M. Keane
 Irrational Rotations and Quasi-Ergodic Measures

Publications des séminaires de mathématiques et informatique de Rennes, 1970-1971, fascicule 1
«Probabilités », , p. 17-26
http://www.numdam.org/item?id=PSMIR_1970-1971___1_17_0
© Département de mathématiques et informatique, université de Rennes, 1970-1971, tous droits réservés.
L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes» implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

IRRATIONAL ROTATIONS AND QUASI-ERGODIC MEASURES

par
M. KEANE

(Laboratoire de Probabilités - ERA CNRS n° 250)

INTRODUCTION

Let ψ be an irrational rotation of the space X of reals modulo one. A probability measure on X is non singular if ψ takes null sets to null sets and quasiergodic if each ψ - invariant set has measure zero or one Examples of such measures are discrete measures carried on single ψ - orbits as well as Lebesgue measure. In the following, we show the existence of many other non singular quasiergodic measures by constructing for each $0 \leqslant p<1$ a continuous probability measure μ_{p} which is non singular and quasiergodic, such that w_{p} and μ_{q} are orthogonal if $p \neq q$. The method of construction :

To a given irrational \propto we associate in $f 1$ a modifiad contin!ifraction $\left\{n_{1}, n_{2}, \ldots\right\}$. In $\$ 2$, we use the fraction to construct a space Ω_{α} of one - sided sequences $\omega=/\left\{\omega_{k}\right\}$ of integers with $0 \leq . \omega_{k} \leq n_{k}-1$. It is helpful to think of $\left\{\omega_{k}\right\}$ as the entries in an infinite register, we define an operation ψ_{α} consisting of adding one to the initial place in the register with a " lepsided " riglit carry. For each point in $[0,1]$ we can then define in $\}$ an " α - expansion " consisting of a sequence of Ω_{α}. Like the n - alty expansions, the \propto - expansion is unique except at a countable number of points. However, the α - expansion has the additional property that rotation by a module 1 on X is reflected by the operation φ_{α} on the space Ω_{α}. Using $\left(\Omega_{\alpha}, \psi_{\alpha}\right)$ as a representation of rotation by α on X, It is not difficult to construct in $\{4$ the desired measures μ, which arise from product measures on a subset of Ω_{c}.
\$ 1 - The modified continued fraction expansion. -
Let $\propto \in(0,1)$ and define
$S(x):=1-\left\{\frac{1}{\alpha}\right\}$
$N(\alpha):=\left[\frac{1}{\alpha}\right]+1$,
where [] and \{ \} denote integral and fractional parts respectively. Then $S: I 0,1] \longrightarrow 30,11$
$N: 10,12 \longrightarrow N_{2}=\{2,3,4, \ldots\}$
and for each $\alpha \in[0,1]$ we can define a sequence $\left\{\omega_{k}\right\}$ in 10,1$\}$ and a sequence $\left\{n_{k}\right\}$ in N_{2} recursively by

$$
\begin{align*}
& \alpha_{1}:=\infty \\
& \alpha_{k+1}:=S\left(\alpha_{B}\right) \tag{z}\\
& n_{k}:=N\left(\alpha_{k}\right)
\end{align*}
$$

We write

$$
\propto=\left\{n_{1}, n_{2}, \cdots\right\}
$$

and call $\left\{n_{k}\right\}$ the modified continued fraction of \propto.
Proposition 1. -
a) If $\propto=\left\{n_{1}, n_{2}, \ldots\right\}$, then $\alpha_{k}=\left\{n_{k}, n_{k+1}, \ldots\right\}$
b) The map $[0,1\} \longrightarrow \Pi_{1} N_{2}$ given by $\propto \longrightarrow\left\{n_{k}\right\}$
is one - to - one and on to
c) Each $\propto \in 10,1]$ is the limit of the fractions

d) $\quad \propto \in[0,1]$ is rational iff almost all $n_{k}=2$.

