Michael Keane

Strongly Mixing g-Measures

Publications des séminaires de mathématiques et informatique de Rennes, 1970-1971, fascicule 1
<Probabilités », , p. 132-154
http://www.numdam.org/item?id=PSMIR_1970-1971___1_132_0
© Département de mathématiques et informatique, université de Rennes, 1970-1971, tous droits réservés.
L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes» implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Strongly Mixing g - Measures

by
Michael Keane *

SUMMARY

Let T be an n - to - 1 codering transformation of the compact metric space X ($e . g .(X, T)$ the $n-s h i f t)$. For suitable functions g on X an "inverse " φ_{g} of T is defined: φ_{g} is a Markov kernel. If g is strictly positive and satisfies a Lipschitz condition, then there exists a uniqus \mathcal{Y}_{g} - invariant measure, strongly mixing under T. Conversely, we associate to any T - invariant probabiilty measure a suitable g, and if g is " nice ", then strong mixing is present. Examples include all Bernoulli and Markov measures on tee n - shift. The strong mixing criterion is useful, and applications to hamonic analysis, ergodic theory, and symbolic dynamics are given. For example : if G is any infinite subgroup of the group of roots of unity, there exist uncountably many (explicitly constructible) continuous Morse sequences whose corresponding dynamical systems are pairwise non - isomorphic and all have as eigenvalue group exactly the given group G.
\{ 1 - PRELIMINARIES. -
Let X be a compact metric space with metric $|\ldots$.$| .$
The following notation will be necessary :
C $(X)=$ the continuous real - valued functions on X.
$|f|=\sup |f(x)|$ for $f \in C(x)$.
$c^{*}(x)=$ the finite signed measures on the Borel sets of X, or, equivalently, the continuous linear forms on $C(X)$.
$\rho(x)=$ the probability measures in $C^{*}(x)$.

Suppose that T is a homomorphism of the space X. Then T maps each of $c(x), c^{*}(x)$, and $\mathscr{G}(x)$ into itself, and because $P(x)$ is a weakly compact convex subset of $[(X)$, the space

$$
P_{T}(x)=\left\{\mu \in \mathscr{P}(x) \mid T_{\mu}=\mu\right\}
$$

is again a non - empty compact convax subset of $C^{*}(x)$. Suppose $\mu \in \mathcal{P}_{T}(x)$. Then
i) μ is ergodic iff μ is an extrem point of $\Theta_{T}(x)$.
ii) μ is strongly mixing iff for each pair $f, g \in C(X)$ we have
$\mu\left(f, T^{k} g\right) \longrightarrow \mu(f), \mu(g)$.
Our purpose is to study $\mathscr{P}_{T}(x)$ for special pairs (x, T). We call T a (minimal) covering transformation of X if there exist an integer $n \geq 2$ and p >1 real such that
i) T is everywhere n - to - 1 ,
ii) T is a local homeomorphism,
iii) for sufficiently small $\delta>0,|x, y|=\delta$ implies $|T x, T y| \geq \rho \delta$, and iv) for each $x \in x, \cup T^{-n}(x)$ is dense in x. $n \geq 1$

Let μ be any measure in $C^{*}(X)$, and denote the measure in $C^{*}(X)$ obtaibed by lifting μ locally via T^{-1} by $Q \mu$. The total mass of $Q \mu$ is n times that of μ. If $\mu \in \mathcal{S}_{T}(x)$ then obviously μ is absolutely continuous with respect to $Q \mu$, and we can form the Radon - Nikodym derivative

$$
g=\frac{d \mu}{d Q \mu}
$$

Moreover, $0 \leq g \leq 1$ and

$$
z_{\varepsilon} T^{\Sigma-1} \underset{(x)}{g}(z)=1
$$

for μ - almost every $x \in X$. Therefore, we are led to the following definitions. Set
$G=\left\{g: X \longrightarrow[0,1] \mid g\right.$ measurable, $z_{\varepsilon} T^{\Sigma 1}(x) \quad g(z)=1$ for each $\left.x \in X\right\}$. A probability measure μ on X is called a g - measure for a given $g \in G$ if $\frac{d_{\mu}}{d Q}=g \bmod \mu$. For any $g \in G$ and $\mu \in C^{*}(X)$, define the measure $\varphi_{g} \mu \in C^{*}(X)$ by

$$
\frac{d \varphi_{g} \mu}{d Q_{\mu}}=g
$$

Thèn, φ_{g} maps $\varphi(x)$ into $\varphi(x)$ and the following theorem is valid.
Theorem. - A probability masure μ is T - invariant if and only if μ is a
g - measure for some $g \in G$. For each continuous $g \in G$ there exists at least one g - mebsure.

Proof: The first statement in the theorem is obvious from the preceding explanations. To prove the rest, note that if $g \in G$ is continuous, then φ_{g} is a waakly continuous map from $P(x)$ into itself. By a fixad point theorem, there exists a $\mu \in \mathscr{G}(x)$ with $\varphi_{g} \mu=\mu$, i.e. is a g - measure. An example of a $g \in G$ with no corresponding g - measure will be given in 54. Examples for covering transformations T are provided by taking for X the circle and for T an n - fold wrapping, or for (X, T) the one - sided shift space on n symbols. If X has a differentiable structure, we set

$$
c^{l}(x)=\{f: x \rightarrow \mathbb{R} \mid f \text { continuously differentiable }\}
$$

In general, let
$L(X)=|f \in C(X)|$ there exists $K>0$ with

$$
|f(x)-f(y)| \leq K|x, y| \text { for each } x, y \in X\} \text {. }
$$

We also define the map φ_{g} for real - valued functions f on X by setting

$$
\varphi_{g} f(x)=\sum_{z \varepsilon T^{-1}(x)}^{g(z) f(z)}
$$

Then if f is μ - integrable, we have

$$
\int_{x} \varphi_{g} f d \mu=\int_{x} f d \varphi_{g} \mu,
$$

and if $g \in C(x)$, then $\varphi_{g}: C^{*}(x) \longrightarrow C^{*}(x)$ is the dual transformation to $\varphi_{g}: c(x) \longrightarrow c(x)$.

