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SUR LE THEOREME D T AUSLANDER - BUCHSBAUM 

M. QUENTEL 

Introduction : 

Nous voulons montrer dans cette note, en adaptant une méthode due 

à Mac Rae [if] , que le théorème de factorialité des anneaux réguliers peut 

sfétendre aux anneaux locaux cohérents pour lesquels tout idéal de type fini 

est de dimension homologique finie : ces anneaux sont intègres [2], et le 

groupe de leurs diviseurs principaux est réticulé. Nous montrons ensuite 

que cette classe dTanneaux se comporte bien par hensélisation. 

Rappels et terminologie : 

Tous les anneaux sont supposés commutâtifs et unitaires ; pour 

les principales propriétés des anneaux cohérents, nous renvoyons par ex­

emple à [9~] et [I5j ; la notion d T idéal premier associé a un module est 

celle qui est définie dans pXf], chapitre II, définition I.I (cf. égale­

ment [l2] ). Si A est un anneau intègre, nous noterons G (A) le groupe des 

diviseurs principaux de A, noté additivement et ordonné par l'ordre usuel 

(cf. § I). Nous dirons qu Tun anneau local A est régulier si A est 

cohérent et si tout idéal de type fini de A est de dimension homologique 

finie, ce qui entraîne, par récurrence sur le nombre de générateurs, que 

tout A-module de présentation finie est de dimension homologique finie. 

Enfin, pour tout anneau cohérent A, nous noterons 6(A) la borne supérieure 

des dimensions homologiques des A-modules de présentation finie et de di­

mension homologique finie. Dans [i], Bass a montré que 6(A) = 0, si et 

seulement si le seul idéal fidèle de type de A est 1 T idéal unité ; c'est 

donc en particulier le cas des anneaux locaux de dimension de Kruil nulle. 
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§ I - Un théorème de changement dTanneau 

Proposition I.I : Soit A un anneau local cohérent, k son corps résiduel, 

M un A-module de présentation finie non nul ; M est de dimension homolo-

A A 
gigue n , si et seulement si Tor (k,M) i 0 , Tor n + I(k,M) = 0 ; il est de 

. . . . A 
dimension homologique infinie, si et seulement si Tor \k,M) i 0 pour tout p. 

Pour la première assertion, le cas n = 0 est bien connu (cf. [4] , 

§ 3, n° 2, corollaire 2), et le cas général se démontre par récurrence, en 

utilisant la suite exacte des Tor et le fait que, A étant cohérent, M est 

dfinfinie présentation finie. La seconde assertion résulte immédiatement de 

la première. 

Proposition 1.2 : Si A est un anneau local cohérent, m son idéal maximal, 

a un idéal de type fini de A contenu dans m, on a l'inégalité : 

ô(A)^ 6(A/a) + dh A(a) + I. 

Soit M un A-module de présentation finie et de dimension homolo-

gique finie 

(S) 0 — • N > L — • L T — • ... — > L — • M —>- 0 

n n-I o 
une suite exacte de A-modules où les L^ sont libres de type fini, et où 

n = dh^(a), supposé fini (sinon, il n !y aurait rien à démontrer). La suite 

A A 
exacte des Tor montre que Tor (N, A/a) = 0 si p > 0, puisque Tor (M, A/a) = 0 

si p > n+I. La proposition VI, 4.I.I de [&] donne alors, pour tout q > 0, 

1 T isomorphisme 

Tor A(N, A/m) Tor A / a(N/aN 5 A/m). 
q q 

Or A/a est un anneau local cohérent, puisque a est un idéal de 

type fini de A ; la formule précédente montre donc dTabord, que d h y a ^/^N 

est finie, donc inférieure à 6(A/a) puisque dh^ N est finie, ensuite que 
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dh^ N est également inférieure à 6(A/a) ; la suite exacte (S) permet alors 

de conclure que dh^(M) ,< 6(A/a) + n+I. 

