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SUR LE THEOREME D'AUSLANDER - BUCHSBAUM

M. QUENTEL

Introduction :

Nous voulons montrer dans cette note, en adaptant une méthode due
& Mac Rae [II], que le théoréme de factorialité des anneaux réguliers peut
s'étendre aux anneaux locaux cohérents pour lesquels tout idéal de type fini
est de dimension homologique finie : ces anneaux sont intégres [27], et le
groupe de leurs diviseurs principaux est réticulé. Nous montrons ensuite

que cette classe d'anneaux se comporte bien par hensélisation.

Rappels et terminclogie

Tous les anneaux cont supposés commutatifs et unitaires ; pour
les principales propriétés des anneaux cohérents, nous renvoyons par ex-
emple & [9] et [I5] ; la notion d'idéal premier associé a un module est
celle qui est définie dans [I0], chapitre II, définition I.I (cf. égale-
ment [Iﬂ ). Si A est un anneau iﬁtégre, nous notercons G(A) le groupe des
diviseurs principaux de A, noté additivement et ordonné par 1'ordre usuel
(cf. [5], § I). Nous dirons qu'un anneau local A est régulier si A est
cohérent et si tout idéal de type fini de A est de dimension homologique
finie, ce qui entraine, par récurrence sur le nombre de générateurs, que
tout A-module de présentation finie est de dimension homologique finie.
Enfin, pour tout anneau cohérent A, nous noterons 6(A) la borne supérieure
des dimensions homologiques des A-modules de présentation finie et de di-
mension homologique finie. Dans [I], Bass a montré que §(A) = 0, si et
seulement si le seul idéal fidele de type de A est 1'idéal unité ; c'est

donc en particulier le cas des anneaux locaux de dimension de Krull nulle.
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§ I - Un théoréme de changement d'anneau

Proposition I.I : Soit A un anneau local cohérent, k son corps résiduel,

M un A-module de présentation finie non nul ; M est de dimension homolo-

gique n , si et seulement si Torﬁ(k,M) 0, Torﬁ+1(k,M) = 0 ; il est de

.. . . 4
dimension homologique infinie, si et seulement si Tor;(k,M) # 0 pour tout p.

Pour la premidre assertion, le cas n = 0 est bien connu (cf. [¥],
§ 3, n° 2, corollaire 2), et le cas général se démontre par récurrence, en
utilisant la suite exacte des Tor et le fait que, A étant cohérent, M est

d'infinie présentation finie. La seconde assertion résulte immédiatement de

la premiére.

Proposition I.2 : Si A est un armeau local cohérent, m son idéal maximal,

a un idéal de type fini de A contenu dans m, on a 1'inégalité :

s(AY g §(A/a) + dhA(a) + 1.

Soit M un A-module de présentation finie et de dimension homolo-
gique finie

(S) 0 » N L L —_—> e L M o)
n n-1 o}

une suite exacte de A-modules ou les L; sont libres de type fini, et ou
n = dhA(a), supposé fini (sinon, il n'y aurait rien a démontrer). La suite
exacte des Tor montre que Tor?(N, A/a) = 0 si p > O, puisque Torg(M, Ala) = 0
si p > ntI. La proposition VI, 4#.I.I de [6] donne alors, pour tout q > O,
1'isomorphisme
TOFQ(N, A/m) —*E;Q-Toré/a(N/aN, Alm).

Or A/a est un anneau local cohérent, puisque a est un idéal de

type fini de A ; la formule précédente montre donc d'abord que dhA/a N/aN

est finie, donc inférieure a §(A/a) puisque dh, N est finie, ensuite que
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dh, N est également inférieure & §(A/a) ; la suite exacte (S) permet alors

de conclure que dh, (M) g §(A/a) + n*I.

Corollaire I.I : Si A est un anneau local régulier tel que, dans Spec A,

le complémentaire du point ferm® est quasi-compact, la dimension faible de

A est finie.

L'hypothése entraine en effet que A poss€de un idal de type fini
tel gue A/a soit local de cCirmension de Krull nulle, donc tel cuz
§May = 0. La proposition I.2 imolicve alors que tout A-module est de di-

e

Tension faible inférieure S,dhq a + ]

§ 2 - Une décomposition en intersection des anneaw: intéjres , application

aux anneaux locaux réguliers.

Proposition 2.1 : Soit A un anneau integre, K son corps des fractions, p un

idéal premier de A. Les conditions suivantes sont équivalentes :
i) p appartient a ASSA K/A
ii) il existe un x # O de A tel que p appartient & ASSA A/XA
iii) il existe deux éléments non nuls x, y de A tels que p est minimal

parmi les idéaux premiers de A contenant Ax : Ay.

La démonstration de cette proposition - qui est en fait bien con-
nue - étant de pure routine, nous ne la donnerons pas. Four tout anneau
intégre A, nous noterons Py l'enseible des idéaux premiers de A satisfaisant
aux conditions de la proposition 2.I (PA est vide si et seulement si A est
un corps ) ; d'autre part, nous divons qu'un anneau local intégre A est ir-

réductible si son idéal maximal appartient & P+ le comportement ces iddaux

associés par localisation montre que, pour tout anneau integre A, un idéal
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premier p de A appartient a Py si et seulement si AP est irréducti i-.

Proposition 2.2 : Pour tout anneau intégre A qui n'est pas un corps,

a= ) A,

P
PG—PA

Soient en effet x, y deux &léments non nuls de A tels que %
n'appartienne pas & A 3 on a donc Ax : Ay # A, et il existe un é€lément p
de PA tel que p D Ax : Ay, donc tel que p Ap:D Ap X i Ap y : cecl implique

X
ue = n'est pas dans A .
ey P D

Proposition 2.3 : Un anneau local régulier est irréductible si et seulement

si c'est un anneau de valuation ayant un plus grand idéal premier non maxi-

mal.