52 - THE STRONG MIXING CRITERION FOR THE CIRCLE. -

In this paragraph, a proof is given of the basic result for the circle group $X=\mathbb{R} / \mathbb{Z}$ under the transformation T defined by $T \times=2 \times(\bmod)$ Points $x \quad x$ are assumed to lie in the interval $[0,1[$. The result can be stated as follows.

Theorem: Let $g \in G \cap C^{l}(x)$ te strictly positive. Then there exists exactly one \tilde{g}^{-}- measure μ_{g}, arid μ_{g} is strongly mixing.
Proof : The idea of the proc is to show that the sequence $\varphi_{g}^{k} f$ converges to a constant for any $f \in C^{l}(x)$, using the Arzele - Ascoli theorem. This yields the measure $\mu_{g}(f)=\lim \varphi_{g}{ }^{k} f$, and it is easy to see that μ_{g} is unique and strongly mixing.

1. $\left\{\varphi_{g}^{k} f \mid k \geq 0\right\}$ is relatively compact in $c(x)$ if $f \in C^{1}(x)$:

Let $D=\frac{d}{d x}$. Then

$$
D\left(\varphi_{g} f\right)(x)=\frac{1}{2} \varphi_{g}(D f)(x)+\frac{1}{2} \varphi_{D g} f(x)
$$

$\psi_{D g}$ being defined in the obvious manner, and

$$
\left|0 \varphi_{g} f\right| \leq \frac{1}{2}|O f|+|D g| \cdot|f| .
$$

since φ_{g} is a contraction of $c(x)$. Therefore

$$
\left|0 \varphi_{g}^{k} f\right| \leq \frac{1}{2}\left|D \varphi_{g}^{k-1} f\right|+|D g| \cdot|f|
$$

$$
\leq \cdots
$$

$$
\leq \frac{1}{2^{k}}|D f|+\left(1+\frac{1}{2}+\ldots+\frac{1}{2^{k-1}}\right)|\operatorname{Dg}| \cdot|f|
$$

$$
\leq|O f|+2|O g| \cdot|f|
$$

But

$$
\left|\varphi_{g}^{k} f\right| \leq|f| \quad(k=1,2, \ldots)
$$

so that 1. follows from the Arzela - Ascolii theorem.
2. Choose $\left\{n_{k}\right\}$ such that $h:=\lim \varphi_{g} \quad f \in c(x)$. Then
$h=$ cons. $=\lim \varphi_{g} f:$
For $\tilde{f} \in C(X) \operatorname{set}$

$$
\alpha(\tilde{f})=\inf _{x \in X} \quad \tilde{f}(x)
$$

Because g $\in G$,
$\alpha(f) \leq \alpha\left(\varphi_{g}(f) \leq \cdots \leq a(h) \leq \beta(h) \leq \cdots \leq \beta\left(\varphi_{g} f\right) \leq \beta(f)\right.$,
and if wo set

$$
\begin{aligned}
& \alpha=\alpha(h)=\alpha\left(\varphi_{g} h\right)=\ldots \\
& \beta=\xi(h)=\beta\left(\varphi_{g} h\right)=\ldots,
\end{aligned}
$$

then it suffices to show that $\alpha=6$. Now if $\tilde{f} \in C(X)$ and $\alpha(f)=\alpha\left(\varphi_{g} \tilde{f}\right)=$ $\tilde{f}(y)$, then

$$
\varphi_{g} \tilde{f}(y)=g\left(\frac{y}{2}\right) \tilde{f}\left(\frac{y}{2}\right)+g\left(\frac{1}{2}+\frac{y}{2}\right) \tilde{f}\left(\frac{1}{2}+\frac{y}{2}\right)
$$

and g strictly positive imply $f\left(\frac{y}{2}\right)=\tilde{f}\left(\frac{1}{2}+\frac{y}{2}\right)$. Therefore if

$$
A=\{x \in \underset{k}{x} \mid n(x)=\alpha\}
$$

and if y satisfies $\varphi_{g} h(y)=\alpha$, then

$$
\left\{\left.\frac{y+j}{2^{k}} \right\rvert\, 0 \leq j<2^{k}\right\} \leq A
$$

A similar argument holds for $\beta(h)$, and we have $h=\alpha=\beta$.
3. For $\tilde{f} \in C(x), \psi_{g}^{k} f^{\sim}$ converges uniformly to a constant :

Choose $\varepsilon>0$ and $f \in C^{1}(x)$ with $|\tilde{f}-f|<\varepsilon$.
Let $\alpha=\lim \varphi_{g}^{k} f$. Then

$$
\left|\varphi_{g}^{k} f-\varphi_{g}^{k} f\right|<\varepsilon
$$

implies

$$
\lim \left[E\left(\varphi_{g}^{k} f\right)-\alpha\left(\varphi_{g}^{k} f\right)\right] \leq 2 \varepsilon .
$$

and φ_{g}^{k} converges to a constant.
4. Define $\mu_{g}(f)=\lim \varphi_{g}^{k} f \quad(f \in C(x))$. If μ is a g - measure, then $\mu=\mu_{\dot{g}}:$

$$
\text { For any } f \in C(X) \text {, }
$$

$$
\psi(f)=\mu\left(\varphi_{g}^{k} f\right) \rightarrow \mu\left(\mu_{g}(f)\right)=\mu_{G}(f)
$$

by the denominated convergence theorem and $\mu=\mu_{g}$.
5. μ_{g} is strongly mixing :

Let $f, h \in C(X)$. Since $\varphi_{g} T f=f$,
$\mu_{g}\left(T^{k} f . h\right)=\mu_{g}\left(f . \varphi_{g}^{k} h\right) \longrightarrow \mu_{g}(f) \cdot \mu_{g}(h)$
as k tends to infinity, and μ_{g} is strongly mixing.

