PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

J. GIROIRE

J. C. NEDELEC

Potentiel de double couche pour résoudre le problème de Neumann par équation intégrale

Publications des séminaires de mathématiques et informatique de Rennes, 1977, fascicule S4

« Journées éléments finis », , p. 1-10

http://www.numdam.org/item?id=PSMIR_1977____S4_A10_0

© Département de mathématiques et informatique, université de Rennes, 1977, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

POTENTIEL DE DOUBLE COUCHE POUR RÉSOUDRE

LE PROBLÈME DE NEUMANN PAR ÉQUATION INTÉGRALE.

J. GIROIRE

J.C. NEDELEC

Dans tout ce qui suit, Ω désignera un ouvert borné de \mathbb{R}^3 , de frontière Γ régulière. Nous noterons $\Omega^{\mathbf{C}}$ le complémentaire de $\overline{\Omega}$, n la normale extérieure à Γ , r la distance du point courant à l'origine des axes supposée contenue dans Ω , et [u] la quantité

$$[u] = u_{|int} - u_{|ext}$$

où $u_{|int}$ et $u_{|ext}$ sont les traces de u sur Γ .

1 - POSITION DU PROBLÈME ET MÉTHODE DE RÉSOLUTION.

Nous nous intéressons au problème

$$\begin{cases} \text{Trouver } u_1 \text{ tel que} \\ \Delta u_1 = 0 \text{ dans } \Omega^C; \\ \frac{\partial u_1}{\partial n} = g_1 \text{ donné sur } \Gamma. \end{cases}$$

Quel cadre fonctionnel convient-il d'adopter ? La forme bilinéaire, associée au laplacien, étant

$$\int_{\Omega} grad \ u_1 \ grad \ v \ dx \ ,$$

nous allons chercher ul dans un espace dont la norme soit

$$\| \operatorname{grad} u_1 \|_{L^2(\Omega^{\mathbf{C}})}$$
.

L'inégalité de Hardy permet de trouver un tel espace que nous noterons

$$W_0^1(\Omega^C) = \left\{ v \in \mathcal{D}^1(\Omega^C) \mid \frac{v}{r} \in L^2(\Omega^C), \frac{\partial v}{\partial x_i} \in L^2(\Omega^C) \right\} .$$

De tels espaces ont été introduits et étudiés par HANOUZET [4].

Les propriétés locales de ces espaces étant identiques à celles des espaces de Sobolev habituels, les traces sur Γ de leurs éléments appartiennent

aux espaces usuels, et nous arrivons à la

PROPOSITION I.1 : Le problème

$$\begin{cases} \textit{Trouver} & u_1 \in W_0^1(\Omega^C) \quad \textit{tel que} \\ \Delta u_1 &= 0 \quad \textit{dans} \quad \Omega^C ; \\ \frac{\partial u_1}{\partial n} &= g_1 \in H^{-\frac{1}{2}}(\Gamma) , \end{cases}$$

admet une solution unique.

Nous remarquons que, contrairement à ce qui se passe pour le problème intérieur, nous n'avons pas à quotienter par les constantes : elles sont éliminées par les poids, c'est-à-dire par la condition de comportement à l'infini.

Pour résoudre le problème (P_1) par les techniques utilisées par NEDELEC et PLANCHARD [10], pour le problème de Dirichlet, nous désirons prolonger u_1 harmoniquement dans Ω . C'est impossible lorsque g_1 n'est pas orthogonal aux constantes. Dans ce cas, nous introduisons

$$u_0(x) = \frac{q}{4\pi r} ,$$

où la constante q est choisie de manière à ce que $g_1-\frac{\partial u_0}{\partial n}$ soit orthogonal aux constantes. Posons

$$u = u_1 - u_0$$
 dans Ω^C .

La fonction u est alors harmonique dans $\Omega^{\mathbf{C}}$ et peut être prolongée harmoniquement dans Ω . Nous arrivons ainsi au

THEOPEME I.1 : Le problème

(P)
$$\begin{cases} \text{Trouver } u \in W = (H^{1}(\Omega)/\mathbb{R}) \times W_{0}^{1}(\Omega^{C}), \text{ tel que} \\ \text{Lu} = 0 \text{ dans } \Omega \text{ et } \Omega^{C}, \\ \frac{\partial u}{\partial n} = g \in H_{0}^{-\frac{1}{2}}(\Gamma) = \left\{ v \in H^{-\frac{1}{2}}(\Gamma) \mid \langle v, 1 \rangle = 0 \right\}, \end{cases}$$

admet une solution unique.

