PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

PIERRE LENGYEL

Racines de fonctions différentiables

Publications des séminaires de mathématiques et informatique de Rennes, 1973, fascicule 1

« Séminaires d'analyse », , exp. nº 4, p. 1-23

http://www.numdam.org/item?id=PSMIR_1973___1_A4_0

© Département de mathématiques et informatique, université de Rennes, 1973, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

RACINES DE FONCTIONS DIFFERENTIABLES

par

Pierre LENGYEL

Soit f une application de classe C^{∞} d'un ouvert Ω de \mathbb{R}^{n} dans \mathbb{C} ; supposons qu'en chaque point X de Ω , la série de Taylor de f est la puissance $q^{\hat{1}\hat{e}me}$ d'une série formelle. Alors, avec ces seules hypothèses, f n'admet pas toujours (même localement) une racine $q^{\hat{1}\hat{e}me}$ de classe C^{∞} . Par exemple, dans [1], G.Glaeser donne un exemple d'application de \mathbb{R} dans \mathbb{R} , strictement positive en dehors de l'origine et plate à l'origine, n'admettant pas de racine carrée de classe C^{2} au voisinage de 0. Un autre exemple est fourni par la fonction de deux variables réelles : $y^{2} + e^{\frac{1}{X^{2}}}$. Visiblement, les conditions formelles sont satisfaites en tout point de \mathbb{R}^{2} et pourtant $y^{2} + e^{\frac{1}{X^{2}}}$ n'est pas,au voisinage de l'origine, le carré d'une fonction de classe C^{1} (d'après le théorème des fonctions implicites ordinaire). On a cependant le résultat suivant d \hat{u} à G. Glaeser ([1] ou [2]) : si f est une application de classe C^{2} de Ω dans \mathbb{R}^{+} , 2-plate sur l'ensemble de ses zéros, alors sa racine carrée est de classe C^{1} sur Ω .

Dans le § 2, nous considérons des fonctions positives, de classe \mathbb{C}^{p} dans l'ouvert Ω , p-plate sur l'ensemble de leurs zéros ; nous donnons des conditions suffisantes pour que f admette une racine avec une certaine classe de différentiabilité. Les conditions envisagées sont des conditions de régularité, liées à l'inégalité de Łojasiewicz (ceci est développé dans le § 1). Dans le § 3, nous considérons une application f de Ω dans \mathbb{C} , de classe \mathbb{C}^{∞} et plate en aucun point de Ω . Modulo certaines inégalités analogues à celles utilisées par Hörmander [3], et l'existence d'une racine $\mathbb{Q}^{1\text{ème}}$ formelle en chaque point de Ω , nous montrons que f admet localement une racine $\mathbb{Q}^{1\text{ème}}$ de classe \mathbb{C}^{∞} .

§ 1. INEGALITES DE ŁOJASIEWICZ.

Nous allons établir tout d'abord des résultats dont nous nous servirons par la suite. Le point générique x de \mathbb{R}^n aura pour coordonnées x_1,\ldots,x_n relativement à une base orthonormée (e_1,\ldots,e_n) ; $H_{n,q}$ désignera l'espace des polynômes homogènes sur \mathbb{R}^n de degré q à coefficients réels ; si A est une partie de \mathbb{R}^n , on

pose:
$$\|P\| = \sup_{A \in A} |P(x)| = \sup_{A \in A} |P(x)|$$
.

Enfin, si Δ est une demi-droite issue de l'origine de $\mathbb{R}^{\mathbb{N}}$ et si $0 < \theta \leq \frac{\mathbb{I}}{2}$, on notera $\mathcal{C}_{\Delta,\Theta}$ le cône plein ensemble des x de la boule unité de $\mathbb{R}^{\mathbb{N}}$ tels que l'angle de $\mathbb{O}\times$ et Δ soit majoré par θ .

Lemme 1.1.

Il existe une constante C > 0, telle que, pour tout polynôme P de $H_{n,q}$, tout Δ et tout Θ , $\|P\|_{\mathcal{C}_{\Lambda,\Theta}} \ge C \cdot \Theta^q \cdot \|P\| .$

L'image de l'ensemble $\Gamma = \{x \in \mathbb{R}^n : x_i \geq 0, i=1,\ldots,n : x_1+\ldots+x_n \leq 1\}$ par l'application linéaire U_{Θ} définie par : $U_{\Theta}(e_1) = e_1 : U_{\Theta}(e_i) = \cos \theta e_1 + \sin \theta e_i$ si $i \geq 2$ est contenue dans $\mathcal{C}_{0x_1,\Theta}$. Soit 0_{Δ} une transformation linéaire orthogonale de \mathbb{R}^n appliquant le demi-axe $0x_1$ sur Δ : 0_{Δ} transforme $\mathcal{C}_{0x_1,\Theta}$ en $\mathcal{C}_{\Delta,\Theta}$ et alors $\|P\|_{\mathcal{C}_{\Delta,\Theta}} \geq \|P \circ O_{\Delta} \circ U_{\Theta}\|_{\Gamma} \geq C \|P \circ O_{\Delta} \circ U_{\Theta}\|$ où C est une constante > 0. Comme pour tout P et tout Δ , $\|P \circ O_{\Delta}\| = \|P\|$, il suffit donc d'établir le résultat suivant : (1) il existe une constante C > 0 telle que pour tout P et tout Θ ,

$$\|P \circ U_{\Theta}\| \ge C. \ \Theta^q. \ \|P\|.$$
 Si x' = $\{x_2, \dots, x_n\}$, tout polynôme P s'écrit sous la forme $P(x) = \sum_{i=0}^q P_i(x')x_1^{q-1}$ où $P_i(x')$ est un polynôme homogène de degré i en x'.

$$\begin{aligned} \mathbb{Q}_{\mathbf{j}}(\mathbf{x'}) &= \sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{j}} \, \mathbf{C}_{\mathbf{q}-\mathbf{i}}^{\mathbf{q}-\mathbf{j}} \, \sin^{\mathbf{i}}\boldsymbol{\Theta} \, \, \mathbf{P}_{\mathbf{i}}(\mathbf{x'}) \, \left[\cos \, \boldsymbol{\Theta}(\mathbf{x}_2 + \ldots + \, \mathbf{x}_n) \right]^{\mathbf{j}-\mathbf{i}}. \, \, \text{On en déduit l'existence} \\ \text{d'une constante C'} > \text{o telle que } \sin^{\mathbf{j}} \boldsymbol{\Theta} \, \| \mathbf{P}_{\mathbf{j}} \| \, \leq \, \| \mathbb{Q}_{\mathbf{j}} \| \, + \, \mathbf{C'} \, \sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{j}-\mathbf{1}} \, \sin^{\mathbf{i}} \boldsymbol{\Theta} \, \| \mathbf{P}_{\mathbf{i}} \|. \end{aligned}$$

Lemme 1.2.

Soit Ψ une fonction numérique, définie et de classe \mathbb{C}^{p} sur l'intervalle [0,1]. Posons, pour tout $q=0,\ldots,p$, $M_{q}=\sup_{q}|\Psi^{(q)}(t)|$. Alors: $t\in [0,1]$ $M_{q}\leq 2 \left(e^{2\frac{p}{q}}\right)^{q} M_{q}^{1-\frac{q}{p}} \left[\sup_{q}(M_{p},p!M_{q})\right]^{\frac{q}{p}}.$

Preuve : Ce résultat est démontré dans [4].