The condition that g be strictly positive can be relaxed. For such a mogification only stem 2. of the proof needs to be checked, the other parts being independent of this condition. Theorem: Let $g \in G \cap C^{l}(X)$ satisfy one of the following conditions :
a) g has only one zero in x.

也) g has finitely many zeroes, none of which wonder into periodic orbits under T.
c) the zeroes of g lie in $\left[\frac{1}{4}, \frac{3}{4}\right)$ or $\left(\frac{1}{4}, \frac{3}{4}\right]$.

Then there exists exactly one g - measure g, and g is strongly mixing. Procf: The notation of the preceding proof is used.
a) Let $g(z)=0$ and $x \in X$ with $\varphi_{g} h(x)=\alpha$. Either $x<z$ or $h\left(\frac{x+2^{k}-1}{2^{k}}\right)=\alpha$. Since $h \in C(x)$, we have $a=0$.
b) Let $A=\{z \mid E(z)=0\}$ have r elements. The convexity argument of 2 . can be epplied to $\psi_{g} h(y)=\alpha$ unless for soms $1 \leq i \leq k$ and $0 \leq j<2^{i}$,

$$
\frac{y+j}{2^{i}} \in A .
$$

Now, if $\frac{y+j}{2^{i}}=z \in A$ does not wander into a periodic orbit, then i is uniquely determined by z. Thus

$$
h\left(\frac{y+j}{2^{k}}\right)=\alpha
$$

for all $0 \leq j<2^{k}$ except possibly those of the form $2^{i}+q_{i}$, for at most r difforent values of i. As k increases, the subset on which $n=\alpha$ still becomes dense.
c) If $\varphi_{g}^{k} h(y)=\alpha$ and $y \in\left[\frac{1}{4}, \frac{3}{4}\right]$, then either $\frac{y}{2} \in\left(0, \frac{1}{4}\right)$ or $\frac{1}{2}+\frac{y}{2} \in\left(\frac{3}{4}, 1\right)$ and we can apply the technique used in $\left.a\right)$. Condition c) and the proofs of a) and c) were sucgested to mo by L. KAUP. In $\S 4$, we give an example of $a g \in G \cap C^{1}(X)$ with two $g-m e a s u r e s$ because of zeroes at the points of periodicity of T. The abose theorem can: certainly be sharpened.

§ 3 - THE STRONG MIXING CRITERION FOR COVERING TRANSF ORMATIONS. -

In this paragraph, the results of 62 are extended to covering
transformations T of the compact metric space X.
Theorem : Let $\mathbb{E} \in G \cap L(X)$ be strictly positive. Then there exists exactly
one g - measure μ_{g}, and μ_{g} is strongly mixing.
Proof: Only part 1 of the proof of $\{2$ needs modification to :

1. If $f \in C(x)$, then $\left\{\varphi_{g}^{k} f \mid k \geq 0\right\}$ is relatively compact in $C(x)$:

For any $f \in C(x)$ and $\delta>0$, let
$\varepsilon(f, \delta)=\sup _{|x, y| \leq \delta}|f(x)-f(y)|$
Let $f \in \mathcal{C}(X)$ and suppose that K is a Eipschitz constant for g.
Then for sufficiently small $\delta>0,|x, y|<\delta$ implies
$\max \left|z_{i}, z_{i}\right| \leq \rho^{-1} \delta$, where $T^{-1} x=\left\{z_{1}, \ldots, z_{n}\right\}, T^{-1} y=\left\{z_{1}, \ldots, z\right.$, $1 \leq i \leq n$
and thus

$$
\begin{aligned}
& \varepsilon\left\{\varphi_{g} f, \delta\right)=\sup _{|x, y| \leq \delta_{i}} \sum_{i=1}^{n}\left(g\left(z_{i}\right) f\left(z_{i}\right)-g\left(z_{i}\right) f\left(z_{i}\right)\right) \mid \\
& \leq \sup _{|x, y| \leq \delta} \sum_{i=1}^{n} g\left(z_{i}\right)\left|f\left(z_{i}\right)-f\left(z_{i}\right)\right| \\
& +\sup _{|x, y| \leq \delta^{\sum}}^{\sum_{i=1}^{n}\left|f\left(z_{i}\right)\right|\left|g\left(z_{i}\right)-g\left(z_{i}\right)\right|} \\
& \leq E\left(f, \rho^{-1} \delta\right)+n \cdot|f| \cdot K \cdot \rho^{-1} \delta
\end{aligned}
$$

By induction we conclude that
$\varepsilon\left[\varphi_{g}^{k} f, \delta\right) \leq \varepsilon\left(f, \rho^{-k} \delta\right)+n k|f| \cdot \delta\left(\rho^{-1}+\rho^{-2}+\ldots+\rho^{-k+1}\right)$ \leq constant $+n K|f| \delta \frac{\rho^{-1}}{1-\rho}$,
and this implies the $\epsilon . u i$ - continuity of the $\operatorname{set}\left\{\varphi_{g}^{k} f \mid k \geq 0\right\}$. In special cases, the strict positivity of g can be relaxed as in 52 , 8. g. for (X, T) a one - sided shift space. We note that $\mu_{g} \neq \mu_{g}$, implies $\mu_{g}{ }^{\perp} \mu_{g}$, because of the strong mixing property.

