Multi-scaled diffusion-approximation. Applications to wave propagation in random media
ESAIM: Probability and Statistics, Volume 1  (1997), p. 183-206
@article{PS_1997__1__183_0,
     author = {Garnier, Josselin},
     title = {Multi-scaled diffusion-approximation. Applications to wave propagation in random media},
     journal = {ESAIM: Probability and Statistics},
     publisher = {EDP-Sciences},
     volume = {1},
     year = {1997},
     pages = {183-206},
     zbl = {0930.60061},
     mrnumber = {1447334},
     language = {en},
     url = {http://www.numdam.org/item/PS_1997__1__183_0}
}
Garnier, Josselin. Multi-scaled diffusion-approximation. Applications to wave propagation in random media. ESAIM: Probability and Statistics, Volume 1 (1997) , pp. 183-206. http://www.numdam.org/item/PS_1997__1__183_0/

Abramowitz, M. and Stegun, I. ( 1965). Handbook of mathematical functions, Dover Publications, New-York.

Aldous, D. ( 1978). Stopping times and tightness. Ann. Prob. 6 335-340. | MR 474446 | Zbl 0391.60007

Bailly, F. ( 1996) Ph-D thesis. Paris-Sud.

Bouc, R. and Pardoux, E. ( 1984). Asymptotic analysis of P.D.E.'s with wide-band noise disturbances and expansions of the moments. Stochastic analysis and Appl. 2 369-422. | MR 769278 | Zbl 0574.60066

Carmona, R. ( 1985). Therandom Schrödinger equation, in: Ecole d'été de Probabilités de Saint-Flour, Hennequin, P. L., ed. Lecture Notes in Mathematics, Springer.

Carmona, R. and Lacroix, J. ( 1990). Spectral theory of random Schrödinger operators. Birkhauser. | MR 1102675 | Zbl 0717.60074

Collins, R. E. ( 1960). Field theory of guided waves. Mac Graw-Hill, New York. | MR 116872

Desvillard, P. and Souillard, B. ( 1986). Polynomially decaying transmission for the nonlinear Schrödinger equation in a random medium. J. of Stat. Phys. 43 423-439. | MR 845723 | Zbl 0628.60086

Faris, W. G. and Tsay, W. J. ( 1994). Time delay in random scattering. SIAM J. Appl. Math. 54 443-455. | MR 1265236 | Zbl 0794.34074

Garnier, J. ( 1996) Ph-D thesis. Ecole Polytechnique.

Groell J. E. ( 1968). A circular harmonic computer analysis for rectangular dielectric waveguides. Bell. Syst. Tech. J. 48.

Jauch, J., Sinha, K. and Mlsra, B. ( 1972). Time delay in scattering processes. Helv. Phys. Acta 45 398-426. | MR 418734

Kesten, J. B. and Papanicolaou, G. ( 1979). A limit theorem for turbulent diffusion. Comm. Math. Phys. 65 97-128. | MR 528186 | Zbl 0399.60049

Knapp, R., Papanicolaou, G. and White, B. ( 1989). Nonlinearity and localization in one-dimensional random media, in: Disorder and Nonlinearity Bishop, A. R., Campbell, I. K. and Pnevmatikos, S., eds. Springer.

Knapp, R., Papanicolaou, G. and White, B. ( 1991). Transmission of waves by a nonlinear random medium. J. of Stat. Phys. 63 567-583. | MR 1115804

Kushner, H. J. ( 1984). Approximation and weak convergence methods for random processes. MIT Press. | MR 741469 | Zbl 0551.60056

Metivier M. ( 1984). Convergence faible et principe d'invariance pour des martingales à valeurs dans des espaces de Sobolev. Rapport interne CMAP-Ecole Polytechnique. 106.

Papanicolaou, G. ( 1988). Waves in one-dimensional random media, in: Ecole d'été de Probabilités de Saint-Flour, Hennequin, P. L., ed. Lecture Notes in Mathematics, Springer. | MR 983374 | Zbl 0667.73004

Papanicolaou, G., Stroock, D. and Varadhan, S. R. S. ( 1976). Martingale approach to some limit theorems, in: Statistical Mechanics andDynamical Systems Ruelle, D., ed. Duke Turbulence Conf. (Duke Univ. Math. Series III, Part VI). | MR 461684 | Zbl 0387.60067