Corollaire I.I : Si A est un anneau local régulier tel que, dans Spec A, 

le complémentaire du point fermé est quasi-compact, la dimension faible de 

A est finie. 

L!hypothèse entraîne en effet que A possède un idéal de type fini 

tel que A/a soit local de dimension de Krull nulle, donc tel eue 

ô{A/a) " 0. La proposition 1.2 implique alors que tout A-module est de di­

mension faible inférieure à dh. a. -i- J. 
A 

§ 2 - Une décomposition en intersection des anneaux intègres , application 

aux anneaux locaux ré gui iers* 

Proposition 2,1 : Soit A un anneau intègre, K son corps des fractions, p un 

idéal premier de A. Les conditions suivantes sont équivalentes : 

i) p appartient à Ass^ K/A 

ii) il existe un x i 0 de A tel que p appartient à Ass^ ^ y h 

iii) il existe deux éléments non nuls x, y de A tels que p est minimal 

parmi les idéaux premiers de A contenant Ax. : Ay, 

La démonstration de cette proposition - qui est en fait bien con­

nue - étant de pure routine, nous ne la donnerons pas. Pour tout anneau 

intègre A, nous noterons P^ l'ensemble des idéaux premiers de A satisfaisant 

aux conditions de la proposition 2.1 (P^ est vide si et seulement si A est-

un corps ) ; d'autre part, nous dirons qu'un anneau local intègre A est ir­

réductible si son idéal maximal appartient à. P^. Le comportement des idéaux 

associés par localisation montre que, pour tout anneau intègre A, un idéal 
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premier p de A appartient à P., si et seulement si A est irréducti. 

Proposition 2.2 : Pour tout anneau intègre A qui n'est pas un corps, 

A = A . 
p e P A P 

^ X 

Soient en effet x, y deux elements non nuls de A tels que — 

n 1 appartienne pas à A ; on a donc Ax : Ay i A, et il existe un élément p 

de P A tel que p D Ax : Ay, donc tel que p A D A x : A y : ceci implique 

que — n !est pas dans A . 

Proposition 2.3 : Un anneau local régulier est irréductible si et seulement 

si c'est un anneau de valuation ayant un plus grand idéal premier non maxi­

mal. 

Il est clair que la condition est suffisante, les anneaux de va­

luation étant cohérents de dimension faible un. - Réciproquement, soit A 

un anneau local régulier irréductible, m son idéal maximal ; il existe un 

idéal a = Ax : Ay de A tel que A/a soit de dimension de Krull nulle (pro­

position 2.1) ; la suite exacte 

0 > Ax : Ay • Ax © Ay • Ax + Ay • 0 

et la cohérence de A montrent que a est de type fini : A est donc de di­

mension faible finie d (corollaire I.I). Or, la suite exacte précédente 

montre que dh^ < sup(0, d-2) ce qui, compte tenu de l'inégalité de la pro­

position 1.2, n'est possible que si d ̂  I. Comme A ne peut être un corps 

d !après nos définitions, c'est bien un anneau de valuation possédant un 

plus grand idéal premier non maximal. 

Proposition 2. M- : Soit A un anneau local régulier qui n'est pas un corps ; 

il existe une partie P^ de Spec A satisfaisant aux conditions suivantes : 
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i) A = O \ 

ii) A est un anneau de valuation pour tout p de P^. 

En particulier, A est intégralement clos. 

La seule chose qui reste à démontrer est que, si A est un anneau 

local régulier, il en est de même de A pour tout idéal premier p de A. 
r 

- On sait que A^ est cohérent ; de plus, si a est un idéal de type fini de 

A, il existe un idéal de type fini a' de A tel que a - ; a 1 étant de 

dimension homologique finie,il en est de même de a. 

§ 3 - Généralisation au cas cohérent de la construction de Mac Rae 

Dans tout ce paragraphe, A désigne un anneau local régulier et 

^ la sous-catégorie pleine de Mod A dont les objets sont les A-modules de 

torsion et de présentation finie. 