The ideatehind the existence of measures as shown in this and the preceding paragraph is not new - similar and more general existence pruthems heve been handled in various settings (e.g. [1], [3], [5] , [c] J. What is original is the strong mixing of all these measures with respect to the same map T and the resulting orthogonality.

§4. EXAMPLES. -

1. Bernoulli schemes.

Let $X=\Omega_{\eta}=\frac{\infty}{\pi} \quad\left\{0,1, \ldots, n^{-1}\right\} \quad$ and let T be the shift transformation on X. Under the metric defined by

$$
|w, \eta|=\left|\inf \left\{i \mid w_{1} \neq \eta_{i}\right\}\right|^{-1}
$$

X is compact and T is a covering transformation of X.
If $p=\left(p_{0}, P_{1}, \ldots, P_{n-1}\right)$ satisfies $p_{k}>0$ and $\Sigma F_{k}=1$, then let μ denote the product measure on X with distribution p in each component. An easy calculation shows that μ^{P} is a g^{P} - measure with

$$
g^{P}(w)=P_{k} \quad\left(w \in X, w_{0}=k\right)
$$

Since g^{p} is a continuous, locally constant, and positive function on X, we have $g^{P} \in G \cap L(X)$ and the results of $\$ 3$ apply to Bernoulli schumes.
2. Markov measures.

Let (X, T) be as in $1 .$, and $\operatorname{let} P=\left(P_{i j}\right)$ be a Markov kernel ori $\{0,1, \ldots, n-1\}$. Choose a probability vector $\pi=\left(\pi_{0}, \ldots, \pi_{n-1}\right)$ with $\pi P=\pi$ and dencte by m the Markov measure on X generated by the initial distritution and transition probebilitiss P.

If $a_{0} a_{1} \ldots a_{k}$ is a sequence of states, let

$$
\left[\begin{array}{llll}
a_{0} & a_{1} & \cdots & a_{k}
\end{array}\right]=\left\{w \in X \mid w_{i}=a_{i} \text { for } 0 \leq i \leq k\right\}
$$

Now, $m \in \mathcal{G}_{T}(x)$ beeause $\quad P=$, so that m is a g - measure for some $g \in G$. We may calculate g as follows. Fixing the states i and j, the ratiu

$$
\frac{m\left(\left[i j a_{2} \cdots a_{k}\right]\right)}{m\left(\left[j a_{2} \cdots a_{k}\right]\right)}=\frac{\pi_{i} p_{i j}}{\pi_{j}}
$$

is independent of a_{2}, \ldots, a_{k}. Therefore if
$E(w)=\frac{{ }_{w_{0}} P_{w_{0}} w_{1}}{\pi_{w_{1}}} \quad(w \in X)$,
m is a g - measure. If ${ }^{\pi_{W}} P$ and π are strictly positive, then m is the unique g = mèasure and is strongly mixing, since $g \in L(X)$.
3. Let $X=\mathbb{R} / \mathbb{Z}$ and $T x=n x$ mod 1 for some $n \geq 2$. For scme α with
$|\alpha| \leq 1, \operatorname{set}$

$$
g(x)=\frac{1+u \cos 2 \pi x}{n} \quad(x \in x)
$$

Then obviously $0 \leq \varepsilon(x) \leq 1$ and

$$
z_{\in T^{-1}}(x) \quad \varepsilon(z)=1+\frac{\alpha}{n} \quad \sum_{j=0}^{n-1} \cos 2 \pi \frac{2 z+1}{n}=1
$$

Therefore $g \in G \cap C^{1}(X)$ and $\{2$ shows that exists a unique g - measure μ_{g}, which is stronely mixing. In particular, the ergodicity of λ (Lobescue measurel and μ_{g} implies $\lambda \perp \mu_{g}$, and we have a singular measure $\mu \mathrm{g}$ on X. It is easy to see that μ_{g} is continuous iff $\alpha \neq+1$, and μ_{g} is fointi mass at 0 if $\alpha=+1$.
4. Let $x=\mathbb{R} / \mathbb{Z}$ and $T x=2 \times \bmod 1$. If $g \in G$ with $g(0)=g\left(\frac{1}{3}\right)=$ $g\left(\frac{2}{3}\right)=1$, then point mass $\varepsilon \quad 0$ at zero and the measure $\frac{1}{2}\left(\varepsilon_{\frac{1}{3}}+\varepsilon_{\frac{2}{3}}\right)$ are both g - measures, and cur method does not produce results because of thr periodicities in the ortits of the zeroes of g.
5. Let $X=\mathbb{R} / \mathbb{Z}$ and $x=2 \times \bmod$ I. We set

$$
g(x)=\begin{array}{ll}
\frac{1+\cos 2 \pi x}{2} & \left(x \neq 0, \frac{1}{2}\right) \\
\frac{1}{2} & \left(x=0 \text { or } \frac{1}{2}\right)
\end{array}
$$

Then, $g \in G$ and for $f \in C(x), \quad \frac{\eta}{g} f$ converges to $f(0)$, tut o is not a g - messure because of the discontinuity of g at 0 .