Proof :

a) is obvious from the definitions
b) thinking of the sequence $\left\{n_{k}\right\}$ corresponding to α as an - ary fractional expansion of α, we note that the sets

$$
\left.A_{n}:=\{\propto \mid N(\propto)=n\}=I \frac{1}{n}, \frac{1}{n-1}\right\}
$$

are disjoint and cover. In, 1] for $n \in \mathbb{N}_{2}$. MOreover, S maps each A_{n} to (0,1) by

$$
S(\alpha)=n-\frac{1}{\alpha}=\frac{1}{\alpha(n-1)} \cdot(n-1)(n \alpha-1) \text {, }
$$

which is a linaar map from $] \frac{1}{n}, \frac{1}{n-1} 1$ to 10,11 followed by the multiplication $\frac{1}{\alpha(n-1)}$ depending on n and varying from $\frac{1}{1-\frac{1}{n}}$ at 0 to 1 at 1 monotonically. To prove b) it is obilously sufficiont $t \stackrel{n}{\mathrm{n}}$ show that

$$
\rho_{k}:=\sup _{n>2} \mid\left\{a \mid N\left(\infty_{j}\right)=n_{j} \text { for } 1 \leq j \leq k\right\} \mid
$$

tends to zerd as g. goes to infinity, where $|I|$ denotee the length of the Interval I. Now $\left|A_{n}\right|$ attains its maximum value for $n=2$ and the multipkicative factor is always greater than or equal to 1 and decreases in n. This implies that

$$
\rho_{k}=\mid\left\{\alpha \mid N\left\{\alpha_{j}\right\}=2 \text { for } 1 \leq j \leq k\right\} \mid=1-c_{k},
$$

c_{k} being the left endpoint of the interval and satisfying

$$
\begin{aligned}
& c_{k+1}=z-\frac{1}{c_{k}} \quad(k \geq 1) \\
& \frac{1}{2} \leq c_{k}<c_{k+1}<1
\end{aligned}
$$

Setting $c=\lim c_{k}$, we have

$$
c=2-\frac{1}{c}
$$

Or $c=1$. Thus $p_{k} \longrightarrow 0$.
ci Denote by lak the fraction in cu. The m. c. f. of $\alpha_{k}{ }_{k}$ is

$$
\left\{n_{1}, n_{2}, \ldots, n_{k-1}, n_{k+1}, 2,2, \ldots\right\}
$$

Therefore, $\left|\propto-\Psi_{k}^{\prime}\right| \leq \rho_{k-1} \longrightarrow 0.35 k \longrightarrow \infty$
d) If $\alpha=\{2,2,2, \ldots\}$, then $a=\frac{1}{2-\alpha} \quad$ implies $\alpha=1$.

Thus by c) any x whose $m . c . f$ ends in two is rational.
Conversely, if $\alpha=\frac{p}{q}$ is rational with $p<q$, then $\alpha_{2}=\frac{q^{\prime}}{p}$ has a denomina-
tion smallor than $\alpha_{1}=\alpha$, By induction $\alpha_{q}=1$ and $n_{q}=n_{q+1}=\ldots, \ldots$;
§ 2 - The dynamical systems $\left(\Omega_{\alpha}, \varphi_{\alpha}\right)$. -
In this section a denotes a fixed irrational in [0, l] with m.c.f.
$\left\{n_{k}\right\}$. We set

$$
\Omega=\sum_{k=1}^{\infty}\left\{0,1 ; \ldots, n_{k}-1\right\} .
$$

Definition :

1) A block $\omega_{i+1} \omega_{i+2} \ldots \omega_{i+k}$ with $i \geq 0$ and $k \geq 1$ will be called k-critical if

$$
\begin{aligned}
& \omega_{i+j}=n_{i+j}-2 \quad(1 \leq j \leq k-1) \\
& \omega_{i+1}=n_{i+k}-1
\end{aligned}
$$

2) A block $\omega_{i} \omega_{i+1} \cdots \omega_{i+k}$ with $i \geq 1$ and $k \geq 1$ is non - admissible if

$$
\begin{aligned}
& \omega_{i}=n_{i}-1 \\
& \omega_{i+1} \omega_{i+2} \cdots \omega_{i+k} \quad k-\text { critical }
\end{aligned}
$$