Soit f une fonction numérique, définie et de classe \mathbb{C}^p sur un ouvert Ω de \mathbb{R}^n . La dérivée $q^{\mbox{ième}}$ de f en un point x de Ω s'identifie à un élément de $H_{n,q}$ et avec cette identification, A désignant une partie de \mathbb{R}^n ,

$$\|f^{(q)}(x)\| = \sup_{A \in A} |f^{(q)}(x)| \|f^{(q)}(x)\| = \sup_{A \in A} |f^{(q)}(x).(h^{(q)})|. \text{ Si } \rho > 0 \text{ et } x \in \Omega,$$
 soit \mathcal{C}^{\times} le cône de sommet x, translaté de l'homothétique ρ . \mathcal{C}^{\times} du cône \mathcal{C}^{\times} . Δ, θ, ρ Enfin, pour toute partie B de Ω , soit $\|f^{(q)}\| = \sup_{A \in A} \|f^{(q)}(x)\|.$

Lemme 1.3.

Avec les notations précédentes, il existe une constante C > 0, ne dépendant que de n et p telle que pour tout entier q, $0 \le q \le p$, tout $x \in \Omega$ et tout f de classe C^p dans Ω :

$$\|f^{(q)}(x)\| \leq \frac{c}{\theta^{q}} \|f\|_{\mathcal{C}_{\Delta,\theta,\rho}}^{1-\frac{q}{p}} \cdot \left[\sup_{\rho^{p}} \|f\|_{\mathcal{C}_{\Delta,\theta,\rho}}^{x}, \|f^{(p)}\|_{\mathcal{C}_{\Delta,\theta,\rho}}^{x}\right]^{\frac{q}{p}}$$

Si $y \in \mathcal{C}_{\Delta,\Theta,\rho}^{\times}$, posons pour $t \in [0,1]$, $\varphi(t) = f((1-t) \times + ty)$. $\varphi_{\Delta,\Theta,\rho}^{(q)}(t) = f^{(q)}((1-t) \times + ty)$. $(y-x)^q$; d'où $\varphi_y^{(q)}(0) = f^{(q)}(x) (y-x)^q$ et ainsi $\sup_{y} |\varphi_y^{(q)}(0)| = \|f^{(q)}(x)\|_{\mathcal{C}_{\Delta,\Theta}} e^{-t}$; $\sup_{y} |\varphi_y^{(t)}| \leq \|f\|_{\mathcal{C}_{\Delta,\Theta,\rho}} e^{-t}$; $\sup_{x \in \Delta,\Theta,\rho} |\varphi_x^{(t)}| \leq \|f\|_{\mathcal{C}_{\Delta,\Theta,\rho}} e^{-t}$

 $\sup_{t,y} \| \boldsymbol{\varphi}^{(p)}(t) \| \leq \| \boldsymbol{f}^{(p)} \|_{\boldsymbol{Q}_{\Delta,\theta,\rho}^{\times}}. \ \boldsymbol{\rho}^{p} \ ; \ d'après \ les inégalités précédentes et (1.2)$

appliqué à $arphi_{_{
m V}}$ on a :

$$\|f^{(q)}(x)\|_{\mathcal{C}_{\Delta,\Theta}} \cdot \rho^{q} \leq 2 \left(e^{2} \cdot \frac{p}{q}\right)^{q} \|f\|_{\mathcal{C}_{\Delta,\Theta,\rho}}^{1-\frac{q}{p}} \left[\sup(p!\|f\|_{\mathcal{C}_{\Delta,\Theta,\rho}}^{x}, \|f^{(p)}\|_{\mathcal{C}_{\Delta,\Theta,\rho}}^{x})\right]^{\frac{q}{p}}$$

et l'on conclut en appliquant (1.1).

Soit $\mathcal{E}(\Omega)$ l'anneau des fonctions numériques f, définies et de classe \mathbb{C}^{∞} dans Ω , $V_k(f)$ l'ensemble des points de k-platitude de f, c'est-à-dire l'ensemble des points où f et ses k premières dérivées s'annulent, $V_{\infty}(f)$ l'ensemble des points de platitude de f, c'est-à-dire l'ensemble des points où f et toutes ses dérivées s'annulent.

Proposition 1.4.

Si f est dans $\mathscr{E}(\Omega)$, les conditions suivantes sont équivalentes :

- 1) Toute fonction g $\in \mathscr{C}(\Omega)$, plate sur $\vee_{\Omega}(f)$ est divisible par f dans $\mathscr{C}(\Omega)$.
- 2) Pour tout compact KC Ω , il existe des constantes C > 0, $\alpha > 0$ telles que pour tout $x \in K$, $|f(x)| \ge Cd(x, V_O(f))^{\alpha}$ (i.e. f vérifie une inégalité de £ojasiewicz par rapport à l'ensemble de ses zéros).
- 3) $V_{\infty}(f) = \emptyset$; en outre, la condition suivante est satisfaite : (3') Pour tout compact KC Ω , il existe des constantes C > 0, $\alpha \ge 1$ et pour tout $x \in K V_{0}(f)$ une boule $B(x,\rho_{x})$ avec $\rho_{x} \ge Cd(x,V_{0}(f))^{\alpha}$ tels que pour tout $x' \in B(x,\rho_{x})$: $|f(x)| \ge \frac{1}{2} |f(x')|$.
- 4) $V_{m}(f) = \emptyset$; en outre, la condition suivante est satisfaite : (4') Pour tout

compact KC Ω , il existe des constantes C_1 , C_2 , $C_3 > 0$ et $\alpha_1 \ge 0$, $\alpha_2 \ge 1$, $\alpha_3 \ge 0$ et pour tout \times \in K- V_0 (f) un cône \bigotimes^{\times} avec $\Theta_{\times} \ge C_1$ d(x, V_0 (f)) α_1 , $\alpha_2 \ge C_2$ d(x, V_0 (f)) α_2 tels que :

pour tout x' $\in \mathcal{C}_{\Delta_{x}, \theta_{x}, \rho_{x}}^{x}$, $|f(x)| \ge C_{3} |f(x')| d(x, V_{0}(f))^{\alpha_{3}}$.

1 \iff 2. cf. [5], chap. V, proposition 4.3.

2 \Longrightarrow 3. Des inégalités $|f(x')| \le |f(x)| + |f(x) - f(x')| \le |f(x)| + Ad(x,x')$ où A est une constante > o dépendant de K, il vient si

$$\rho_{x} = \frac{c}{A} d(x, V_{0}(f))^{\alpha} : |f(x')| \leq 2|f(x)|.$$

En outre, la condition 2 implique que $V_{\infty}(f) = \emptyset$, ce qui n'est pas trivial, malgré les apparences ; cf. [5], appendice.

3 ---> 4. évident.

4 ====> 2. La condition (2) étant de nature locale, il suffit de démontrer l'inégalité (2) au voisinage d'un point \times_0 de Ω . Comme $V_\infty(f) = \not o$, il existe un voisinage compact K de \times_0 dans Ω , un réel β_1 > 0 et un entier q tels que pour tout \times \in K, $\|f^{(q)}(x)\| \geq \beta_1$. Si l'on pose p=q+1, il existe une constante β_2 > 0 telle que pour tout \times \in K, $\|f^{(p)}\|_{\Sigma}$ $\leq \beta_2$, les ξ_{Δ}^{\times} , θ_{χ} ,

On a, d'après l'hypothèse (4') :

$$C_{3}\|f\|_{\mathcal{C}_{\Delta_{x},\Theta_{x},\rho_{x}}} d(x,V_{0}(f))^{\alpha_{3}} \leq |f(x)|, \Theta_{x} \geq C_{1} d(x,V_{0}(f))^{\alpha_{1}}, \rho_{x} \geq C_{2} d(x,V_{0}(f))^{\alpha_{2}}.$$

La condition (2) résulte alors de (1.3) appliqué au cône $\mathcal{C}_{\Delta_x,\theta_x,\rho_x}^{x}$ et des cinq inégalités précédentes.

