Constance Van Eeden

A One-Sample Analogue of a Theorem of Jurečkova

Publications des séminaires de mathématiques et informatique de Rennes, 1969-1970, fascicule 2
«Séminaire de probabilités et statistiques », , exp. n ${ }^{\circ}$ 5, p. 1-20
http://www.numdam.org/item?id=PSMIR_1969-1970___2_A5_0
© Département de mathématiques et informatique, université de Rennes, 1969-1970, tous droits réservés.
L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

by
Constance van Eeden
Universite de Montréal

I. INTRODUCTION.

The purpose of this note is to prove that if, for each $v=1,2, \ldots, x_{v, 1} \ldots \ldots x_{v, n_{v}}$ are a random sample from a distribution symmetric around 0 , then the signed-rank statistic

$$
T_{v}(\theta)=\sum_{i=1}^{n_{v}} p_{v, i} \Psi\left(\frac{{ }^{R}\left|x_{v, i}-q_{v, i}\right|}{n_{v}+1}\right) \operatorname{sgn}\left(x_{v, 1}-q_{v, i} \theta\right),
$$

where $R_{\mid x_{v, i}}-q_{v, i} \theta \mid$ is the rank of $\left|x_{v, i}-q_{v, i} \theta\right|$ among $\left|x_{v, 1}-q_{v, 1} \theta\right| \ldots . .\left|x_{v, n_{v}}-q_{v, n} \theta\right|$, is under certain conditions on the common distribution of the $x_{\nu, i}$, on the constants $p_{v, i}, q_{v, i}$ and on the function Ψ, asymptotically approximately a linear function of θ in the sense that

$$
\begin{aligned}
& \left.\lim _{n \underset{V}{ }{ }^{n} P\{|\theta| \leqslant C}\left|T_{v}(\theta)-T_{v}(0)+\theta K \sum_{i=1}^{n} p_{v j} q_{b_{i}}\right| \geqslant \varepsilon \sigma\left(T_{v}(0)\right]\right\}=0, \\
& \text { for every } C>0 \text { and avery } \varepsilon>0 \text {, where } K \text { is a constant depending on the } \\
& \text { cormmon distribution of the } X_{v, i} \text { and on the function } \psi \text {. }
\end{aligned}
$$

*) This paper was written while the author was visiting the University of Rennes. It was partially supported by the National Research Council of Canada under Grant \#A3 74 .

An analniuus: result was proved by Jurecková [2] for the
statistic

$$
s_{v}(\theta)=\sum_{i=1}^{n_{v}} c_{v, i} \varphi\left(\frac{r_{v, i} x_{v, i}}{n_{v}+1}\right),
$$

where $R_{x_{v, i}}-d_{v, i}{ }^{i} i^{r_{2}}$ the rank of $x_{v, i} \cdot d_{v, i} \theta$ among
$x_{v, 1}-d_{v, 1} \theta_{1} \ldots \ldots, x_{v, n_{v}}{ }^{d_{v, n}}{ }_{v}$ and where, for each $v=1,2, \ldots$ the $x_{v, 1}$ are independentiy ad idiattoejiy distributed.

Fon the peoof of our result some lemmas are needed which are given in section 2 ; oile of these lemmas is a generalization of Theorem 5 of Lehmenn $[E]$, two of the lemmas are analogous to Corollary 1 and 2 of Lehmann [6] . The rain resuits and their prosfs are given in section 3.
II. SOME LEMMAS.