3) . $\omega \in \Omega$ is called k - critical if $\omega_{1} \omega_{2}$. . . ω_{k} is k - critical and non - critical if it is not k - critical for any $k \geq 1$.
4) $\omega \in \Omega$ is admissible if it contains nort non - admissible blocks

$$
\begin{aligned}
& \text { Let } \Omega_{\alpha} \text { be the set of adrifissible points of } \Omega . \\
& \text { For } \omega \in \Omega_{\alpha} \text { define } \varphi_{\alpha}(\omega)=\omega^{\prime} \text { as } \\
& \omega_{1}:=\omega_{1} \ell_{1} \\
& \omega_{j}^{\prime}:=\omega_{j} \quad(. j \geq 8)
\end{aligned}
$$

if ω is non - critical and as

$$
\begin{aligned}
& \omega_{1}^{\prime}=\omega_{2}^{\prime}=\ldots .=\omega_{k}^{\prime}=0 \\
& \omega_{k+1}^{\prime}:=\omega_{k+1}+1 \\
& \omega_{j}^{\prime}:=\omega_{j} \quad(j \geq k+2)
\end{aligned}
$$

if ω is k - critical with $k \geq 1$.
For ease of expression we set

$$
\begin{array}{ll}
\tilde{\omega}:=\widetilde{\omega}_{1} \widetilde{\omega}_{2} \ldots \text { with } & \tilde{\omega}_{i}=0 \quad(i \geq 1) \\
\bar{\omega}:=\bar{\omega}_{1} \bar{\omega}_{y} \ldots \text { with } & \bar{\omega}_{i}=n_{i}-2(i \geq 1) \\
\hat{\omega}:=\hat{\omega}_{1} \hat{\omega}_{2} \ldots \text { with } & \hat{\omega}_{1}=n_{1}-1 \\
& \hat{\omega}_{i}=n_{i}-2(i \geq z)
\end{array}
$$

Proposition 2 :

a) \mathcal{Q}_{α} is a compact subset of Ω.
b) ψ_{α} is one - to - one and $\psi_{x}\left(\Omega_{x}\right)=\Omega_{\alpha}-\{\tilde{\omega}\}$
c) ψ_{∞}^{\prime} is continuous except at $\bar{\omega}$

Proof :

a) the set of ω for which $\omega_{i} \omega_{i+1} \ldots \omega_{i+k}$ is not non - admissible is a finite union of cylinders, and Ω_{∞} is the intersection of all such sets.
b) Note first that $\omega_{1}+1, \omega_{2} \omega_{3} \ldots \omega_{k}$ is non - admissibed if $k \geq 2$ and $\omega_{1} \omega_{2} \ldots \omega_{k}$ is k - critical. Therofore, if $\omega \in \Omega_{\alpha}$ is non - criticul, $\varphi_{c}(\omega) \in \Omega_{\alpha}$. Next note that if $\omega_{1} \ldots \omega_{k}$ is k - critical and $\omega \in \Omega_{A}$ then $\omega_{k+1} \omega_{k+2} \omega_{k+j}$ is not j - critical for any j, bocause otherwise ω_{k}... ω_{k+j} would be non - admissible. Therefore, $\psi_{\infty}(\omega) \in \Omega_{\infty}$ if ω is k - critical. IF $\omega \in \Omega_{\alpha}$ doos not start with 0 , there is obviously exactly one (non - criticall point of Ω_{α} whose ψ_{α} - image is ω. If $\omega_{1}=\omega_{2}=\ldots=\omega_{k}=0$ and $\omega_{k+1}>0$, then the unique k - critical point $\omega^{\prime \prime}$ with $\varphi_{\alpha}\left(\omega^{\prime \prime}\right)=\omega$ is given by

$$
\begin{aligned}
& \omega_{i}^{\prime \prime}=n_{i}-2 \quad(1 \leq i \leq k-1\} \\
& \omega^{\prime \prime}=n_{i}-1 \\
& k=\omega_{k+1}-1 \\
& \omega_{k+1}^{\prime \prime}=\omega_{k+1} \quad(j \geq k+2) \\
& \omega_{j}^{\prime \prime}=\omega_{j} \quad
\end{aligned}
$$

Thus only $\tilde{\omega}$ remains without a pre - image. c) If $\omega \neq \bar{\omega}$ then the property of ω of being non - critical or k - critical extends to a neighborhood of ω and ψ_{α} is continuous because it changes et. most the first $k+1$ coordinates.

The trouble at $\bar{\omega}$ is that the point whose imege sbould be $\tilde{\omega}$ is missing. By inserting a backward orbit for $\tilde{\omega}$ and modifying the topology suitably, this problem can be rectified, and φ_{α} made into a homeomorppiem. We shall have no need for this in the following.

53-- 3 - expansions.