Nous utiliserons au paragraphe suivant des inégalités analogues à celles de (4'). On dira qu'une fonction numérique f de classe C dans un ouvert Ω de ${\rm I\!R}^n$

D'après la proposition précédente, la fonction f vérifie une inégalité de Łojasiewicz par rapport à l'ensemble de ses zéros, si et seulement si $V_{\infty}(f) = \emptyset$ et f vérifie une "condition de Łojasiewicz faible".

§ 2. RACINES D'UNE FONCTION DE CLASSE C^P, p-PLATE SUR L'ENSEMBLE DE SES ZEROS. Théorème 2.1.

Soit f une fonction positive de classe C^P dans un ouvert Ω de \mathbb{R}^n , p-plate sur l'ensemble non vide $V_0(f)$ de ses zéros ; on suppose qu'il existe trois constantes $\alpha_1 \geq 0$, $\alpha_2 \geq 1$, $\alpha_3 \geq 0$ pour lesquelles f vérifie la condition $L(\alpha_1, \alpha_2, \alpha_3)$.

Alors, pour tout $\alpha \in [0,1[$, f^α est de classe C^K et K-plate sur $V_0(f)$, où $K = [\frac{p}{\alpha_1 + \alpha_2 + \alpha_3}] \alpha$

Nous utiliserons les deux lemmes suivants :

Lemme 2.2.

Si E,F,G sont trois espaces de Banach, f une application de classe C^P au voisinage d'un point $x \in E$ dans F, g une application de classe C^P au voisinage de f(x) dans G, alors $g \circ f$ est une application de classe C^P au voisinage de f(x) dans f(x) dans

Preuve :

Des développements limités à l'ordre p de f et g respectivement en x et f(x), on en déduit pour o \leq q \leq p :

$$\frac{1}{q!} (g \circ f)^{(q)}(x) [h, ..., h] =$$

d'où
$$(g \circ f)^{(q)}(x) [h_1,...,h_q] =$$

$$\begin{array}{c} \overset{q}{\overset{\Sigma}{\sum}} \frac{1}{k!} & \overset{\Sigma}{\underset{i_1 + \dots + i_k = q}{\sum}} & \overset{\Sigma}{\underset{1 \le j \le k}{\sum}} & g^{(k)} f(x)) \left[f^{(i_j)} (x) (h_{\alpha_1^1, \dots, h_{\alpha_1^1}}), \dots \right] \\ & 1 \le i_j \le q & 1 \le \alpha_1^j < \dots < \alpha_i^j \le q \\ & \alpha_i^u \ne \alpha_j^v \text{ pour } (u, i) \ne (v, j) \end{array}$$

et aussi :

$$\|(g \circ f)^{(q)}(x) (h_1,...,h_q)\| \le$$

Mais de l'égalité
$$\sum_{\substack{i_1+\ldots+i_k=q\\1\leq i_j\leq q\\\\ m_1+\ldots+m_q=k\\\\ m_1+2m_2+\ldots+qm_q=q}} \frac{q!}{i_1!\cdots i_k!} \|f^{(i_1)}(x)\|...\|f^{(i_k)}(x)\| = \sum_{\substack{1\leq i_j\leq q\\\\ (1!)^{m_1}\ldots (q!)^{m_q}\\1 = q}} \|f^{(x)}\| ...\|f^{(q)}(x)\|^{m_q}$$

On déduit le résultat.

Lemme 2.3.

Si f est une application de classe C^P au voisinage d'un point \times d'un espace de Banach dans \mathbb{R}^+_{\times} , alors pour tout $\alpha \in]0.1[$, f^{α} est de classe C^P au voisinage de \times et l'on a pour $0 \le q \le P$:

$$\| \psi^{(q)} \| \leq \frac{q!}{f(x)^{q-\alpha}} \sum_{\substack{m_0 + \dots + m_q = q \\ m_1 + 2m_2 + \dots + qm_q = q}} \frac{\left| \alpha(\alpha-1) \dots (\alpha-q+m_0+1) \right|}{m_1! \dots m_q! (1!)^{m_1} \dots (q!)^{m_q}} (f(x))^{m_1} \dots \| f'(x) \|^{m_1} \dots \| f'(x) \|^{m_q}$$

Preuve :

Il suffit d'appliquer 2.2 à g : $x \longrightarrow x^{\alpha}$.

Preuve de 2.1.

Soit $x_0 \in V_0(f)$, U un voisinage de x_0 dans Ω , $M_p = \sup_{y \in U} \|f^p(y)\|$ et des entiers $0 \le q \le k \le p$. Il existe une constante $C_1 > 0$ ne dépendant que de n et p (1.3 et les hypothèses de 2.1) telle que pour tout $x \in U \setminus V_0(f)$

$$\frac{ \left\| f^{q}(x) \right\| \leq }{ \frac{ C_{1}(f(x))^{1-\frac{q}{k}} }{ \alpha_{1}q^{+}\alpha_{3}^{(1-\frac{q}{k})} } } \cdot \left(\sup \left(\frac{ \frac{k ! f(x)}{ c_{2}^{k} C_{3} d(x, V_{0}(f))} ^{\alpha_{2}k+\alpha_{3}} , \left\| f^{(k)} \right\|_{X} \right) \right)^{\frac{q}{k}}$$

Il existe donc une constante $C_2 > o$ ne dépendant que de n et p telle que :

$$\|f^{q}(x)\| \le C_{2} (f(x))^{1-\frac{q}{k}} \cdot M_{p}^{\frac{q}{k}} d(x, V_{o}(f))^{r}$$

où r = (inf (p-k, p- α_2 k- α_3)) $\frac{q}{k}$ - (α_1 q + α_3 (1 - $\frac{q}{k}$)).

En appliquant (2.3) à φ = \mathbf{f}^{α} , il existe une constante \mathbf{C}_3 > o telle que :

$$\|\boldsymbol{\varphi}^{(q)}(x)\| \leq c_3 \left(f(x)\right)^{\alpha - \frac{q}{k}} \cdot M_p^{\frac{q}{k}} d(x, V_o(f))^s;$$

$$\text{où } \text{ s = (inf (p-k, p-\alpha_2k-\alpha_3) - (\alpha_1k+\alpha_3(k-1)))} \frac{q}{k}$$

Si l'on prend s \geq o et α - $\frac{q}{k} \geq$ o,

 $\alpha \ge \frac{q}{k}$, $p-k \ge \alpha_1$ $k+\alpha_3$ (k-1) et $p-\alpha_2$ $k-\alpha_3 \ge \alpha_1$ k + α_3 (k-1), ou encore

$$q \leq \left[k\alpha\right] \text{ et } k \leq \left[\inf\left(\frac{p}{\alpha_1 + \alpha_2 + \alpha_3}, \frac{p + \alpha_3}{\alpha_1 + \alpha_3 + 1}\right)\right] = \left[\frac{p}{\alpha_1 + \alpha_2 + \alpha_3}\right],$$

[x] désigne la partie entière de x),

 $arphi^{\, \mathrm{q}}(\mathrm{x})$ tend vers O lorsque x tend vers $\mathrm{x}_{\mathrm{o}}.$

Il suffit alors d'appliquer le lemme d'Hestenes (cf. [5], p. 80), pour déduire le résultat.

Corollaire 2.4.

Soit f une application de classe C^{∞} d'un ouvert Ω de R^{\cap} dans R^{+} , plate sur l'ensemble non vide de ses zéros $V_{\Omega}(f)$, vérifiant une condition de Łojasiewicz faible Ł $(\alpha_{1},\alpha_{2},\alpha_{3})$; alors, pour tout α \in $]_{\Omega}$,1[, f^{α} est de classe C^{∞} sur Ω .

Corollaire 2.5.