Lel $i_{1} \ldots \ldots i_{n}$ and $j_{1} \ldots \ldots j_{n}$ each be a permutation of the numbers $1, \ldots ., n$ and let $\varepsilon_{1} \ldots \ldots, \varepsilon_{n}, \delta_{1}, \ldots, \delta_{n}$ each be +1 or -1 such that $\left(1_{k}, \varepsilon_{k}, j_{k}, \delta_{k}\right)_{k=1}^{n}$ satisfies
condition $A_{n}:\left\{\begin{array}{l}\text { 1. } \delta_{k}=1 \Longrightarrow \varepsilon_{k}=1 \\ \text { 2. }\left\{i<k, \delta_{k}=1, j_{l}<j_{k}\right\} \Longrightarrow 1_{l}<1_{k} \\ \text { 3. }\left\{l<k, \varepsilon_{k}=-1, j_{l}>j_{k}\right\} \Longrightarrow 1_{l}>1_{k}\end{array}\right.$
For fixed $M(1 \leqslant M \leqslant n)$ define
(2, 1) $\quad a_{M, 1}>a_{M, 2}>{ }^{\prime}{ }^{>} a_{M, K_{M}}$
as the ordered values of those i_{k} among $i_{n-M+1}, i_{n-M+2} \ldots \ldots i_{n}$ for which $\varepsilon_{k}=+1$ and
$(2,2) \quad b_{M, 1}>b_{M, 2}>\ldots>b_{M, L_{M}}$
as the ordered values of those j_{k} among $j_{n-M+1}, j_{n-M+2} \ldots, j_{n}$ for which $\delta_{k}=+1$. Obviously, by Condition $A_{n} \cdot 1, K_{M} \geqslant L_{M}$; further $K_{M} \leq M$. Further define
$(2 ; 3) \quad c_{M, 1}>c_{M, 2}>\ldots>c_{M, M-K_{M}}$
as the ordered values of those i_{k} among $i_{n-M+1}, i_{n-M+2}, \ldots, i_{n}$ for which $\varepsilon_{k}=-1$ and
(2, 4) $\quad d_{M, 1}>d_{M, 2}>\ldots>d_{M, M-L_{M}}$
as the ordered values of those j_{k} among $j_{n-M+1}, j_{n-M+2} \ldots \ldots j_{n}$ for which $\delta_{k}=-1$.

Lemma 2 , 1. If $\left(i_{k}, \varepsilon_{k}, j_{k}, \delta_{k}\right)_{k=1}^{n}$ satisfies Condition A_{n}, then
$(2,5)$

$$
\left\{\begin{array}{ll}
b_{M, \ell} \leqq a_{M, \ell} & \ell=1, \ldots, L_{M} \\
c_{M, \ell} \leqq d_{M, \ell} & \ell=1, \ldots, M-K_{M}
\end{array} \quad M=1 \ldots \ldots, n\right.
$$

Proof : The proof will be given in four parts.

1) The lemma is true for $M=1$ and any $n \geqq 1$. To prove this, notice that by Condition $A_{n} .1$ it is sufficient to prove that
(2, 6)

$$
\begin{cases}j_{n} \leqq i_{n} & \text { if } \delta_{n}=1 \\ j_{n} \geqq i_{n} & \text { if } \varepsilon_{n}=-1\end{cases}
$$

This can be seen as follows.
$(2,7)$

$$
\left\{\begin{array}{l}
j_{n}=\left(\nRightarrow \text { of } j_{k} \leq j_{n}\right)=n-\left(\neq \text { of } j_{k}>j_{n}\right) \\
i_{n}=\left(\neq \text { of } i_{k} \leq i_{n}\right)=n-\left(\neq \text { of } i_{k}>i_{n}\right)
\end{array}\right.
$$

By Condition $A_{n}, 2$
$(2,8) \quad\left(\neq\right.$ of $\left.j_{k} \leqslant j_{n}\right) \leq\left(\nRightarrow\right.$ of $\left.i_{k} \leqslant i_{n}\right)$ if $\delta_{n}=1$
and by Condition $A_{n} \cdot 3$
(2;9)
(H of $j_{k}>j_{n}$) $\leqq\left(\nRightarrow\right.$ of $i_{k}>i_{n}$) if $\varepsilon_{n}=-1$
2) If the lemma is true for some (n, M) then the lamma is true for $(n+1, M)$. To see this consider, for some $n \geq 1$, $\left(I_{k}, \varepsilon_{k}, J_{k}, \delta_{k}\right\}_{k=1}^{n+1}$ satisfying Condition A_{n+1}. From $\left(i_{k}, \varepsilon_{k}, J_{k}, \delta_{k}\right)_{k=1}^{n+1}$ derive ($i_{k}^{\prime}, \varepsilon_{k}, j_{k}^{\prime}, \delta_{k}$) ${ }_{k=2}^{n+1}$, satisfying Condition A_{n}, as follows. Let
(2, 10)