§ 5. APPLICATIONS TO HARMONIC ANALYSIS. -

$$
\text { Let } X=\mathbb{R} / \mathbb{Z} \text { and } T x=n \times \bmod 1,|\alpha| \leq 1, n \geq 3 \text {. Products of }
$$

the form

$$
P_{k}(x)=\frac{k}{j \frac{\pi}{=} 1}\left(1+\alpha \cos 2 \pi n^{j} x\right)
$$

are special cases of Riesz products (see [8]). Let g be as in $\{4$, examplic 3. Then if λ denotes Lebesgue measure, we have

$$
\varphi_{g}^{k} \lambda=F_{k} \cdot \lambda
$$

and the theorems of $\$ 2$ show that $\varphi_{g}^{k} \lambda$ converges. to the continuous singular measure μ_{g} of the example. If $\Pi=2$ and $\alpha \neq 1$, then the measure μ_{E} remains singular and continuous, but if $\alpha=+1$ and $n=2$, we pet $\mu_{g}=\varepsilon$. In this case, the products $F_{k}(x)$ are just the Fejer kernels

$$
k_{2 k-1}(x)=\frac{1}{2^{k-1}} \quad\left\{\frac{\sin 2^{k-1} \cdot 2 \pi x}{2 \sin \pi x}\right\}
$$

and form an approximate identity. Our methods yield in fact for $n=2$ an approximate identity whenever $\frac{l}{2}$ is the only zero of g, and it is conceivels that approximate identities with desirable properties could be constructe.. We note also the combinatorial connections : if $\hat{\mu}{ }_{g}$ denotes the fourier transform of the measure μ_{g}, a simple calculation yields

$$
\hat{\mu}_{g}(k)=\sum_{r}\left(\frac{\alpha}{2}\right)^{r}
$$

Number of ways to write

$$
k= \pm n^{j_{1}} \pm \ldots \pm n^{j_{r}},
$$

and $\hat{\mu}_{g}(k)=\lim _{j \rightarrow \infty} \varphi_{g}^{j}\left(e^{-2 \pi i k x}\right.$, gives an analytic expression for this combinatorial quantity.

§ 6. SPECTRAL CALCULATIONS FOR MORSE SEQUENCES. -

In this paraeraph, we calculate the spectral measures corresi-criJing to the continucus spectrum of a qeneralized Morse sequence. We assume familiarity with $[4]$, and begin by descriting the results in $|4|$ that we need.

$$
\begin{aligned}
& \text { Dencte } t y \\
& \qquad \hat{x}=\{0,1\}^{\mathbb{Z}}
\end{aligned}
$$

the space of biscquences of zeroes and ones, with the left shift σ. Let each of $b^{0}, b^{1}, b^{2}, \ldots$ a finite block of zeroes and ones of leneth at least two and starting with 0 . To exclude periodic cases, assume that an infinity of the b^{i} are different from $00 \ldots 0$, and an infinity differunt from 0101... 010. Assume alsc that the sequence

$$
x=b^{0} \times b^{1} \times b^{2} \times \ldots
$$

is a continucus Morse sequence (see definitions 7,8 and theorem 3 of [4]],
This implies the following :
I - The orbit closure θ of x in (Ω, σ) is strictly ergodic.
II - Denote by m_{x} the unique σ - invariant probability measure concim
trated on θ_{x} and set

$$
\begin{aligned}
& \mathscr{Y}_{x}=\left\{f \in L^{2}\left(\dot{U}_{x}, m x\right\} \mid f=\tilde{f}\right\} \\
& \dot{E}_{x}=\left\{f \in L^{2}\left(\mathcal{E}_{x}, m_{x}\right\} \mid f=-\tilde{f}\right\}
\end{aligned}
$$

Then, $L^{2}\left[\mathcal{E}_{x}, m_{x}\right\}=\mathcal{F}_{x} G_{x}$ and D_{x} and G_{x} are σ - invariant.
III - o has discrete spectrum on D_{x} with eigenvolue group

$$
f_{x}=\left\{\left.\exp \left(2 \pi i \frac{j}{n_{0} \ldots n_{k}}\right\} \right\rvert\, j, k=0,1,2, \ldots\right\},
$$

where n_{i} is the length of t^{i}. There is a map $\gamma \rightarrow f_{\gamma}$ from j_{x} to D_{x} such that $\sigma f_{\gamma}=\gamma \cdot f_{\gamma},{ }_{\gamma}{ }_{\gamma}=f_{\gamma} f_{\delta}$, $\left\{f_{\gamma} \mid \gamma \in \int_{x}\right\} \quad$ is a complete ofichonormal Lasis for D_{x} and

$$
f_{\gamma} \sum_{j=0}^{\cdots} \sum_{i=0}^{\cdots n_{k}-1} \quad \gamma^{j} I_{A_{j}} \quad \zeta_{y}=\exp \left(2 \pi^{i} \frac{j^{\prime}}{n_{0} \cdots n_{k}}\right)
$$

with $\sigma{ }^{j} A_{0}=A_{j}$ for $0 \leq j \leq n_{0} \ldots n_{k}-1$, the A_{j} being open and closuci in θ_{x}.