Soit f une application de classe C^P (resp. C^∞) d'un ouvert Ω de R dans R^+ , p-plate (resp. plate) sur l'ensemble non vide de ses zéros, au voisinage desquels elle est monotone ; alors, pour tout α \in]0.1[, f^α est de classe $C^{[P\alpha]}$ (resp. C^∞).

Preuve :

Il suffit de prendre $\alpha_1 = \alpha_3 = 0$ $\alpha_2 = 1$.

Corollaire 2.6.

Soit f une application de classe C^P d'un ouvert Ω de R^P dans R^+ p-plate sur l'ensemble non vide de ses zéros $V_0(f)$. On suppose qu'il existe deux constantes A > 0, B > 0 telles que pour tout $X \in \Omega \setminus V_0(f)$ et tout $X' \in B(X, \rho_X)$, où $\rho_X \geq A \ d(X, V_0(f))$, $f(X) \geq B \ f(X')$.

Alors, pour tout $\alpha \in]0,1[$, f^{α} est de classe $[p\alpha]$.

On peut aussi démontrer le résultat suivant :

Proposition 2.7.

Pour tout entier p, tout fermé X de \mathbb{R}^{D} et tout ouvert Ω le contenant, il existe une application positive f de classe \mathbb{C}^{D} sur Ω , vérifiant une condition de Łojasiewicz faible Ł(0,1,0) et telle que $\mathsf{V}_{\mathsf{D}}(\mathsf{f}) = \mathsf{V}_{\mathsf{D}}(\mathsf{f}) = \mathsf{X}$.

Exemple 2.8.

Soit arPsi l'application de classe C $^{\infty}$ dans (R à valeurs dans (R définie par :

 $\Psi_{(x)} = e^{-\frac{1}{1-x^2}} \text{ pour } |x| < 1 \text{ et o pour } |x| \ge 1. \text{ Posons } \Psi_{n}(x) = \frac{1}{2^n} \Psi_{(2n(n+1)x-(2n+1))}$ nulle en dehors de $I_n = \left[\frac{1}{n+1}, \frac{1}{n}\right]$ $(n \ge 1)$ et de classe C^∞ dans R. Posons $\psi(x) = \sum_{n \ge 1} \Psi_{n}(x), \text{ définie, positive sur } (R), \text{ plate en les points } \frac{1}{n}, n \ge 1.$ Sur I_n , $\psi^{(k)}(x) = \frac{1}{2^n} (2n(n+1))^k \Psi^{(k)}(2n(n+1) - (2n+1))$ et donc $\psi^{(k)}(x)$ tend vers o lorsque x tend vers o. Ainsi, ψ est de classe C^∞ , plate en ses zéros et vérifie une condition de \times ojasiewicz faible \times (0,1,0) tout en n'étant pas monotone à l'origine.

§ 3. RACINES D'UNE FONCTION C $^{\infty}$ PLATE EN AUCUN POINT.

Soit f une application de classe C^{∞} d'un ouvert Ω de \mathbb{R}^{n} dans \mathbb{C} , plate en aucun point et vérifiant une inégalité de Łojasiewicz par rapport à l'ensemble non vide V_{0} de ses zéros : Pour tout compact $K\boldsymbol{C}\Omega$, il existe deux constantes C>0 et $\alpha>0$ telles que \forall \times $\boldsymbol{\epsilon}$ K : $|f\{x\}|$ \geq C $d(x,V_{0})^{\alpha}$.

On suppose que f possède en tout point $\times \varepsilon V_o$ une racine p^{ième} formelle, c'est-à-dire un jet $\Psi(x) = (\Psi_k(x))_{|k|>0}$ tel que :

$$\left[\begin{array}{cc} \sum\limits_{|k| \geq 0} \Psi_k(x) \frac{\chi^k}{k!} \end{array}\right]^p = \sum\limits_{|k| \geq 0} D^k f(x) \frac{\chi^k}{k!}.$$

Les fermés emboités $V_k = \{ \times \boldsymbol{\epsilon} \Omega \mid f \text{ et ses } k \text{ premieres dérivées s'annulent en } \times \}$, vérifient alors : $\forall \times \geq 1$, $V_{(r-1)p} = V_{rp-1}$ et $V_{\infty} = \emptyset$. Soit $W_r = V_{(r-1)p} - V_{rp}$.

On suppose en outre <u>que pour tout entier r \geq 1, il existe des constantes $\alpha_r > 0$, $C_r > 0, \text{ telles que } \forall x \in W_r \|f^{(rp)}(x)\| \geq C_r d(x, V_{rp})^{\alpha_r}. \text{ (H) (On convient que } d(x, \emptyset) = 0).$ </u>

Théorème 3.1.

Avec les hypothèses précédentes, f possède au voisinage de tout point de Ω une racine p^{ième} de classe Γ^{∞} .

Nous aurons besoin des lemmes suivants :

Lemme 3.2.

Soit \mathcal{P}_q le sous-espace vectoriel de $\mathbb{C}[X_1,\ldots,X_n]$ formé des polynômes de degré $\leq q$, \mathbb{C} espace de Banach de dimension finie pour la norme :

$$\left\| \sum_{(k)} a_k \frac{x^k}{k!} \right\| = \sup_{(k)} \left| a_k \right| ;$$

il existe deux constantes $C_1 > 0$, $C_2 > 0$ pour lesquelles, $\forall f \in \mathcal{P}_q$, $\forall g \in \mathcal{T}_r$: $C_1 \|f\|_q \|g\|_r \le \|f \cdot g\|_{q+r} \le C_2 \|f\|_q \|g\|_r .$

Preuve : La seconde inégalité est évidente ; pour la première, on raisonne par l'absurde ; en utilisant la compacité des boules unités de \mathcal{F}_q et \mathcal{F}_r , on exhibe $f \in \mathcal{F}_q$ et g $\in \mathcal{F}_r$ vérifiant : $\|f\|_q = \|g\|_r = 1$ et $\|f \cdot g\|_{q+r} = 0$.

Soit G_p le groupe des racines p^{ième} de l'unité. Nous utilisons dans la preuve de 3.1, la démonstration du lemme suivant :

Lemme 3.3.

Soient E un espace métrique , F une C algèbre normée , f une application d'un voisinage Ω d'un point $\times_{\Omega} \mathbf{E}$ E, dans F, vérifiant $f(\times_{\Omega}) \neq 0$, et :

$$\lim_{\substack{x \to y \ s \in G_p}} \| sf(x) - f(y) \| = 0.$$

Alors, il existe une application continue g d'un voisinage de $\times_{\hat{O}}$ dans F telle que $g^p = f^p$.

Preuve : Soit d =
$$\inf_{\substack{s \neq t \\ s,t \in G_p}} |s-t|$$
 et $\mu = \frac{d}{d+3} \|f(x_0)\|$. Il existe $\eta > 0$ tel que :

 $\forall x \in B(x_0,\eta), x \in \Omega \text{ et } \Pi \quad \left\| sf(x) - f(x_0) \right\| \leq \mu^p. \text{ Il existe donc une application } s \in G_p$ $u \text{ de } B(x_0,\eta) \text{ dans } G_p \text{ telle que } \forall x \in B(x_0,\eta) \quad \left\| u(x) \cdot f(x) - f(x_0) \right\| \leq \mu \text{ et } u(x_0) = 1.$ Montrons que g = u of est continue dans $B(x_0,\eta)$.

Soit $o < \varepsilon < \mu$ et $x \in B(x_0, \eta)$. Il existe $\eta' > o$ tel que pour $d(x, y) \le \eta'$ et $d(x_0, y) \le \eta$, π $\|sf(y) - f(x)\| \le \varepsilon^p$ et donc, il existe $s \in G_p$ tel que $\|sf(y) - g(x)\| \le \varepsilon$. Comme $d(x_0, y) \le \eta$ et $d(x, x_0) \le \eta$, $\|g(x) - g(y)\| \le 2\mu$. Or, si $s \ne u(y)$, $\|g(x) - g(y)\| \ge d\|f(y)\| - \varepsilon > \frac{2d}{d+3} \|f(x_0)\| = 2\mu$; d'où le résultat.