Pour obtenir la formulation variationnelle sur Γ que nous désirons, il va nous falloir introduire un problème intermédiaire (P'). C'est l'objet de la

PROPOSITION I.2 : Le problème

$$\begin{cases} \textit{Trouver} & u \in W \;\; \textit{tel que} \\ \Delta u \; = \; 0 \;\; \textit{dans} \;\; \Omega \;\; \textit{et} \;\; \Omega^{\textbf{C}} \;\; , \\ \\ [u] \; = \;\; q \; \in \; H^{\frac{1}{2}}(\Gamma)/\mathbb{R} \;\; , \end{cases}$$

admet une solution unique.

En effet, posons

$$K = \left\{ v \in W \mid \text{supp } (\Delta v) \subset \Gamma, \left[\frac{\partial v}{\partial n} \right] = 0 \right\},$$

et munissons K de la topologie induite par W. En soustrayant membre à membre les formules de Green relatives au problème (P') intérieur, et au problème (P') extérieur, nous arrivons à

$$\int_{\Omega \cup \Omega^{\mathbf{c}}} \operatorname{grad} \, u \ \operatorname{grad} \, v \ \operatorname{d} x \ = \ < \frac{\partial v}{\partial n} \ , \ [\mathtt{u}] \ > \ , \ \forall \ v \in \mathtt{K} \ ,$$

ce qui est une formulation variationnelle coercive du problème (P').

L'intérêt du problème (P') est le suivant : il résulte immédiatement des propriétés classiques du potentiel de double couche [8], que sa solution u est représentée par

(I.1)
$$u(y) = -\frac{1}{4\pi} \int_{\Gamma} q(x) \frac{\partial}{\partial n_x} \left(\frac{1}{|x-y|}\right) d\gamma_x ,$$

pourvu que q soit suffisamment régulier pour que cette expression ait un sens.

Nous voyons alors que pour résoudre le problème (P), il suffit de calculer le saut de sa solution u à travers [, l'équation (I.1) nous permettant ensuite d'obtenir la valeur de u en tout point de l'espace. Nous avons ainsi ramené le problème initial à un problème ne faisant intervenir que des grandeurs

définies sur Γ : la donnée $\frac{\partial u}{\partial n}$ et l'inconnue [u] .

Ce problème est-il bien posé ? Il l'est car le problème (P) définit un isomorphisme

$$\begin{array}{cccc} H_0^{-\frac{1}{2}}(\Gamma) & \xrightarrow{J_0} & \kappa & , \\ \frac{\partial u}{\partial n} & \xrightarrow{} & u & ; \end{array}$$

le problème (P') définit un isomorphisme

$$H^{\frac{1}{2}}(\Gamma)/\mathbb{R} \xrightarrow{J_1} K ,$$

$$[u] \xrightarrow{} u :$$

et notre problème correspond à l'isomorphisme

Qui plus est, à cet isomorphisme correspond une formulation variationnelle admettant une expression explicite dans le cas de données régulières. C'est l'objet des deux théorèmes ci-dessous :

THEOREME 1.2 : La forme bilinéaire a définie sur $(H^{\frac{1}{2}}(\Gamma)/\mathbb{R})^2$ par

$$a(q, q') = \langle q, J^{-1}(q') \rangle_{(H^{\frac{1}{2}}(\Gamma)/\mathbb{R}) \times H_0^{-\frac{1}{2}}(\Gamma)}$$

est symétrique définie positive. En outre, le problème

admet une solution unique qui n'est autre que le saut de la solution du problème (P) à travers Γ .

$$a(q, q') = \frac{1}{8\pi} \int_{\Gamma} \int_{\Gamma} (q(x) - q(y)) (q'(x) - q'(y)) \frac{\partial^2}{\partial n_x \partial n_y} \left(\frac{1}{|x-y|}\right) d\gamma_x d\gamma_y .$$

Remarquons qu'il n'est pas possible d'exprimer $\frac{\partial u}{\partial n}$ sous la forme d'une intégrale. En effet, $\frac{\partial^2}{\partial n_x} \frac{1}{\partial n_y} \left(\frac{1}{|x-y|}\right)$ admet une partie principale en $\frac{1}{|x-y|^3}$, qui n'est donc pas intégrable. C'est la nécessité de tourner cette difficulté qui conduit à l'expression ci-dessus de la forme bilinéaire a .

2 - DÉFINITION DU PROBLÈME APPROCHÉ.

2.1 - CONSTRUCTION DE $\Gamma_{\rm h}$.