Let $X=\mathbb{R} / \mathbb{Z}$ denote the reals modulo one and $\Psi_{x}(x)=x+\infty \bmod l$ rotation by \propto. We fix an irrational $c \in(0,1)$ with the corresponding sequinces $\left\{\alpha_{k}\right\}$ and $\left\{n_{k}\right\}$ as in $\{$ 1. Define

$$
\beta_{k}:={ }_{j=1}^{K} \alpha_{j} \quad(k \geq 1)
$$

and

$$
n(\omega):={ }_{k}^{\infty} \underline{\sum}_{1}^{\infty} \omega_{k}^{\beta} B \quad\left(\omega \in \Omega_{\infty}\right)
$$

Proposition 3. -

a) π maps Ω_{α} onto $[0,1]$ (and hence onto X)
b) π is one - to - one except at a countable number
of points where it is two - to - one
c) π is continuous
d) $\pi c \psi_{\alpha}=\psi_{\alpha} \circ \pi$

Proof. -

Let " $ん$ " denote the lexicorgraphical ordering in Ω_{α}. With ruspeat to this ordering, ω is the smallest element, $\hat{\omega}$ is the largest element, and $\omega<\eta$ with no point in between them if and only if there exists k ? such that

$$
\begin{aligned}
& \omega_{i}=\eta_{i} \quad(i<k) \\
& \omega_{k}+1=\eta_{k} \\
& \omega_{k+j}=\hat{\omega}_{j} \quad(j \geq 1) \\
& \eta_{k+j}=0
\end{aligned}
$$

We shall need some formulae :

1) $\lim _{k \rightarrow \infty} \beta_{k}=0$;

Since infinitely many η_{k} are greater than 2 , infinitely many α_{k} are less than or equal to $\frac{1}{2}$.
2) Let $\omega_{1} \omega_{2} \ldots \omega_{k}$ be the initial k - block of an admissible sequence. Then

$$
1-\sum_{j=1}^{k} \quad \omega_{j} \quad \beta_{j} \geq \beta_{k} \quad\left[1-\alpha_{k+1}\right]
$$

with equality if $\omega_{j}=\hat{\omega}_{j} \quad(1 \leq j \leq k)$

$$
\begin{aligned}
& \text { Here there are two cases : if }{ }_{k}{ }^{01} \leq n_{1}-2 \text {, then } \\
& 1-\sum_{j=1}^{K} \omega_{j} \beta_{j} \geq 1-\left(n_{1}-2\right) \alpha_{1}-\alpha_{1} \sum_{j=2}^{k} \omega_{j}^{\beta}{ }_{j}^{\prime} \\
& =2 \alpha_{1}-\alpha_{1}^{\prime \alpha_{2}}-\alpha_{1} \sum_{j=2} \omega_{j} \beta_{j}^{\prime} \\
& >a_{1}\left(1-\sum_{j=2}^{k} \omega_{j} Z_{j}^{\prime}\right)
\end{aligned}
$$

where we have set $\beta_{j}^{\prime}=\alpha_{2} \alpha_{3} \ldots \alpha_{j}(j \geq 2)$ and if $w_{1}=n_{1}-1$, then

$$
\begin{aligned}
1-\sum_{j \neq 1}^{k} \omega_{j} \beta_{j} & =1-\left(n_{1}-1\right) \alpha_{1}-\propto_{1} \sum_{j=2}^{k} \omega_{j} \beta_{j}^{\prime} \\
& =\alpha_{1}-\alpha_{1} \alpha_{2}-\alpha_{1} \sum_{j=2} \omega_{j} B_{j}^{\prime}
\end{aligned}
$$

Setting $\omega_{2}^{\prime}=\omega_{2}+1, \omega_{j}^{\prime}=\omega_{j}(j \geq z)$, we have then

$$
1-\sum_{j=1}^{k} \omega_{j} \beta_{j}=\alpha_{1}\left(1-\sum_{j=2}^{k} \omega_{j}^{\prime} \beta_{j}^{\prime}\right) .
$$