$$
\left\{\begin{array}{l}
r_{k}=\text { rank of } i_{k} \text { among }\left(1_{1}, f_{k}\right) \\
s_{k}=\operatorname{rank} \text { of } j_{k} \text { among }\left(j_{1}, j_{k}\right)
\end{array} \quad k=2, \ldots, n+1\right.
$$

and let
(2, 11)

$$
\left\{\begin{array}{l}
i_{k}^{\prime}=i_{k}-\left(r_{k}-1\right) \\
j_{k}^{\prime}=j_{k}-\left(s_{k}-1\right)
\end{array}\right.
$$

$$
k=2, \ldots, n+1
$$

Then $i_{2}^{\prime}, \ldots . i_{n+1}^{\prime}$ and $i_{2}^{p} \ldots \ldots j_{n+1}^{\prime}$ are each permutations of the numbers 1,....n and from
$(2,12) \quad\left\{\begin{array}{l}i_{k}<1_{\ell} \Longleftrightarrow i_{k}^{\prime}<i_{l}^{\prime} \\ j_{k}<j_{\ell} \Longleftrightarrow j_{k}^{\prime}<j_{l}^{\prime}\end{array} \quad k, \ell=2, \ldots, n+1\right.$
it then follows that $\left\{i \because, \varepsilon_{k}, j_{k}, \delta_{k}\right\} \begin{aligned} & n+1 \\ & k=2\end{aligned}$ gatisfies Condition A_{n}.

For fixed $M \leqslant n$ let $a_{M, \ell}^{\prime}, b_{M, \ell}^{\prime}, c_{M, \ell}^{\prime}, d_{M, \ell}^{\prime}, L_{M}^{\prime}$ and K_{M}^{\prime} be defined, as in $(2,2)-(2,4)$, for $\left(1 ;, \varepsilon_{k}, j_{k}^{\prime}, \delta_{k}\right)_{k=n+2-M}^{n+1}$ and let $a_{M, \ell}, b_{M, \ell}, c_{M, \ell}, d_{M, \ell}, K_{M}$ and L_{M} be so defined for
$\left\{1_{k}, \varepsilon_{k}, j_{k}, \delta_{k}\right\}_{k=n+2-M}^{n+1}$, then $L_{M}=L_{M}^{\prime}$ and $K_{M}=K_{M}^{\prime}$. Assuming the lemma to be true for (n, M) we have
(2, 13)

$$
\begin{cases}b_{M, \ell}^{\prime} \leqslant \sigma_{M, \ell}^{\prime} & \ell=1 \ldots, L_{M} \\ c_{M, \ell}^{\prime} \leqslant d_{M, \ell}^{\prime} & \ell=1, \ldots, M-K_{M}\end{cases}
$$

Now let ℓ_{0} be the number of $b_{M, i}>j_{1}$, then by $(2 ; 11)$
$(2,14) \quad b_{M, \ell}^{\prime}= \begin{cases}b_{M, \ell}-1 & \ell=1 \ldots, \ldots l_{0} \\ \vdots_{M, \ell} & \ell=\ell_{0}+1, \ldots, L_{M} .\end{cases}$
Let k_{0} be the number of $a_{M_{2} \ell}>i_{1}$, then by $(2,11)$
$(2,15) \quad a_{M, \ell}^{\prime}= \begin{cases}a ., \ell^{-1} & \ell=1, \ldots, k_{0} \\ a_{M, \ell} & \ell=k_{0}+1, \ldots, k_{M} .\end{cases}$
Further, by Condition $A_{n+1} \cdot 2, \ell_{0} \leqq k_{0}$. From $(2 ; 13)-(2 ; 15 〕$ it then follows that
(2, 16)