Nous supposons Γ défini par un jeu de p cartes { θ_i , θ_i }, où les θ_i sont des ouverts bornés de \mathbb{R}^3 recouvrant Γ tels que pour chaque i, l'application θ_i soit indéfiniment différentiable de θ_i sur

$$Q = \left\{ y \mid y = (y', y_3), |y'| \le 1, -1 \le y_3 \le 1 \right\},$$

l'application inverse θ_i^{-1} étant également indéfiniment différentiable de Q sur θ_i .

Nous supposons, en outre, que chaque application θ_i envoie $\theta_i \cap \Omega$, $\theta_i \cap \Omega^C$, $\theta_i \cap \Gamma$, sur, respectivement, $Q_- = \{y \mid y_3 < 0 \}$, $Q_+ = \{y \mid y_3 > 0 \}$, $Q_0 = \{y \mid y_3 = 0 \}$, et que les conditions de compatibilité habituelles entre les θ_i sont satisfaites [7].

Nous noterons ϕ_i l'application θ_i^{-1} considérée comme application de Q0 sur θ_i N Γ .

Pour définir Γ_h , nous supposons pouvoir construire p triangulations de Q_0 , de telle sorte que les images de chacune de ces triangulations par l'application ϕ_i correspondante se recollent en une triangulation de Γ .

Notons \mathcal{T}_{ih} la triangulation de \mathcal{Q}_0 relative à ϕ_i . A chaque élément T de \mathcal{T}_{ih} , nous associons un élément fini de Lagrange de classe C^0 , auquel correspond un espace d'interpolation G tel que

$$P_k \subset G$$
.

Soit ϕ_{ih} l'application dont la restriction à chaque triangle T est le G interpolé de ϕ_i . Γ_h est la surface définie par les applications ϕ_{ih} :

$$Q_0 \xrightarrow{\phi_{ih}} \Gamma_h$$
, $i = 1, ..., p$.

2.2 - APPROXIMATION DE $H^{\frac{1}{2}}(\Gamma)$.

A chaque triangle T de la triangulation, nous associons un espace P tel que

$$P_m \subset P$$

et nous définissons V_h par

$$\boldsymbol{v}_{h} = \left\{ \begin{array}{l} \boldsymbol{q}_{h} \in \boldsymbol{c}^{0} \left(\boldsymbol{\Gamma}_{h} \right) \; \middle| \; \boldsymbol{q}_{h} \middle|_{\boldsymbol{T}} = \boldsymbol{p} \circ \boldsymbol{\phi}_{ih}^{-1} \; , \; \forall \; \boldsymbol{\tau} \in \boldsymbol{T}_{h} \; , \; \forall \; \boldsymbol{p} \in \boldsymbol{P} \end{array} \right\}.$$

Notre problème va être de choisir de manière optimale k et m , l'un par rapport à l'autre.

2.3 - APPROXIMATION DE LA FORME BILINEAIRE a .

Le noyau de la forme bilinéaire a du problème (2) s'écrit

$$\frac{\partial^{2}}{\partial n_{x}} \frac{\partial n_{y}}{\partial n_{y}} \left(\frac{1}{|x-y|}\right) = \frac{(n_{x}, n_{y})}{|x-y|^{3}} - 3 \frac{(x-y, n_{x})(x-y, n_{y})}{|x-y|^{5}}$$

Le noyau approché est obtenu en remplaçant dans le membre de droite de n_{x} et n_{v} respectivement.

Nous arrivons ainsi au problème approché :

Trouver
$$q_h \in V_h/\mathbb{R}$$
 tel que

$$\begin{cases} \text{Trouver } \mathbf{q}_h \in \mathbf{V}_h / \mathbb{R} \quad \text{tel que} \\ \\ \frac{1}{8\pi} \int_{\Gamma} \int_{\mathbf{h}} (\mathbf{q}_h(\mathbf{x}) - \mathbf{q}_h(\mathbf{y})) (\mathbf{q}_h^{\prime}(\mathbf{x}) - \mathbf{q}_h^{\prime}(\mathbf{y})) \frac{\partial^2}{\partial \mathbf{n}_{h\mathbf{x}} \partial \mathbf{n}_{h\mathbf{y}}} \left(\frac{1}{|\mathbf{x} - \mathbf{y}|} \right) \, \mathrm{d} \gamma_{h\mathbf{y}} \, \, \mathrm{d} \gamma_{h\mathbf{y}} = \int_{\Gamma} \mathbf{g}_h(\mathbf{y}) \, \mathbf{q}_h^{\prime}(\mathbf{y}) \, \mathrm{d} \gamma_{h\mathbf{y}} \, \, , \forall \, \mathbf{q}_h^{\prime} \in \mathbf{V}_h / \mathbb{R} \end{cases}$$

où \textbf{g}_h est une approximation de g , définie sur $\boldsymbol{\Gamma}_h$ et vérifiant

$$< g_h, 1> = 0.$$

3 - ESTIMATIONS D'ERREUR.