Le lemme qui suit, fondamental pour la suite, utilise essentiellement le théorème du prolongement de Whitney (cf. [5], chap. IV, p. 68-73).

Lemme 3.4.

Soient X > Y deux compacts de \mathbb{R}^{n} , f une fonction de Whitney de classe \mathbb{C}^{∞} sur Y, g un jet sur X-Y, \mathcal{E} une application de X dans Y telle que $\|x - \mathcal{E}(x)\| = d(x,Y)$. On suppose :

(3.4.1). Il existe, pour tout entier m \in N, un module de continuité ω tel que \forall \times \in X - Y et \forall | k | \leq m :

$$|g_{k}(x) - \sum_{\substack{|\ell| \leq m \\ \ell \geq k}} f_{\ell}(\mathcal{E}(x)) \xrightarrow{(x-\mathcal{E}(x))^{\ell-k}} |\leq \omega(||x-\mathcal{E}(x)||) ||x-\mathcal{E}(x)||^{m-|k|}$$

(3.4.2). Il existe, pour tout entier $m \in \mathbb{N}$, des constantes $\alpha > 0$, C > 0 et un module de continuité ω tels que: $\forall \times \in X-Y$, $\forall \times' \in B$ $\{\times, Cd(\times,Y)^{\alpha}\} \cap X-Y$ et \forall k, $|k| \leq m$:

$$|g_{k}(x) - \sum_{\substack{|\ell| \leq m \\ \ell > k}} g_{\ell}(x') \frac{(x-x')^{\ell-k}}{\ell-k!} |\leq \omega (||x-x'||) ||x-x'||^{m-|k|};$$

Alors, f et g définissent sur X une fonction de Whitney de classe $\operatorname{\mathbb{C}}^{\infty}$.

Preuve. 1°) Soit h le jet défini par f sur Y et g sur X-Y. Supposons, tout d'abord que f est nul : - Soit $\times \varepsilon X$ - Y et $\times '\varepsilon X$ - Y et $\times '\varepsilon X$; ou bien $\|x-x'\| \le C(x,Y)^\alpha$ et alors,

d'après (3.4.2) :
$$|h_k(x) - \sum_{\substack{|\ell| \leq m \\ \ell \geq k}} h_{\ell}(x') \frac{(x-x')^{\ell-k}}{\ell-k!} | \leq \omega (||x-x'||) ||x-x'||^{m-|k|};$$

ou bien $\|\mathbf{x} - \mathbf{x}'\| > Cd(\mathbf{x}, \mathbf{Y})^{\alpha}$, c'est-à-dire $d(\mathbf{x}, \mathbf{Y}) \leq (\frac{\|\mathbf{x} - \mathbf{x}'\|}{C})^{\alpha}$. Il existe deux constantes $C_1 > 0$, $C_2 > 0$ ne dépendant que de m et un entier p tels que : $d(\mathbf{x}, \mathbf{Y})^{p-|\mathbf{k}|} \leq C_1 \|\mathbf{x} - \mathbf{x}'\|^{m-|\mathbf{k}|} \text{ et } d(\mathbf{x}', \mathbf{Y})^{p-|\mathbf{k}|} \leq C_2 \|\mathbf{x} - \mathbf{x}'\|^{m-|\mathbf{k}|}.$

Alors, comme
$$\left|h_{k}(x) - \sum_{\substack{|\ell| \leq m \\ \ell \geq k}} h_{\ell}(x') \left(\frac{x-x')^{\ell-k}}{\ell-k!}\right| \leq \omega_{1}(d(x,Y)) d(x,Y)^{p-\left|k\right|} + \omega_{2}(d(x',Y)) d(x',Y)^{p-\left|k\right|}$$

(d'après (3.4.1) et l'hypothèse f=o), il existe un modulo de continuité ω_3 ne dépendant que de m tel que $\forall |k| < m$:

$$\left| h_{k}(x) - \sum_{\substack{\left| \ell \right| \leq m \\ \ell > k}} h_{\ell}(x') \frac{\left(x - x' \right)^{\ell - k}}{\ell - k!} \right| \leq \omega_{3} \left(\left\| x - x' \right\| \right) \left\| x - x' \right\|^{m - \left| k \right|}.$$

- Soit
$$x \in X - Y$$
 et $y \in Y$; $\left| h_k(x) - \sum_{\substack{|\ell| \leq m \\ \ell > k}} h_{\ell}(y) \frac{(x-y)^{\ell-k}}{\ell-k!} \right| = \left| g_k(x) \right| \leq 1$

$$\omega(d(x,Y)) d(x,Y)^{m-|k|} \le \omega(||x-y||) ||x - y||^{m-|k|}$$
 et

$$\left| h_{k}(y) - \sum_{\substack{\left| \ell \right| \leq m \\ \ell > k}} h_{\ell}(x) \frac{\left(y - x\right)^{\ell - k}}{\ell - k!} \right| \leq \sum_{\substack{\left| \ell \right| \leq m \\ \ell > k}} \left| g_{\ell}(x) \right| \frac{\left\| x - y \right\| \left| \ell \right| - \left| k \right|}{\ell - k!} \leq \omega_{1}(\left\| x - y \right\|) \left\| x - y \right\|^{2}.$$

Ainsi, si f est nul, h est une fonction de Whitney de classe C^{∞} sur X.

2°) Etude du cas général. D'après le théorème de Whitney, il existe une fonction de classe \mathbb{C}^∞ , \mathbb{C}^∞ au voisinage de Y telle que $f = (\mathbb{D}^k \ f)_{|k| \ge 0}$. Le champ h-f est nul sur Y et donc d'après ce qui précède, c'est une fonction de Whitney sur X. Ainsi, h = (h - f) + f est une fonction de Whitney de classe \mathbb{C}^∞ sur X.

Preuve de 3.1.

La démonstration consiste à prouver que $\forall x \in V_0$, il existe un voisinage sur lequel on a une détermination du jet φ qui est une fonction de Whitney de classe C^∞ . On montre d'abord (3.6) qu'il existe une détermination continue de φ

au voisinage d'un point $x \in W_r$, dans W_r ; puis (3.7 et 3.8) que pour cette détermination, Ψ est une fonction de Whitney de classe C^∞ . A l'aide du lemme de prolongement (3.4), on montre (3.9) qu'il existe dans un voisinage de x dans $V_{(r-2)p}$ une détermination de Ψ qui est une fonction de Whitney de classe C^∞ ; et ainsi, de proche en proche, on parvient à exhiber un voisinage de x dans y0 sur lequel y0 admet une détermination de classe y0.

Soit $j \in \mathbb{N}$, $y \in V_0$.

On a : $f^{(j)}(x) = f^{(j)}(y) + f^{(j+1)}(y) \frac{(x-y)^{1}}{1!} + \dots + f^{(i)}(y) \frac{(x-y)^{i-j}}{i-j!} + \dots$ (développement de Taylor de $f^{(j)}$).