Now, if $\omega_{1} \omega_{2} \ldots \omega_{k}$ is admissible and $\omega_{1}=\Pi_{1}-1$, then also $\omega_{2}^{\prime} \ldots \omega_{k}^{\prime}$ must be admissible. Therefore, we can use induction ; noting that

$$
1-\left(n_{1}-1\right)_{\oplus_{k}}=\alpha_{k}\left(1-\alpha_{k+1}\right)
$$

we arrive at the desired result.
3) $\pi(\tilde{\omega})=0$ and $\pi(\hat{\omega})=1$:
the first one is obvious, and we have by 2) and 1)

$$
1-\sum_{j=1}^{k} \hat{\omega}_{j} \beta_{j}=\beta_{k}\left[1-\alpha_{k+1}\right] \underset{k \longrightarrow i}{ } 0
$$

4) If $\omega<\eta$, then $\pi(\omega) \leq \pi(\eta)$ with equality if and only if there is no point of Ω_{∞} between ω and $\Omega_{\text {. }}$.

Let k be minimal with $\omega_{k}<\eta_{k}$. Then

$$
\begin{aligned}
& \pi(\underline{\eta})-\pi(\omega)=\left(r_{k}-\omega{ }_{k}\right) \beta_{k}-\sum_{j=k+1}^{\infty} \omega{ }_{j} \beta_{j}+\sum_{j=k+1}^{\infty} n_{j} \beta_{j} \\
& \geq \beta_{k} \quad-\quad \sum_{j=k+1} \quad \omega_{j} B_{j} \geq 0 \\
& \text { because of } 21 \text { with equality everywhere if } \eta_{j}=0
\end{aligned}
$$

for $j \geq k-1, \eta_{k}-\omega_{k}=1$, and $\omega_{k+1} \omega_{k+2} \ldots$ Maximal.
5) π is continuous.
$\infty \quad$ if $\omega .<\eta^{2}$ and $\omega_{j}=\eta_{j}$ for $1 \leq j \leq k$, then $\pi\{\eta\}-\pi(\omega) \leq$
$\sum_{j=k+1}^{\sum} \quad \eta_{j} \beta_{j} \leq \beta_{k}$. By 1]; ${ }_{m i s}$ continuous.
6) Suppose that $[0,1]-\pi\left(\Omega_{c}\right) \neq \varnothing$. Since π is continuous, $\pi\left(\Omega_{\alpha}\right)$ is compact and $[0,1]-\pi\left(\Omega_{\alpha}\right)$ is open in $[0,1]$. Thus there exists an interval $[a, b]$ with $0 \leq a<b \leq 1, a, b \in \pi\left(\Omega_{\alpha}\right),(a, b) \cap \pi\left(\Omega_{c}\right)=\emptyset$. Choosing w maximal and η minimal with $\pi(\omega)=a$ and $\pi(\eta)=b, 4)$ yields a contradiclion.
7) Suppose $\omega \in \Omega_{\alpha}$ is non - critical. Then

$$
\psi_{\alpha}(\pi(\omega))=\alpha+\sum_{k=1}^{\infty} \omega_{k} \beta_{k}=\left(\omega_{1}+1\right) \beta_{1}+\sum_{k=2}^{\infty} \omega_{k}^{\beta}{ }_{k}=\pi\left(\psi_{\alpha}(\omega)\right)
$$

If ω is k - critical for some $k \geq 1$, then by 2)

$$
\begin{aligned}
\psi_{\propto}(\pi(\omega d) & =\sum_{j=1}^{k} \hat{\omega}_{j} \beta_{j}+\beta_{k}+\sum_{j=k+1}^{\infty} \omega{ }_{j} \beta_{j} \\
& =1-\beta_{k}\left[1-\alpha_{k+1}\right]+\beta_{k}+\sum_{j=k+1}^{\infty} \omega_{j} \dot{G}_{j} \\
& =1+\beta_{k+1}+\sum_{j=k+1} \omega_{j} \beta_{j} \\
& =\sum_{j=k+2}^{\infty} \omega j \beta_{j}+\left(\omega \omega_{k+1}+1\right) \beta_{k+1} \bmod 1 \\
& =\pi\left(\varphi_{\alpha}(\omega)\right)^{m} .
\end{aligned}
$$

The proof is finished, because 4), 5), 6) and 7) imply a), b), c) and d). If $x \in[0,1]$, then we call a sequence in $\pi^{-1}(x)$ an $\alpha-e x-$ pension of x. Like decimal expansions, the α - expansion is unique except for a countable number of points.