Nous ne referons pas la démonstration, donnée par Mac Rae dans 

le cas noethérien [il] , de l'existence d !un homomorphisme du groupe de 

Grothendieck de 'dans G (A) défini par la condition suivante : 

: si dh^ M ^ I, X^(M) est le diviseur associé au premier invariant de 

Fitting de M, qui est alors principal. 

On notera que Xj entraîne que, si x est un élément non nul de A, 

X^(A/^) = div x. - LThomomorphisme x satisfait à la condition de change­

ment dTanneau suivante : 

: si p est un idéal premier de A et M un objet de x^ (M ) est 
p P 

V image canonique de X^(M) dans G(A^). 

Proposition 3.1 : Xpih) est un diviseur positif de A pour tout objet M de 
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On vérifie immédiatement la proposition dans le cas où A est un 

anneau de valuation en utilisant (xj) ; on se ramène ensuite à ce cas en 

employant (x^) et la proposition 2.3. 

Proposition 3.2 : Le groupe G(A) est réticulé. 

Soient dTabord a et b aeux idéaux de type fini entiers de A tels 

que a contienne b ; la suite exacte de ^ 

U b fa a 0 

montre, compte tenu de la proposition précédente, que (A/a) < X^ (A/b). 

Soient maintenant Ax et Ay deux idéaux principaux entiers de A ; la cohé­

rence de A implique que Ax O Ay est un idéal de type fini a de A, et il 

résulte de ce qui précède que, si Azc & , on a : 

div z >, x A (A/CL) > div x 

div z >Y x ^ (A/CL) >, div y 

Cela implique évidemment que G (A) est réticulé, la borne supérieure 

étant donnée, pour les éléments positifs, par la formule : 

sup (div x, div y) = x^ (A/Ax f| Ay). 

§ 4 - Comportement par hensélisation des anneaux locaux réguliers 

On sait que, pour tout anneau local A, le morphisme A — • ^A est 

fidèlement plat et absolument plat au sens de p3] (cf. ]j] ). Il en résulte 

que A et n A sont simultanément cohérents et qu'ils ont même dimension faible. 

On voit de même facilement que, si ^A est régulier, A l'est également ; la 

réciproque est un peu plus délicate. 

hemme M-.I : Si A est un anneau local régulier, B un anneau local et h : A 4 B 

iin morphisme essentiellement étale, B est régulier. 
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Un morphisme essentiellement étale étant absolument plat, on voit 

que B est cohérent. Soit maintenant fa un idéal de type fini de B ; on peut 

supposer que B est un localisé d'une A-algèbre C qui soit, en tant que A-

module, libre de type fini (cf. [i^ , chapitre VIII). Il existe alors un 

idéal de type fini C de C tel que C B B soit isomorphe à fa ; de plus C 
C 

est un A-module de présentation finie sur A, donc est de dimension homo-

logique finie sur A. Le A-module fa est limite d'un système inductif fil­

trant de A-modules isomorphes à C (cf. [8], 6.2.1) : il est donc de di­

mension faible finie sur A, donc sur B ; B étant cohérent et fa de 

présentation finie sur B, on conclut que dhg est fini. 

Proposition 6.1 : Un anneau local est régulier, si et seulement si son 

hensélisé est régulier. 

Il reste à démontrer que, si A est régulier, tout idéal CL de 

type fini de ^A est de dimension homologique finie. Considérons ^A comme 

limite inductive des A-algèbre strictement essentiellement étales ; a 

étant de présentation finie sur ^A, il existe une A-algèbre strictement 

essentiellement étale et un idéal de présentation finie fa de B tel que 

a = ̂ A B fa (cf. Qf] , proposition 6.3.3) ; comme fa est de dimension homo-
B 

logique finie sur B d'après le lemme M-.I, il en est de même de a sur A. 
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