Decimation on the Two Dimensionnal Ising Model : Non Gibbsianness at Low Temperature. Almost Gibbsianness or Weak Gibbsianness ?
Publications mathématiques et informatique de Rennes no. 2  (1998), article no. 6, 71 p.
@article{PSMIR_1998___2_A6_0,
     author = {Le Ny, Arnaud},
     title = {Decimation on the Two Dimensionnal Ising Model : Non Gibbsianness at Low Temperature. Almost Gibbsianness or Weak Gibbsianness ?},
     journal = {Publications math\'ematiques et informatique de Rennes},
     publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://www.numdam.org/item/PSMIR_1998___2_A6_0}
}
Le Ny, Arnaud. Decimation on the Two Dimensionnal Ising Model : Non Gibbsianness at Low Temperature. Almost Gibbsianness or Weak Gibbsianness ?. Publications mathématiques et informatique de Rennes, no. 2 (1998), article  no. 6, 71 p. http://www.numdam.org/item/PSMIR_1998___2_A6_0/

[1] J. Bricmont, A. Kupiainen, R. Lefevere. Renormalization Group Pathologies and the Definition of Gibbs States, preprint, UC Louvain, 1997. | MR 1959730 | Zbl 0914.60089

[2] B. Prum. Processus sur un réseau et mesures de Gibbs. Techniques stochastiques, Masson, Paris etc. 1986. | MR 850839 | Zbl 0645.60102

[3] R.L Dobrushin and S.B Shlosman. Gibbsian description of 'non Gibbsian' field, Russian Math Surveys 52, 285-297, 1997. | MR 1480136 | Zbl 0921.60040

[4] J. Dixmier. Topologie Générale. Presses Universitaire de France Mathématiques, 1981. | MR 637202 | Zbl 0449.54001

[5] A. C. D. Van Enter, R. Fernández, and A. D. Sokal. Regularity Properties And Pathologies Of Position-Space Renormalization-Group Transformations: Scope and limitations of Gibbsian theory. J . Stat. Phys., 72: 879-1167, 1993. | MR 1241537 | Zbl 1101.82314

[6] W. Feller. An Introduction to Probability Theory and Its Applications, volume I. Wiley publications in statistics, 1957. | MR 88081 | Zbl 0077.12201

[7] R. Fernández and C-E. Pfister. Global specifications and nonquasilocality of projections of Gibbs measures. EPFL preprint, 1996. | MR 1457620 | Zbl 0895.60096

[8] D. Griffeath. Introduction to random fields J.G.Kenneny, J.L.Snell, A.W.Knapp eds, Graduate Texts in Mathematics, vol 40, Springer Verlag, New york, Heildelberg, Berlin, 1976. | MR 407981

[9] H.O. Georgii. Gibbs Measures and Phase Transitions. Walter de Gruyter (de Gruyter Studies in Mathematics, Vol. 9), Berlin-New York, 1988. | MR 956646 | Zbl 0657.60122

[10] J.L. Kelley. General Topology. University Series in Higher Mathematics. D.Van Nostrand Company inc. Toronto etc., 1955. | MR 70144 | Zbl 0066.16604

[11] J. Lörinczi and C. Maes. Weakly gibbsian measures for lattice spin systems, preprint K-U.Leuven, 1997. | MR 1484056 | Zbl 0939.82012

[12] C. Maes and K. Vande Velde. Relative energies for non-Gibbsian states, preprint K-U Leuven, 1996. | MR 1480018 | Zbl 0888.60079

[13] C. Maes, F. Redig and A. Van Moffaert. Almost Gibbsian versus Weakly Gibbsian. preprint K-U Leuven, 1997. | Zbl 0963.60094

[14] V.A. Malyshev and R.A Minlos. Gibbs Random Fields cluster expansions. Mathematics and its applications, Kluwer Academic Publishers, 1991. | MR 1191166 | Zbl 0731.60099

[15] J. Neveu, Bases Mathématiques du calcul des Probabilités. Masson et Cie, 1970. | MR 272004 | Zbl 0203.49901 | Zbl 0137.11203

[16] C. Preston. Random Fields. Lecture Notes in Mathematics 534, Springer-Verlag, 1976. | Zbl 0335.60074

[17] A.D. Sokal. Existence of compatible families of proper regular conditional probabilities. Z.Wahrsch. verw. Geb 56:537-548, 1981. | Zbl 0443.60003

[18] W.G. Sullivan Potentials for almost Markovian random fields, Commun. Math. Phys., 33:61-74, 1976. | MR 410987 | Zbl 0267.60108