§ 4 - Quasi - ergodic measuros. -

Suppose T is an invertible bimeasurable transformation of the me-

non singular if for any $F \in$ 'f,
$\mu(F)=\square \mu(T F)=0$,
quasiergodic if for any $F \in \mathcal{F}$ with $T F=F$,
$\psi(F)=0$ or 1
These properties obviously depend only on the measure class of μ. If $\approx \in(0,1)$ is irrational, examples of non singular quasiergodic measure classes on ($\mathrm{X}, \psi_{\alpha}$) are given by the Lebesgur measure class and by discrete measures whose sets of positivity are single ψ_{α} - ornits. Until now, no other examples have been found.

Proposition 4. -
For any irrational α, there exist moasures $\mu_{p}(0<p<1)$ definde on X such that
a) each μ_{p} is continuous
b) $\mu_{p} \perp \mu_{q}$ if $p \neq a$
c) each μ_{p} is non singuler and quasi orgodic on (x, ψ_{α})

Moreover, the measures μ_{p} can be given by a simple construction on $\boldsymbol{\Phi}_{\alpha}$.

Proof. -
For $\alpha=\left\{n_{k}\right\}$ we set
$\Omega^{\prime}=\prod_{k=1}^{\infty}\left\{0, \ldots, n_{k}-2\right\}$
Then, a ' $\subseteq \Omega_{\infty}$ and since infinitcly many n_{k} are creater than $2, \Omega$ is really an infinite product. For $0<p<1$, let m_{p} the product measure on Ω, obtained from the discrete measurss \{p, 1-j\} on $\{0,1\}$ placed at those components for which $n_{k} \geq 3$.

1) m_{p} is quesiergodic on $\left(\delta_{\alpha}, \varphi_{\alpha}\right)$.

Suppose that $E \leq \Omega_{c}$ and $\psi_{=} E=E$. It follows from the definition of ψ_{α} thiat $\omega \in \Omega_{r} \quad$ and $\eta \in \Omega_{\alpha}$ are in the same φ_{α} - ortit, iff $\left\{i \mid \omega_{Y} \neq \eta_{i}\right\}$ is finita. But then $\mathrm{E} \cap \Omega^{\prime}$ is measurable with respect to the σ - algehra on Ω^{\prime} gencrated by the components groater than $n, i, e . E \cap \Omega^{\prime}$ is in the tail ficld of S'. By the zero one law, $m_{D}(E)=0$ or 1 .
2) For constants $c_{n}>0$ with $\underset{\pi \in \mathbb{Z}}{\sum} c_{n}=1$, set

$$
m_{F}^{\prime}:=n_{n \in \mathbb{Z}}^{\Sigma} c_{r_{i}} \psi_{\alpha}^{n} m_{p} .
$$

Then the probability measure $m^{\prime}{ }_{p}$ is obviously nion singular on ($\Omega_{\alpha} \varphi_{\alpha}$) and remains quegi - ergodic, since $\varphi_{\alpha}(E)=E$ and $m_{p}(E)=1$ imply $\psi_{\alpha}^{n} m_{p}(E)=1$ for each n.
3) We have $m_{p}^{\prime} \perp^{\prime \prime}$ for $p \neq q$.

For $0<p<1$ let

$$
S_{p}:=\left\{\omega \in \Omega_{\alpha} \mid r_{0}(\omega)=p \text { and } r_{1}(\omega)=1-p\right\} \text {, }
$$

where

$$
r_{i}(\omega)=\lim _{n \rightarrow \infty} \frac{\text { tof } i \text { amone }}{n}, i=c, 1 \text {. }
$$

Then $m_{p}\left(S_{p}\right)=1$ and because φ_{α} applied to $\omega \in \Omega_{\alpha}$ changes only a finitu nuniber of coordinates, we have $\varphi_{\alpha}\left(S_{p}\right)=S_{p}$. Thus $m_{p}^{\prime}\left(S_{p}\right)=1$ and $S_{p} \cap S_{q}=\varnothing$ impliss $m^{\prime}{ }_{p}{ }^{\perp} m^{\prime} q^{\prime}$ if $p \neq q$.
4) Setting $\mu_{p}=\pi\left(m_{p}\right)$, proposition 3 yields the desired result.

There is also a proof of existence of nonsingular quasiergodic messures which are continuous and admit no finite invariant aquivalent measura. The proof works for any strictly ergodic system (X, Y). (Aral communication from W. KRIEGER).

$$
\forall \text { and uses a category argument. }
$$