Soit
$$f^{i,j}(x,y) = \begin{cases} \frac{f^{(i)}(y)(x-y)^{i-j}}{(i-j)!} & (X,\dots,X) = \sum_{\substack{|k|=i\\|\ell|=j\\k\geq \ell}} D^k f(y) \frac{(x-y)^{k-\ell}}{k-\ell!} \cdot \frac{X^{\ell}}{\ell!} & \text{si } i \geq j \end{cases}$$

et par analogie : $\varphi^{i,j}(x,y) = \begin{cases} \sum_{\substack{|k|=i,|\ell|=j,k\geq \ell \\ 0 \text{ si } i < j}} \varphi_k(y) \cdot \frac{(x-y)^{k-\ell}}{k-\ell!} \frac{\chi^{\ell}}{\ell!} \text{ si } i \geq j \end{cases}$

On vérifie que :
$$f^{i,j}(x,y) = \sum_{\substack{i_1 + \dots + i_p = i \\ j_1 + \dots + j_p = j}} \psi^{i_1,j_1}(x,y) \dots \psi^{i_p,j_p}(x,y)$$
 (3.5.1)

Soit $i \ge j$ et |l|=j. Il existe une constante C > o telle que :

$$| \Psi_{\ell}(x) - \sum_{\substack{|k| \leq i \\ k \geq \ell}} \Psi_{k}(y) \frac{(x-y)^{k-\ell}}{k-\ell!} | \leq C | | \Psi^{j}(x) - \sum_{j \leq k \leq i} \Psi^{k,j}(x,y) | | (3.5.2)$$

(où $\|.\|$ est la norme de $\mathcal{F}_{\mathbf{i}}$ (3.2)). De même pour f.

Ainsi, **19**s quantités qui apparaissent dans 3.4.1 et 3.4.2 seront maniées sous forme de polynômes homogènes en utilisant (3.2) et les inégalités (3.5)

L'étude étant locale, on suppose V compact. On convient de noter $A,B,C,\ldots,\alpha,\beta,\gamma,\ldots$ des constantes > o dépendant éventuellement de f et de ses dérivées ou de paramètres entiers, mais indépendantes du point générique de W_.

> Pour tout $\times \in W_r$, $(\mathcal{Y}^r(x))^p = f^{rp}(x)$ et d'après (3.2), $\| \mathbf{\Upsilon}^{r}(x) \| \leq A \| f^{rp}(x) \|^{\frac{1}{p}} < B.$

$$f^{rp+j}(x) = p(\psi^{r}(x))^{p-1}. \psi^{r+j}(x) + \sum_{\substack{|l|=rp+j\\ l_{i} < r+j}} \psi^{l_{1}}(x)...\psi^{l_{p}}(x).$$
(3.5.3)

On en déduit par récurrence que, \forall j \geq 0, il existe C et α telles que : $\|\phi^{r+j}(x)\| \le \frac{C}{d(x,V_{rp})^{\alpha}}$ (3.5.4) (d'après (H)).

Pour tout $x,y \in V_0$, \forall i et $j \leq i$, $\|\varphi^{i,j}(x,y)\| \leq C \frac{\|x-y\|^{1-j}}{\|\varphi^{r}(y)\|^{\alpha}}$ où C et α sont des constantes ne dépendant que de i. /

Il existe une détermination continue de φ au voisinage de tout point de W ; plus précisément, si $\vee_{rp} \neq \emptyset$, il existe une constante C et, $\forall \times \in W_r$, une détermination continue de φ sur $\cup_{x} = B(x, Cd(x, V_{rn})^{\alpha}) \cap W_{r}$ telles que :

$$\forall \, y \in U_{x} \ , \ \| \, \varphi^{\, \mathbf{r}}(x) \, - \varphi^{\, \mathbf{r}}(y) \| \ \leq \ \frac{d}{d+3} \ \| \, \varphi^{\, \mathbf{r}}(x) \| \, .$$

Preuve.

On utilise ici la preuve de (3.3). Si $V_{rp} \neq \emptyset$, soit $x \in W_r$, $\mu = \frac{d}{d+3} \| \varphi^r(x) \|$. Il existe une constante C > o telle que $\mu^{\mathsf{p}} \geq$ C $\|\mathbf{f}^{\mathsf{rp}}(\mathbf{x})\|$. On a :

où C_1 et C_2 sont des constantes > 0.

On vérifie, d'après (H) qu'il existe une constante C telle que

D'où résulte la continuité d'une détermination de arphi °.(3.3). On montre par récurrence la continuité d'une détermination de $oldsymbol{arphi}$ sur U $_{ extstyle ext$ Par abus de notations, sur U $_{ extsf{x}}$, arphi désignera une détermination continue du champ arphi .

3.7 Avec les notations de 3.6, si $\vee_{\text{rp}} \neq \emptyset$, $\forall \text{ m} \geq \text{r}$, il existe des constantes C, a et un module de continuité ω tels que :

Pour des commodités de notations, on introduit la propriété suivante : Soit \times ε W_r ; un point y ε U_x vérifie une propriété $\mathcal{F}(x)$ si y ε $B(x,Cd(x,V_{rp})^{\alpha})$ où C et α sont deux constantes indépendantes de y et x, ne dépendant éventuellement que de paramètres entiers.

Preuve : On raisonne par récurrence sur l'entier j et "on restreint à chaque nouvelle étape la propriété $\mathcal{P}(x)$ que y vérifiait à l'étape précédente". Comme il n'y a que m+1 étapes, on trouve en définitive la propriété $\mathcal{P}(x)$ que doit vérifier y.

A l'ordre j = 0; soit m' = (m + 1) p.

$$\begin{bmatrix} \sum_{i \leq m' p} \boldsymbol{\varphi}^{i,o}(x,y) \end{bmatrix}^{p} = \sum_{i_{k} \leq m' p} \boldsymbol{\varphi}^{i_{1},o} \dots \boldsymbol{\varphi}^{i_{p},o} = \sum_{i \leq m' p} \sum_{f \in (x,y) + \sum_{i_{k} \leq m'_{p}} \boldsymbol{\varphi}^{i_{1},o} \dots \boldsymbol{\varphi}^{i_{p},o} \\ i_{1} + \dots + i_{p} > m' p \end{bmatrix}$$
(d'après 3.5.1).

D'après (3.5.5), il existe des constantes C,α ne dépendant que de m pour

lesquelles
$$\forall y \in U_{x}$$
, $\| \left(\sum_{i \leq m'p} \varphi^{i,o}(x,y) \right)^{p} \| \leq C \left[\| x - y \|^{m'p+1} + \frac{\| x - y \|^{m'+1}}{d(x, V_{rp})^{\alpha}} \right]$.

Si y vérifie $\mathcal{P}(x)$, on a $\|(\sum_{i\leq m'p} \varphi^{i,o}(x,y))^p\| \leq C \|x-y\|^{m'}$ et alors,

$$\text{d'après (3.2)} : \sum_{\mathbf{i} \leq m} \boldsymbol{\varphi}^{\mathbf{i}, \mathbf{o}}(\mathbf{x}, \mathbf{y}) \| \leq \mathbb{C} \left[\| \mathbf{x} - \mathbf{y} \|^{m+1} + \frac{\| \mathbf{x} - \mathbf{y} \|^{m+1}}{\mathsf{d}(\mathbf{x}, \mathbf{v}_{rp})^{\alpha}} \right].$$

Enfin, si y vérifie $\mathcal{F}(x)$, (on a restreint deux fois le voisinage de x) $\|\sum_{\substack{i\leq m}}\mathcal{Q}^{i,o}(x,y)\|\leq \omega_{o,m}(\|x-y\|)\|x-y\|^m\text{ où }\omega_{o,m}\text{ est un module de continuité ne dépendant que de m.}$

A l'ordre j=r-1, les ordres inférieurs étant supposés vérifiés.