IV - σ has continuous spectrum (no eigenvalues) on G_{x}. If we put

$$
h(w)=(-1)^{w_{0}}
$$

then $\left\{h . f_{y} \mid r \in \mathcal{J}_{x}\right\} \quad$ spans E_{n}.

$$
v-\text { Let } b^{0}=b_{0} b_{1} \ldots b_{n-1} \text { and } y=t^{1} \times b^{2} \times \ldots
$$

Then y is also a continuous Morse sequence. If $\gamma=\exp \left(2 \pi i \frac{j}{n}\right)$ then the sets $A_{0}, A_{1}, \ldots, A_{n-1}$ in III can be chosen (choose them as in $\& 4$ of [4]: such that the (strictly ergodic) systems ($\left.\mathcal{O}_{y}, \sigma\right)$ and $\left(A_{j}, \sigma{ }^{\Pi}\right)$ are isomorphic, and

$$
\sigma^{i}\left(h 1_{A_{i+j}}\right)=(-1)^{b_{i}+b_{i+j}} h 1_{A_{j}}
$$

for $0 \leq j \leq i+j<n$.
Now, can begin our spectral calculations for σ on $\underset{x}{\mathcal{X}}$.
Denote by $\mu_{\gamma, \delta}$ the measure on \mathbb{R} / \mathbb{Z} such that

$$
<\sigma^{k}\left(h f_{\gamma}\right), h f_{\delta}{ }_{\delta}>=\hat{\mu}_{\gamma} \delta(k)=\int_{0}^{1} \exp (-2 \pi i k t) \mu_{\gamma, \delta}(d t)
$$

for each $k \in \mathbb{Z},<\ldots,>$ denoting the scalar product in $L^{2}\left(\theta_{x}, m_{k}\right)$. Then $<\sigma^{k}\left(\right.$ if, f_{γ}), hf $\delta_{\delta-1}>=\gamma^{n}<\delta^{n}(h .1), h f_{\delta^{-1}}^{\gamma-1}{ }_{\gamma}>$ and $f_{1}=1$, so that the measures $w_{\gamma} \delta$ and $\mu_{1, \gamma} \delta$ are related by a translation of log $\gamma=\frac{j}{n_{c} \cdots n_{k}}$ on \mathbb{R} / \mathbb{R}.

$$
\text { Now let } y=b^{1} \times b^{2} \times \ldots, b^{c}=b_{c} b_{1} \ldots t_{n-1} \text {, }
$$

$\gamma=\exp \left(2 \pi i \frac{j}{n}\right)$, and let v be the measure $\mu_{1,1}$ for the point y, c'est à dire

$$
\left.\hat{v}(k)=\left\langle\sigma^{k} h, h\right\rangle_{L^{2}} \sigma_{y}, m_{y}\right)
$$

For fixed $m \in \mathbb{Z}$, we obtain, using III and IV,

$$
\begin{aligned}
& \hat{\mu}_{I, Y}(m n)=\left\langle\theta^{m n} r_{Y}, r_{Y}\right\rangle \\
& =\sum_{j=1}^{n-1} \gamma j<0 n_{j}^{n} h, n l_{A j}>\hat{v(n)} \sum_{j=0}^{n-1} \gamma^{j}
\end{aligned}
$$

and in Énerul for $0 \leq j \leq n-1$.

Denoting by Q the operation dufined in $夕$ for the transformaticn
$T t=$ nt mud 1 , we see by simplo cperations with Fuurier transforms that μ l, μ is atssclutely continuous with raspect to $Q v$ and

$$
\begin{aligned}
\frac{d \dot{\mu} 1, \gamma}{d Q v} & =\frac{1}{n} \quad \sum_{k=0}^{n-1} \quad \alpha\left(i^{0}, \gamma, k\right) \exp (2 \pi i k t) \\
& +\frac{1}{n} \\
\sum_{k}=0 & \beta\left(\omega^{0}, \gamma, k\right) \quad 0 \times p(2 \pi j(k-n) t),
\end{aligned}
$$

whert

$$
\begin{aligned}
& \alpha\left(E^{0}, \eta, k\right)=\frac{1}{n} \quad \sum_{i=0}^{n-i-k} \quad y^{n} \quad i \quad(-1)^{i} i^{+!} i+k \\
& \theta\left(b^{\infty}, \gamma, k\right)=\frac{1}{n} \quad \sum_{i=n-k}^{n-1} \quad Y^{i}(-1) \quad i_{i}^{+D_{i}+k-n}
\end{aligned}
$$

In particular, for $\gamma=1$, we have $\alpha\left(\mathrm{L}^{0}, 1,0\right)=1$ and $a\left(t^{c}, 1, k\right)=B\left(b^{0}, 1, n-k\right), k=1, \ldots, n-1$

Thus, if we set
$E\left(b^{\circ}\right)=E\left(b^{\circ}, t\right)=\frac{1+\underset{k-1}{n-1} 2 \alpha\left(b^{\circ}, 1, k\right) \cos 2 \pi i k t}{n}$,
$g\left(t^{\circ}\right) \in G$ and

$$
\mu_{1,1}=\varphi_{\mathrm{g}}\left(\mathrm{a}^{\mathrm{c}}\right) \quad \nu,
$$

where v is itself the measure $\mu_{1,1}$ corresponding to the sequence y. In general, denote by λ_{j} the (probability) measure $\mu_{1,1}$ corresponding, to the prodoct $b^{j} \times b^{j+1} \times \ldots$, and set

$$
\begin{aligned}
& g_{j}(t)=g\left(t^{j}, t\right) \\
& \varphi_{j}=\varphi_{g j}
\end{aligned}
$$

Lemma.