$$
b_{M, \ell} \leq a_{M, \ell} \quad \ell=1, \ldots, L_{M}
$$

The proof that
(2; 17)

$$
c_{M, \ell} \leqq c_{M, \ell} \quad \ell=1, \ldots, M-K_{M}
$$

is analogous, using Condition $A_{n+1} \cdot 3$.
3) If the lemma is true for somn $n \geqslant 2$ with $M=n-1$, then the lamma is true for the sama n with $M=n$. This can be sean as follows.

Assuming the lamma to be true for $M=n-1$ we have
(2, 18)

$$
\left\{\begin{array}{l}
b_{n-1, \ell} \leqslant a_{n-1, \ell} \ell^{\ell=1, \ldots, L_{n-1}} \\
c_{n-1, \ell} \leqslant d_{n-1, \ell} \ell^{\ell=1, \ldots, n-1-k_{n-1}}
\end{array}\right.
$$

and it will be proved that
$(2,19)$

$$
\begin{cases}1 . b_{n, \ell} \leqslant a_{n, \ell} & \ell=1, \ldots, L_{n} \\ 2 . c_{n, \ell} \leqslant d_{n, \ell} & \ell=1, \ldots, n-K_{n}\end{cases}
$$

The following three cases can be distinguished
e) $\delta_{1}=\varepsilon_{1}=-1$. Then $L_{n}=L_{n-1}, K_{n}=K_{n-1}, b_{n, \ell}=b_{n-1, \ell}\left(\ell=1, \ldots, L_{n}\right)$ and $a_{n, \ell}=a_{n-1, \ell}\left(\ell=1, \ldots, k_{n}\right)$, so that (2,19.1) is obvious. Further $\left(a_{n, \ell}, \ell=1, \ldots, k_{n}, c_{n, \ell}, \ell=1, \ldots, n-k_{n}\right)$ and $\left(b_{n, l}, l=1, \ldots, L_{n}, d_{n, l}, l=1, \ldots, n-L_{n}\right)$ are each permutations of the numbers $1, \ldots . ., n$ so that ($2,19.2$) follows from ($2 ; 19.1$)

$$
\text { b) } \delta_{1}=-1, \varepsilon_{1}=1 \text {. Then } L_{n}=L_{n-1}, K_{n}=K_{n-1}+1, b_{n, \ell}=b_{n-1, \ell}\left(\ell=1, \ldots, L_{n}\right)
$$ and $c_{n, \ell}=c_{n-1, \ell}\left(\ell=1, \ldots, n-k_{n}\right)$. To prove $(2 ; 19.1)$ let k_{0} be the number of $a_{n-1, \ell}\left(l=1, \ldots, k_{n-1}\right)$ larger than 1_{1}; then

(2:20) $a_{n, \ell}= \begin{cases}a_{n-1, \ell} & \ell=1 \ldots \ldots k_{0} \\ i_{1} & \ell=k_{0}+1 \\ a_{n-1, \ell-1} & \ell=k_{0}+2, \ldots, k_{n}\end{cases}$
If $L_{n} \leqslant k_{0} \leqslant K_{n-1}$ then (2, 19.1)1s immediate. If $0 \leqslant k_{0} \leqslant L_{n}=L_{n-1}$, then ($2,19.1$) is imediate for $\ell=1, \ldots, k_{0}$. Further

$$
\begin{equation*}
b_{n, k_{0}+1}=b_{n-1, k_{0}+1} \leqslant a_{n-1, k_{0}+1}<1_{1}=a_{n, k_{0}+1} \tag{2;21}
\end{equation*}
$$