11 est clair que la condition est suffisante, les anneaux de va-
luation étant cohérents de dimension faible un. -~ Réciproquement, soit A
un anneau local régulier irréductible, m son idéal maximal ; il existe un
idéal a = Ax : Ay de A tel que A/a soit de dimension de Krull nulle (pro-
position 2.I) ; la suite exacte

0 — Ax 1 Ay — Ax ® Ay — Ax + Ay —> O

et la cohérence de A montrent que a est de type fini : A est donc de di-
mension faible finie d (corollaire I.I). Or, la suite exacte précédente
montre que dh, < sup(0, d-2) ce qui, compte tenu de 1'inégalité de la pro-
position I.2, n'est possible que si d I. Comme A ne peut &tre un corps
d'aprés nos définitions, c'est bien un anneau de valuation possedant un

plus grand idéal premier non maximal.

Proposition 2.4 : Soit A un anneau local régulier qui n'est pas un corps ;

i1l existe une partie PA de Spec A satisfaisant aux conditions suivantes :
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a= 1) AP
p & PA

ii) A est un anneau de valuation pour tout p de PA.

En particulier, A est intégralement clos.

La seule chose qui reste a démontrer est que, si A est un anneau
local régulier, il en est de méme de Ap pour tout idéal premier p de A.
- On sait que Ap est cohérent ; de plus, si a est un idéal de type fini de
A, 1l existe un idéal de type fini a' de A tel que a = aé ; a' étant de

dimension homologique finie,il en est de méme de «.

§ 3 - Généralisation au cas cohérent de la construction de Mac Rae

Dans tout ce paragraphe, A désigne un anneau local régulier et

. la sous-catégorie pleine de Mod A dont les objets sont les A-modules de
A g

torsion et de présentation finie.

Nous ne referons pas la démonstration, donnée par Mac Rae dans
le cas noethérien [ii], de 1l'existence d'un homomorphisnebxA du groupe de

Grothendieck de GF, dans G(A) défini par la condition suivante :
A

X si dh, ML I, XA(M) est le diviseur associé au premier invariant de

It A
Fitting de M, qui est alors principal.

On notera que X, entraine que, si x est un élément non nul de A,

I

Xp(A/ p) = div x. - L'homomorphisme X satisfait & la condition de change-

ment d'anneau suivante :

X, : sl p est un idéal premier de A et M un objet de Q:Z, Xa (Mp) est

2
o

1'image canonique de XA(M) dans G(Ap).

Proposition 3.1 : XA(M) est un diviseur positif de A pour tout objet M de‘%k.
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On vérifie immédiatement la proposition dans le cas ou A est un
anneau de valuation en utilisant (XI) ; On se ramene ensuite &4 ce cas en

employant (XZ) et la proposition 2.3.

Proposition 3.2 : le groupe G(A) est réticulé.

Soient d'abord a et b deux idéaux de type fini entiers de A tels
que a contienne b ; la suite exacte de A

a A A

O —r > L 22— ()

b b a

montre, compte tenu de la proposition précédente, que Xy (Ala) < Xp (A/D).
Soient maintenant Ax et Ay deux idéaux principaux entiers de A ; la cohé-
rence de A implique que Ax N Ay est un idéal de type fini a de A, et il
résulte de ce qui précede que, si Azca , on a :

div z 3 x, (A/a) > div x

div z 3y, (/) > divy

Cela implique évidemment que G(A) est réticulé, la borne superieure

étant donnée, pour les éléments positifs, par la formule :

sup (div x, div y) = x, (A/Ax n Ay).
A

§ 4 - Comportement par hensélisation des anneaux locaux réguliers

On sait que, pour tout anneau local A, le morphisme A —s hA est
fidelement plat et absolument plat au sens de [13] (cf. [i]). I1 en résulte
que A et M4 sont simultanément(cohérents et qu'ils ont méme dimension faible.
On voit de méme facilement que, si hA est régulier, A 1'est également ; la

réciproque est un peu plus délicate.

Lemre 4.1 : Si A est un anneau local régulier, B un anneau local et h : A > B

un morphisme essentiellement étale, B est régulier.
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Un morphisme essentiellement étale étant absolument plat, on voit
que B est cohérent. Soit maintenant b un idéal de type fini de B ; on peut
supposer que B est un localisé d'une A-algébre C quil soit, en tant que A-
module, libre de type fini (cf. [I¥], chapitre VIII). Il existe alors un
idéal de type fini C de C tel que C % B soit isomorphe a b ; de plus C
est un A-module de présentation finie sur A, donc est de dimension homo-
logique finie sur A. Le A-module b est limite d'un systéme inductif fil-
trant de A-modules isomorrhes & C (cf. [€], 6.2.I) : 1l est donc de di-

mension faible finie sur A, donc sur B ; B étant cohérent et b de

présentation finie sur B, on' conclut que dhy, est fini.

Proposition 6.1 : Un anneau local est régulier, si et seulement si son

hensélisé est régulier.

I1 reste a démontrer que, si A est régulier, tout idéal a de
type fini de T est ce dimension homologique finie. Considérons LLT——
limite inductive des A-algébre strictement essentiellement étales ; a
étant de présentation finie sur hA, il existe une A-algébre strictement
essentiellement étale et un idéal de présentation finie b de B tel que
a = A 2 b (cf. [g], proposition 6.3.3) ; comme b est de dimension homo-

logique finie sur B d'apres le lemme 4.1, 1l en est de méme de a sur hA.
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