Soit $m' = \{m+1\} p + r - 1$

D'après (3.2) et (3.5.1),

$$\| \sum_{\mathbf{i} \leq m'p} f^{\mathbf{i},(\mathbf{r}-1)p}(\mathbf{x},\mathbf{y}) \| = \| \sum_{\mathbf{i} \leq m'p} \sum_{\mathbf{i}_{1}+\dots+\mathbf{i}_{p}=\mathbf{i}} \varphi^{\mathbf{i}_{1},\mathbf{j}_{1}} \dots \varphi^{\mathbf{i}_{p},\mathbf{j}_{p}} \| \leq \sum_{\mathbf{j}_{1}+\dots+\mathbf{j}_{p}=(\mathbf{r}-1)p} \varphi^{\mathbf{i}_{1},\mathbf{j}_{1}} \dots \varphi^{\mathbf{i}_{p},\mathbf{j}_{p}} \| \leq \sum_{\mathbf{j}_{1}+\dots+\mathbf{j}_{p}=(\mathbf{r}-1)p} \varphi^{\mathbf{i}_{1},\mathbf{j}_{1}} \| \mathbf{y}^{\mathbf{i}_{1},\mathbf{j}_{1}} \|$$

Soit
$$A_k = \{(j_1, ..., j_p) \mid |j| = (r-1)p; j_i \ge k; \exists u \ j_u = k\}. k=0,...,r-1.$$

$$\sum_{k=0}^{r-1} A_k = \left[|j| = (r-1)p\right]$$

$$\sum_{\substack{|\mathbf{i}| \leq m'p \\ (\mathbf{j}) \in A_k}} \boldsymbol{\varphi}^{\mathbf{i}_{1},\mathbf{j}_{1}} \dots \boldsymbol{\varphi}^{\mathbf{i}_{p},\mathbf{j}_{p}} = p \sum_{\substack{\mathbf{i}_{1} \leq m' \\ \mathbf{i}_{1} \leq m'}} \boldsymbol{\varphi}^{\mathbf{i}_{1},\mathbf{k}} \dots \sum_{\substack{|\mathbf{j}| = (\mathbf{r}-1)p-k \\ \mathbf{j} \geq k \\ |\mathbf{i}| \leq m'(p-1)}} \boldsymbol{\varphi}^{\mathbf{i}_{1},\mathbf{j}_{1}} \dots \boldsymbol{\varphi}^{\mathbf{i}_{p},\mathbf{j}_{p}} + \mathbf{u}(\mathbf{x},\mathbf{y}).$$

$$\text{où } \left\| \mathbf{u}(\mathbf{x},\mathbf{y}) \right\| \leq C \frac{\left\| \mathbf{x} - \mathbf{y} \right\|^{m'+1-k}}{\mathbf{d}(\mathbf{x},\mathbf{V}_{rp})^{\alpha}}$$

Si donc y vérifie $\mathscr{F}(\mathsf{x})$ (on restreint une nouvelle fois le voisinage de x)

$$\|\sum_{|\mathbf{i}| < m'p} \varphi^{\mathbf{i}_1, \mathbf{r}^{-1}}, \dots, \varphi^{\mathbf{i}_p, \mathbf{r}^{-1}}\| \le c \|\mathbf{x} - \mathbf{y}\|^{m' - (\mathbf{r}^{-1})}.$$

Enfin, si y vérifie $\Re(x)$, (on a restreint un certain nombre de fois le voisinage de x) $\|\sum_{i\leq m} \P^{i,r-1}(x,y)\| \leq \omega_{r-1,m}(\|x-y\|) \|x-y\|^{m-(r-1)}$ où $\omega_{r-1,m}$ est un module de continuité ne dépendant que de r-1 et m.

- A l'ordre j=r, les ordres inférieurs étant supposés vérifiés.

Soit
$$m' = (m+1) p+r$$
.

On a :

On en déduit comme précédemment par découpage et application de l'hypothèse de récurrence : $\|(\Psi^r(x))^p - (\sum \Psi^{i,r}(x,y))^p\| \le C \|x-y\|^{m'-r}$ si y vérifie $i \le m'$

Pour chaque y, il existe un s ϵ $^{\rm G}_{\rm p}$ tel que :

$$\| \boldsymbol{\varphi}^{\mathbf{r}}(\mathbf{x}) - \mathbf{s} \sum_{\mathbf{i} < \mathbf{m'}} \boldsymbol{\varphi}^{\mathbf{i}, \mathbf{r}}(\mathbf{x}, \mathbf{y}) \| \leq \mathbf{C} \| \mathbf{x} - \mathbf{y} \|^{m+1}$$

et en particulier, si y vérifie $\mathfrak{F}(x)$. (On restreint encore une fois le voisinage de x) $\| \boldsymbol{\varphi}^{\, \mathbf{r}}(x) - \mathbf{s} \, \boldsymbol{\varphi}^{\, \mathbf{r}}(y) \| \leq C \sqrt{\| \mathbf{x} - \mathbf{y} \|}$. Si $\mathbf{s} \neq \mathbf{1}$:

$$\|\boldsymbol{\varphi}^{\mathbf{r}}(\mathbf{x}) - \mathbf{s} \boldsymbol{\varphi}^{\mathbf{r}}(\mathbf{y})\| \ge \mathbf{d} \|\boldsymbol{\varphi}^{\mathbf{r}}(\mathbf{x})\| - \frac{\mathbf{d}}{\mathbf{d} + 3} \|\boldsymbol{\varphi}^{\mathbf{r}}(\mathbf{x})\| \ge \mathbf{C} \mathbf{d}(\mathbf{x}, \mathbf{V}_{\mathbf{r}_0})^{\alpha}.$$

Ainsi, si y vérifie $\mathfrak{P}(x)$, s=1 et on a :

$$\| \ \phi^{\text{r}}(x) - \sum_{\text{i} < m} \phi^{\text{i,r}}(x,y) \| \leq \omega_{\text{r,m}}(\|x-y\|) \ \|x-y\|^{m-r}.$$

- A l'ordre r+j, les ordres inférieurs étant supposés vérifiés ∀ m.

Soit m' = (m+1) p + r + j.

On multiplie $q^{r+j}(x) - \sum_{i \leq m'p} q^{i,r+j}(x,y) \text{ par p}(q^r(x))^{p-1} \text{ et par}$

3.5.3, on peut faire apparaître :

 $f^{rp+j}(x)$ - Σ $f^{i,rp+j}(x,y)$, quantité majorée en norme par $i \leq m'p$

 $\text{$\mathbb{C}\|x-y\|^{m'+1-(rp+j)}$. On fait "un développement limité" a l'ordre m' des }$

$$\varphi^{j_k}(x) = \sum_{\substack{i < m'}} \varphi^{i,j_k}(x,y) + u_{j_k}(x,y) \text{ où } \|u_{j_k}(x,y)\| \leq \omega(\|x-y\|) \|x-y\|^{m'-j_k}$$

(On utilise l'hypothèse de récurrence à l'ordre m' pour des j $_{k}$ \leq r+j-1).

