, The number of components in a logarithmic combinatorial structure. Ann. Appl. Probab., to appear. | MR | Zbl

[3] R. Arratia, L. Goldstein and L. Gordon, Poisson approximation and the Chen-Stein method. Stat. Science 5 ( 1990) 403-434. | MR | Zbl

[4] A.D. Barbour and J.L. Jensen, Local and tail approximations near the Poisson limit. Scand. J. Statist. 16 ( 1989) 75-87. | MR | Zbl

[5] A.D. Barbour and S. Utev, Solving the Stein equation in compound Poisson approximationAdv. in Appl. Probab. 30 ( 1998) 449-475. | MR | Zbl

[6] A.D. Barbour and S. Utev, Compound Poisson approximation in total variation. Stochastic Process. Appl., to appear. | MR | Zbl

[7] V. Čekanavičius, Asymptotic expansions in the exponent: A compound Poisson approach. Adv. in Appl. Probab. 29 ( 1997) 374-387. | MR | Zbl

[8] P. Eichelsbacher and M. Roos, Compound Poisson approximation for dissociated random variables via Stein's method ( 1998) preprint. | MR

[9] J. Kruopis, Precision of approximations of the generalized Binomial distribution by convolutions of Poisson measures. Lithuanian Math. J. 26 ( 1986) 37-49. | Zbl

[10] T. Lindvall, Lectures on the coupling method. Wiley, New York ( 1992). | MR | Zbl

[11] E.L. Presman, Approximation of binomial distributions by infinitely divisible ones. Theory. Probab. Appl. 28 ( 1983) 393-403. | MR | Zbl

[12] D.A. Raikov, On the decomposition of Gauss and Poisson laws. Izv. Akad. Nauk Armyan. SSR Ser. Mat. 2 ( 1938) 91-124. | JFM | Zbl

[13] M. Roos, Stein-Chen method for compound Poisson approximation. Ph. D. Dissertation, University of Zürich ( 1993). | MR | Zbl