Pour pouvoir comparer q et q_h , il nous faut transporter le problème (Q_h) sur Γ . On pourrait penser utiliser à cet effet l'application $\phi_i \circ \phi_{i\,h}^{-1}$. Malheureusement, dans ce cas, l'erreur sur le jacobien n'est pas optimale. NEDELEC a montré, lors de l'étude du problème de Dirichlet [9], qu'une erreur optimale sur le jacobien pouvait être obtenue en utilisant l'application

$$\Gamma_{\rm h} \xrightarrow{\psi} \Gamma$$
 ,

où ψ est la projection orthogonale de Γ_h sur Γ . Nous obtenons alors

3.1 - ESTIMATIONS SUR LE BORD.

a) Posons $\hat{g}_h = (g_h \circ \psi^{-1}) J(\psi^{-1})$, il vient

$$\| \mathbf{q} - \mathbf{q}_h \circ \psi^{-1} \|_{H^{\frac{1}{2}}(\Gamma)/\mathbb{R}} \leq c \left\{ \| \mathbf{g} - \overset{\wedge}{\mathbf{q}}_h \|_{H^{-\frac{1}{2}}(\Gamma)} + \| \mathbf{h}^{m+\frac{1}{2}} \| \mathbf{q} \|_{H^{m+1}(\Gamma)/\mathbb{R}} + \| \mathbf{h}^{k+1} \| \mathbf{q} \|_{H^{\frac{1}{2}}(\Gamma)/\mathbb{R}} \right\} \; .$$

b) Soit $s: s \leq m$, il vient

$$\| \, q - q_h^{} \circ \psi^{-1} \, \|_{H^{-S} \, (\Gamma)/\!I\!R} \\ \le c \left\{ h^{\, S \, + \, \frac{1}{2}} \| \, g - \hat{g}_h^{} \, \|_{H_0^{-\frac{1}{2}} \, (\Gamma)} + \| \, g - \hat{g}_h^{} \|_{H_0^{-\frac{1}{2}} \, S \, - 1}(\Gamma) \right. \\ \left. + h^{\text{Int-St-1}} \| \, q \, \|_{H^{\pi, + 1} \, (\Gamma)/\!I\!R} + h^{k + 1} \| \, q \, \|_{H^{\frac{1}{2}}(\Gamma)/\!I\!R} \right\}$$

Cette dernière estimation se déduit de la première par un argument classique de dualité. On remarque que l'erreur de géométrie est restée d'ordre k+1 .

3.2 - ESTIMATIONS DANS IR 3.

Soit u la solution du problème (P) vérifiant

$$\int_{\Gamma} q d\gamma = 0,$$

et soit u_h défini par

$$u_h(y) = -\frac{1}{4\pi} \int_{\Gamma_h} q_h(x) \frac{\partial}{\partial n_{hx}} \left(\frac{1}{|x-y|}\right) d\gamma_{hx}$$
,

où q_h est la solution du problème (Q_h) vérifiant

$$\int_{\Gamma_{h}} q_{h} d\gamma_{h} = 0 ;$$

alors, pour y suffisamment éloigné de Γ , et h assez petit, nous avons l'estimation :

$$\left| u(y) - u_h(y) \right| \leq \frac{c}{e(y,\Gamma)} \left\{ h^{m+\frac{1}{2}} \|g - \mathring{g}_h\|_{H_0^{-\frac{1}{2}}(\Gamma)} + \|g - \mathring{g}_h\|_{H_0^{-m-1}(\Gamma)} + h^{2m+1} \|g\|_{H^{m+1}(\Gamma)/\mathbb{R}} + h^{k+1} \|g\|_{H^{\frac{1}{2}}(\Gamma)/\mathbb{R}} \right\}$$

avec

$$\frac{1}{e(y,\Gamma)} = \sum_{n=0}^{m} \frac{1}{d^{2+n}(y,\Gamma)}.$$

La même estimation est valable pour l'erreur sur les dérivées

$$\vartheta^{\alpha}$$
 u(y) - ϑ^{α} u_b(y) , $\forall \alpha \in \mathbb{N}^3$,

en remplaçant $e(y,\Gamma)$ par $e_{\alpha}(y,\Gamma)$, défini par

$$\frac{1}{e_{\alpha}(y,\Gamma)} = \sum_{n=0}^{m} \frac{1}{d^{2+|\alpha|+n}(y,\Gamma)}.$$

Nous voyons ainsi que, loin du bord, l'erreur est optimale pour

$$k = 2 m.$$