and for $\ell=k_{0}+2, \ldots, L_{n}$
$(2 ; 22) \quad b_{n, \ell}=b_{n-1, \ell} \leqslant a_{n-1, \ell}=a_{n, \ell+1} \leqslant a_{n, \ell}$
The proof of $(2 ; 19.2)$ is analogous.
c) $\delta_{1}=\varepsilon_{i}=1$. Then $L_{n}=L_{n-1}+1, K_{n}=K_{n-1}+1, c_{n j \ell}=c_{n-1, \ell}\left(\ell=1, \ldots, n-K_{n}\right)$ and $d_{n, \ell}=d_{n-1, \ell}\left(l=1, \ldots, n-L_{n}\right)$ so that $(2,19.2)$ is obvious. Further (see a)) (2; 19.1) foliows from (2; 19.2)
4) The lemma now follows by induction on M. According to part. 1 of the proof, the lemma is true for $M=1$ and any $n \geqslant 1$. Let M_{0} be an integer 1 and assume the lemma is true for $M=M_{0}$ and any ηM_{0}, then it will be proved that the lemme is true for $M=M_{0}+1$ and any $n \geqslant M_{0}+1$. This can be seen as follows. According to the induction hypothesis the lemma is true for $n=M_{0}+1$ and $M=M_{0}$ s according to part 3 of the proof this implies the truth for $n=M_{0}+1$ and $M=M_{0}+1$ according to part

2 of the proof this implies the truth for $M=M_{0}+1$ and any $n \geqslant M_{0}+1$. Q. E. D.

In Lemma 2 ; 1 it was shown that Condition A_{n} is sufficient for (2;5) to hold for each $M=1, \ldots, n$. For $(2,5)$ to hold for a particular value rf M it is obviously sufficient that $\left(i_{k}, \varepsilon_{k}, j_{k}, \delta_{k}\right)_{k=1}^{n}$ satisfies

Condition $A_{n, M}\left\{\begin{array}{l}\text { for each } k \geqslant n-M+1 \\ 1, \delta_{k}=1 \Longrightarrow \varepsilon_{k}=1 \\ 2 . \text { for each } \ell \leqslant k-1\left(\delta_{k}=1, j_{l}<j_{k}\right) \Longrightarrow i_{l}<i_{k} \\ 3, \text { for each } \ell \leqslant k-1\left(\varepsilon_{k}=-1, j_{l}>j_{k}\right) \Longrightarrow i_{l}>i_{k}\end{array}\right.$
Further, if $\left(i_{k}, \varepsilon_{k}, j_{k}, \delta_{k}\right)_{k=1}^{n}$ satisfies Condition $A_{n, M}$ for $M=M_{0}$ then ($\left.i_{k}, \varepsilon_{k}, j_{k}, \delta_{k}\right)_{k=1}^{n}$ satisfies Condition $A_{n, M}$ for all $M \leqslant M_{0}$, whioh proves the following lemma.

Lemma 2 , 2. If $\left(I_{k}, \varepsilon_{k}, j_{k}, \delta_{k}\right)_{k=1}^{n}$ satisfies Condition $A_{n, M}$ for $M=M_{0}$, then
$(2,23)$

$$
\left\{\begin{array}{ll}
a_{M, \ell} \leq b_{M, \ell} & \ell=1, \ldots, L_{M} \\
c_{M, \ell} \leq d_{M, \ell} & \ell=1, \ldots, M-K_{M}
\end{array} \quad 1 \leqslant M_{0}\right.
$$

Lemma 2,3 . If h is i: andecreasing and nonnegative and if $\left(i_{k}, \varepsilon_{k}, j_{k}, \delta_{k}\right)_{k=1}^{n}$
satisfies Condition $A_{n, M}$ for $M=M_{0}$, then
(2; 24)