Puis, à l'aide d'un découpage analogue à celui de l'étape j=r-1, on montre (y vérifiant $\mathfrak{P}(\mathsf{x})$) que :

$$\begin{split} \|p(\Psi^{r}(x))^{p-1}. & \Psi^{r+j}(x) - \sum_{\substack{i \leq m' \\ i \leq m'}} p(\Psi^{r}(x))^{p-1} | \Psi^{i,r+j}(x,y) \| \leq \omega (\|x-y\|) | \|x-y\|^{m'-\{r+j\}}. \\ & \text{Enfin, si y vérifie } \mathcal{P}(x) : \\ & \|\Psi^{r+j}(x) - \sum_{\substack{i \leq m \\ i \leq m}} | \Psi^{i,r+j}(x,y) \| \leq \omega_{r+j,m} (\|x-y\|) | \|x-y\|^{m-\{r+j\}} / \|x-y\|^{m-\{r+j\}}. \end{split}$$

3.8 Avec les notations de (3.6) et (3.7), φ est un champ de Whitney de classe \mathbb{C}^{∞} sur \mathbb{U}_{\times} .

Preuve :

Soit m fixé. D'après (3.7), il existe deux constantes C,α et un module de continuité ω tels que :

$$\forall \ y \in U_{\times} \ , \ \forall \ z \in \mathbb{B} \ (y, \ Cd \ (y, V_{\operatorname{rp}})^{\alpha}) \cap U_{\times} \ , \ \forall \ |j| \le m :$$

$$\| \mathcal{Q}^{j}(y) - \sum_{i \le m} \mathcal{Q}^{i,j} \ (y,z) \| \le \omega \ (\|y-z\|) \ \|y-z\|^{m-j} \ .$$
 Soit,
$$\rho = \inf_{y \in U_{\times}} \mathbb{C} \ d \ (y, V_{\operatorname{rp}})^{\alpha} > o .$$

Pour $\|y-z\| \le \rho$ et $|j| \le m$:

$$\| \varphi^{j}(y) - \sum_{i \leq m} \varphi^{i,j}(y,z) \| \leq \omega(\|y-z\|) \|y-z\|^{m-j}.$$

Ainsi, Ψ est un champ de Whitney de classe C^{m} sur U_{\times} et ceci \forall m \geq o. /

On a donc montré qu'il existe une détermination de φ , fonction de Whitney de classe C^∞ au voisinage de tout $x \in W_r$. D'où la possibilité d'un raisonnement par récurrence. Comme on l'a déjà remarqué, c'est l'application du lemme de prolongement (3.4) qui permet de passer d'un W_r à un W_{r+1} . L'étape suivante permet de vérifier (3.4).

Avec les notations précédentes, il existe une détermination de classe C^{∞} de Ψ sur un voisinage de U_{\times} dans $V_{(r-2)p}$.

Soit $V_x = B(x, Cd(x, V_{rp})^{\alpha_r}) \wedge W_{r-1}$ avec C telle que $U_x = B(x, Cd(x, V_{rp})^{\alpha_r}) \wedge W_r$. Soit C une application de V_x dans U_x satisfaisant à $\|y - C(y)\| = d(y, U_x) = d(y, V_{(r-1)p})$.

En procédant comme dans (3.7), nous obtenons le résultat suivant :

Pour tout $m \ge r - 1$, il existe une constante C telle que :

$$\forall y \in V_{x}, \quad \| \sum_{i \leq m} \varphi^{i,j}(y, \mathcal{C}(y)) \| \leq Cd(y, V_{r-1)p})^{m+1-j} \text{ et }$$

$$\| (\varphi^{r-1}(y))^{p} - (\sum_{i \leq m} \varphi^{i,r-1}(y, \mathcal{C}(y)))^{p} \| \leq C^{p} d(y, V_{(r-1)p})^{(m+1-(r-1))p}$$

Jusqu'ici, une détermination de Ψ n'a pas été choisie "en dehors" de \mathbb{U}_{\times} . Nous allons voir que sur une "bande" entourant \mathbb{U}_{\times} , il existe une seule détermination de Ψ prolongeant celle de \mathbb{U}_{\times} et satisfaisant à (3.4).

Un raisonnement élémentaire utilisant l'inégalité précédente et (H) prouve qu'un tel s est unique si $d(y,V_{\{r-1\}p}) \leq A_{q_1}$ (A étant un réel indépendant de y).

Il existe donc une "bande entourant U $_{\rm x}$ " et une détermination de ϕ unique prolongeant celle sur U $_{\rm x}$ telle que pour tout y de cette bande, ϕ (y) désignant la détermination de ϕ en y :

$$\| \boldsymbol{\varphi}^{\mathbf{r}-1}(y) - \sum_{\mathbf{i} \leq q_1} \boldsymbol{\varphi}^{\mathbf{i},\mathbf{r}-1}(y, \mathcal{C}(y)) \| \leq c_1 \, \operatorname{d}(y, V_{(\mathbf{r}-1)p})^{q+1-(\mathbf{r}-1)} \leq c_0 \operatorname{d}(y, V_{(\mathbf{r}-1)p})^{q_0}$$

Par le même raisonnement et en utilisant la même méthode que dans (3.7) dernière étape, on exhibe une suite décroissante de réels $(A_q)_{q \geq q_1}$ et une suite de réels $(B_q)_{q \geq q_1}$ telles que :

$$\begin{array}{c} \forall \ q \geq q_1 \ , \ \forall \ y \in V_x \ \text{et} \ d(y,V_{(r-1)p}) \leq A_q \ , \ \forall \ j \leq q : \\ \\ \| \ \varphi^j(y) - \sum_{i \leq q} \ \varphi^{i,j} \ \{y, \ \mathcal{C}(y)\} \| \leq B_q \ d(y,V_{(r-1)p})^{q+1-j}. \end{array}$$

Ainsi, sur un voisinage U' de U dans $V_{(r-2)p}$, la condition (3.4.1) est satisfaite.

Nous allons montrer que (3.4.2) est vérifiée, en restreignant $\mathbf{U}_{\mathbf{x}}^{\prime}$.

Il existe (3.8) C, α et \forall y \in U'_x \setminus U une détermination C^{∞} de Υ notée s. Υ sur B(y,Cd $(y,V_{(r-1)p})^{\alpha}$) \cap W_{r-1}.

Nous allons montrer que s. Ψ coıncide avec Ψ (détermination de Ψ sur $U_{x} \setminus U_{x}$) pour $d(y,V_{(r-1)p})$ assez petit. On aura ainsi trouvé un voisinage $U_{x} \supset U_{x}$ convenable.

Soit
$$z \in B(y,Cd(y,V_{(r-1)p})^{\alpha}) \cap W_{r-1}$$
.

C et ω ne dépendant que de q₁.

Une telle expression sera majorée par C_0 d $(z,V_{(r-1)p})^{q_0}$ pour y assez près de $V_{(r-1)p}$. D'après ce qui précède s. φ dans un nouveau voisinage U_x^* de U_x dans $V_{(r-2)p}$ coı̈ncide avec φ .

Les conditions (3.4) sont ainsi satisfaites et Ψ est bien de classe C^∞ sur $U_{\mathbf{x}}^n$. /

3.10 CONCLUSION

Par récurrence, tout point $x \in V_0$ possède un voisinage U dans V_0 sur lequel il existe une détermination C^∞ de Ψ . D'après le théorème de Whitney ([5]), il existe une fonction g de classe C^∞ sur \mathbb{R}^n telle que $\mathbb{D}^k g = \Psi_k$ sur U. $g^p - f$ étant plate sur U, f vérifiant une inégalité de Łojasiewicz par rapport à V_0 , $g^p - f$ est prolongeable en une application f de classe f0 sur un voisinage de f1 dans f2. ([5]). D'où le résultat, puisque f3 = (1+h)f sur ce voisinage.

BIBLIOGRAPHIE

- [1] <u>GLAESER G.</u>: "Racine carrée d'une fonction différentiable". (1963), Ann. Inst. Fourier, Tome XIII, Fascicule 2.
- [2] <u>DIEUDONNE J.</u>: "Sur un théorème de Glaeser". Journal d'analyse Mathématique, Volume XXIII, (1970).
- [3] $\frac{\ddot{\text{HORMANDER L.}}}{\ddot{\text{HORMANDER L.}}}$: "On the division of distributions by polynomials". Ark. Mat. Stockholm, (1958).
- [4] <u>CARTAN H.</u>: "Sur les classes de fonctions définies par des inégalités portant sur leurs dérivées successives".

 Act. Sci. et ind. n° 867, (1940).
- [5] TOUGERON J.Cl.: "Idéaux de fonctions différentiables". Erg der math, band 71 Springer Verlag (1972).