For each $j \geq 1, \lambda_{j-1}=\varphi_{j-1} \lambda_{j}$.
Moreover, for any $f, f^{\prime} \in \bigodot_{\pi}$, the measure μ cofinded ty

$$
<\sigma^{k} f_{,}^{\prime}>=\int_{0}^{1} \exp (-2 \pi i k t) \mu(d t) \quad(k \in \mathbb{Z})
$$

satisfies $\mu \ll \lambda 0^{\circ}$

Proof.
The first statement is the result of the preceeding calculaticn:.
Since any $f \in \epsilon_{\pi}$ can be expressed as an infinite linear combination of the f_{γ}, if suffices to show that $\mu_{\gamma, \varepsilon} \ll \lambda_{o}$ for aach pair $\gamma, \delta \in \mathcal{J}_{\xi}$, This follows frem the facts that $g\left(b^{i}\right)$ has only a finite number of zeroes. all measures λ_{i} are continuous and equivalent to their translations by amonts of the form $\frac{j}{n_{0} \cdots n_{k}}$.

Restating the conclusion of the lemma, the spectral measure corresponding to σ on G_{x}, is absolutely continuous with respect to λ. Thus the class of meesures equivalent to λ_{0} is an isomorphism invariant for o on $\rho_{\dot{K}}$

Next we show how to calculate the measure λ_{0} and derive some of its properties.

Theorem.

$$
\begin{aligned}
& \text { For any } f \in\left[\left[q_{i} / Z\right],\right. \\
& \lim _{j \rightarrow \infty} \varphi_{j} P_{j-1} \cdots \hat{Y}_{0}=\lambda_{0}(f)
\end{aligned}
$$

uniformly.
Proof:
Let \mathfrak{f} is: a trigonometric polynomial of degree. Applying gem.
using the special form of $E\left(s^{j}\right)$ given dove, we see that $\varphi_{j} f$ is again
a trigonometric polynumizi la degree

$$
1+\left[\frac{k-1}{r_{j}}\right] \leq 1+\left[\frac{k-1}{2}\right]<k,
$$

provided that $k>1$. Thus $\operatorname{teg}(f)=k$ implies

$$
\varphi_{i} \psi_{j-1} \cdots \varphi_{0} f=e_{i}^{j}+a_{1}^{j} a(2 \pi i t)+a_{1}^{j} a(-2 \pi i t)
$$

for $j \geq k$. Applying φ_{j+1}, we obtain

$$
\left|a_{i}^{j+1}\right|=\frac{\left|a_{l}^{j}\right|}{n_{j+1}} \leq \frac{\left|\sigma_{1}^{j}\right|}{2}
$$

in view of $\left|\alpha\left(t^{j+1}, \cdots, n_{j+1}^{-1}\right)\right|=\frac{1}{n_{j+1}}$.
Thus, ${\underset{i}{j}}^{\ldots} \mathcal{F}_{\mathrm{f}} \mathrm{f}$ converges uniformly to a constant μ (f) for trigonmetric polynomials and hence for each f $C(R / Z)$. Now

$$
\lambda_{G_{1}}(f)=\left\{\varphi_{0} \cdots \varphi_{j}\right)_{j+1}(f)=\lambda_{j+1}\left(\varphi_{j} \cdots \varphi_{0} f\right) \rightarrow \mu(f)
$$

and

$$
\mu(f)=\lambda_{c}(f)
$$

Thecrum (Strong mixing property)
For for $\in[(\mathbb{R} / 2)$

$$
\lim _{j \rightarrow \infty} \frac{c^{\left(f \cdot T_{0} T_{1} \cdots \Gamma_{j} \varepsilon\right)}}{\lambda \frac{T_{1}}{\left.\left(T_{1} \cdots T_{j}\right)^{E}\right)}}=\lambda_{0}(f),
$$

where $T_{j} t=n_{j} t \bmod 1$ and if the denominator remains non - zero.

Proof:
Because $\Psi_{j} T_{j}$ is the identity,

$$
=\lambda_{j+1}\left(g \cdot \varphi_{j} \cdots \varphi_{0} f\right)
$$

and $\varphi_{j} \ldots \varphi_{0} f$ converges uniformly to $\lambda_{c}(f)$. Since $\lambda_{j+1}(g)=$ $\lambda_{0}\left(T_{0} \ldots T_{j} g\right\}$, the theorem follows.

We can use now our information about λ_{c} to show that in senerai, Morse sequences are non - isomorphic. Let $x=b^{0} \times b^{l} \times \ldots$ and $x^{\prime}=c^{0} \times c^{1} \times \ldots$ Le continuous Morse sequences with length (b^{i}) $=$ length $\left(c^{i}\right)=n_{i}$ for each i, and denote the corresponding basic measures by λ_{c} and $\lambda^{\prime}{ }_{c}$.

Lemma.

$$
\begin{aligned}
& \text { Either } \lambda_{0} \perp \lambda{ }_{0}{ }_{0} \text { or } \lambda \sim \lambda^{\prime}{ }_{0} \text {. If } \lambda{ }_{0} \sim \lambda{ }_{0}{ }_{0} \text {, then } \\
& \left\|\lambda_{j}-\lambda^{\prime}{ }_{j}\right\| \rightarrow 0 \text {, where }\|.\| \text { is the variation norm. }
\end{aligned}
$$

Proof.

$$
\text { For each } n \text { write }
$$

$$
\lambda_{n}=\lambda_{n}^{s}+f_{n} \cdot \lambda_{n}^{\prime}
$$

where

$$
\begin{aligned}
& \lambda{ }_{n}^{s} \perp \lambda \therefore \quad \text {. Than } \lambda_{n}^{s}=\varphi_{n} \lambda_{n}^{s} n+1 \text { for pack } n \text {, so that } \\
& \lambda{ }_{0}^{s}(f)=\varphi_{0} \cdots \varphi_{n}{ }_{n+1}^{\mathbf{s}}(f) \\
& =\lambda{ }_{n+1}^{5}\left(\varphi_{n} \cdots \cdot \varphi_{0} f\right) \rightarrow c \cdot \lambda{ }_{0}(f) .
\end{aligned}
$$

Thus, either $\lambda_{0}^{s}=0$ or $\hat{\lambda}_{0}$. If $\lambda_{0}=f_{0} \cdot \lambda_{c}^{\prime}$, then

$$
\lambda_{n+1}=\left\{\varphi_{n}^{\prime} \cdot \varphi_{n-1}^{\prime} \cdots \varphi_{0}^{\prime} f\right) \cdot \lambda_{n+1}^{\prime}
$$

$$
\int Y_{n} \times \cdots Y_{0} f-1 \mid \text { d } \lambda, \quad \rightarrow
$$

Thucrent.
I

1) thure x. sts a crasibant k such that
 as infinite, ano
2) $\lambda_{i}\left(\right.$ (or $\lambda \quad{ }_{i}^{\prime}$) converges weakly to a continuous measure v aluri. some sufsequance along same sulusequence of $I * 1=\{i+1!$ i. $\operatorname{tnen} \lambda_{e} \perp \therefore_{0}$.

Proci :
 sc that we can chocer a sequence $i^{\prime}+1$ in $I+1$ sush that $\lambda_{i}+1 \rightarrow$ and $b^{i^{\prime}}=0, c^{j}=r$ Uithe $(b) \neq g(c)$. This impiies that

 is finite. Sina; \because í ountinucus. we have a contradiction.

We netu two simple donsequences af this theorem. The first is

 $\left(\theta_{x}, m_{x},\right)$ are rot isomorohic. For a direct procf note that λ_{0} and λ_{0}
 and since bith are ergodic ander $T t=n t$ mod 1 , n being tho common 1 wist. of u and c, wo nave $\lambda{ }^{1}{ }^{\prime}{ }^{\prime}{ }^{\prime}$. The secone consequence is the followin: theorem.

Thecrem:

Let I be an infinite subgroup of the group of roots of unity. There extsts an unccuntable number of dynamical systems whose eigenvalue group is exactly M, such that any two of the systems are non - isomcritic. This tbeoram generalizes the result in [2], where the case $\eta=\left\{\lambda \mid n: \lambda^{2^{n}}=1\right\}$ is dealt with.
\& 7 - Misce: lanecus.
Let $G \in x=\mathbb{R} / \mathbb{R}$ be tre suburoup of all dyadic rationais. Ir [$]$ an example of a quesi - ur:odic measure class different from the lebesgut measure class with respact to the eroup G_{c} was civen. If we define $T x=2 x \bmod 1$ and lot $\in G \cap C^{l}(x)$ be strictly positive, then it is way to see thet the inaasure μ_{g} is quasi - invariant anc quasi - ergodic with respect to G_{0}. Moreover, we oteain different classos for difforent ξ_{ξ} arc thus uncountaly many such classes exist.

We note that there is one - to - one correspondence between the invariant measures on the one - sidae n - shift ond those on the two - sian n - shift, since these measures are uniquely determined by their values on cylinder sets. The properties of ergodicity and strong mixing are compatinle with this correspondence, so that the examples for the one - sided shift iralse valid for the two - sided shift.

We remark that the theorem in $\$ 2$ answers negatively a conjeture of KARLIN [3], since our measures are singular with respect to Lebescu measure.

There are a number of questions left answered :

1. If $\mathscr{G} \in G \cap C(X)$ is strictly positive, is there only one i - measure ? In $[3]$, KARLIN states a theorem to this effect, but the proof seems to usc derivatives of E. It would suffice to show that the Cesero means of $\varphi_{\varepsilon}^{n}$ f converge unfformly.
2. The entropy of the ε - measure μ should be - $\int \log g$ d μ.

Is it ?

> 3 - Which dynamical systems $\left(X, \mu_{巴}, T\right)$ are isomorphic?
> 4 - Let $b=b_{0} \ldots \eta_{n-1}$ be a $0-1$ sequence, and call
$c=c_{0} \ldots c_{n-1}$ similar to b if it is obtained from b ty interchange of 0 and 1 and for order reversal. If b and c aro similar, then $g(b)=B(c)$.

Dces $g(t)=g(c)$ imply that b and c are similar ?
Hopefully, the criteria in $\$ 2$ and $\& 3$ will turn out to be
effective in proving the ergodicity of dynamical systems. A note announcia
the results of this paper has appeared in Comptes Rendus, March 1931.

LITERATURE.

[1] IONESCU -- TULCEA, C.T.
" On a class of operators accurring in the theory of chains of infini... orser " Canod. j. Math. li, 112-121 (1969)
[2] KAKUTANI, S.
" Ei Gocic theory of shift tronsformetions "
Proc, V Berk. Sym. II, 105-414 (1967)
[3] KARLIN, S.
"Soma rencom walks arising in liearning models I " Pac. J. Math. 3-725-756 (1953)
[4] KENNE, M.
" Gemeralized Morse sequences "
Zuits. f. Wenr. 10, 335-353 (1968)
[5] NORMAN, M.F.
" Some convergence thecrems for stochastic learning models with distance Jiminishing operators "
Journal of Math. Psych. 5, 6i-101 (1960)
[6] NORMAN, M.F.
" A uniferm ergodic theorem for certain Markev operators on Lipschity functions on boundec metric spaces "
Zeits. Watr.
[7] MANUREKAR, V. and M. NADKKARNI
" Dn ergodic quasi - invar ient measures on the circle group "
J. Funct. Anal. 3, 157-163 (1969)
[8] ZYCMUND, A.
" Trigonumetric Series I "
208 ff, Camicices Univereity Press (1908)