Proof : Because h is nondecreasing, it follows from Lemma 2,2 that, for $1 \leqslant M \leqslant M_{0}$.
(2, 25)

$$
\begin{cases}1 \cdot h\left(b_{M l}\right) \leqslant h\left(a_{M, l}\right) & \ell=1 \ldots \ldots L_{M} \\ 2 \cdot h\left(c_{M, l}\right) \leqslant h\left(d_{M, l}\right) & \ell=1, \ldots, M-K_{M}\end{cases}
$$

From $\{2,25.1$) and the fact that h is non negative it follows that, for $1 \leqslant M \leqslant M_{0}$.
$(2,26)$

$$
\begin{gathered}
\sum_{\substack{\ell=n+1-M \\
\delta_{\ell}>0}}^{n} h\left(j_{\ell}\right)=\sum_{\ell=1}^{L_{M}} h\left(b_{M, \ell}\right)
\end{gathered} \quad \sum_{\ell=1}^{L_{M}^{M}} h\left(a_{M, \ell}\right) \leqslant \sum_{\ell=1}^{K} h\left(a_{M, \ell}\right)=
$$

From (2, 25.2) and the fact that h is non negetive it follows that, for $1 \leqslant M \leqslant M_{0}$
(2, 27)

Remark. In the two spocial cases, where $\delta_{k}=1$ for all k or $\varepsilon_{k}=-1$ for all k, Lemma 2 ; 1 reduces to Theorem 5 of Lehmann [6]. Further, in each of these special cases, Lemma 2,3 is analogous to Corollary 1 af Lehmann [6].

Lemma $2,4$. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be n numbers satisfying
(2, 28)
$0 \leqslant \alpha_{1} \leqslant \ldots<\alpha_{n}$
let h be non decreasing and non negative and let $\left(i_{k}, \varepsilon_{k}, j_{k}, \delta_{k}\right\}_{k=1}^{n}$
satisfy
$(2,29)$

$$
\begin{aligned}
& \text { 1. }\left(\delta_{k}=1, \alpha_{k}>0\right) \Longrightarrow \varepsilon_{k}=1 \\
& \text { 2. }\left(\delta_{k}=1, \alpha_{k}>0, \ell<k, j_{\ell}<j_{k}\right) \Longrightarrow i_{\ell}<1_{k} \\
& \text { 3. }\left(\varepsilon_{k}=-1, \alpha_{k}>0, \ell<k, j_{\ell}>{ }_{-k}\right) \Longrightarrow i_{\ell}>j_{k}
\end{aligned}
$$

(2, 30) $\quad \sum_{k=1}^{n} a_{k} \varepsilon_{k} h\left(i_{k}\right) \geqslant \sum_{k=1}^{n} a_{k} \delta_{k} h(j)$.

Proof : The following proof is enalogous to Lehmann's proof of his Corollary 2 in $[6]$.
(2, 30) is obviously true if $\alpha_{k}=$ o for all $k=1, \ldots, n$, so in the following it will bo supposed that $\alpha_{k}>0$ for at least one k. Further, since h is non negetive,
$\sum_{\ell=1}^{n} h(\ell) \geqslant 0$ and $\sum_{\ell=1}^{n} h(\ell)=0$ if and only if $h(\ell)=0$ for all $k=1, \ldots, n$, in which case (2; 30) is obvious. In the following it will be supposed that $\sum_{\ell=1}^{n} h(\ell)>0$.

Let $0 \leqslant B_{1}<\beta_{2}<\ldots<\beta_{T}$ be the different values of $\alpha_{1} \ldots \ldots, \alpha_{n}$ and let $n_{t}(t=1, \ldots, T)$ be the number of α_{k} equal β_{t}. Further let
$N_{t}=\sum_{s=1}^{t} n_{s}(t=1, \ldots, T)$ and $N_{0}=0$. Con ider the random variables X and Y each taking the values $\left(-\beta_{T},{ }^{-f_{T-1}}, \ldots,-\beta_{1}, \beta_{1}, \ldots, \beta_{T-1}, \beta_{T}\right)$ with
(2 , 31)

and
(2, 32)

where, if $\beta_{1}=0, P(X \leqslant 0)$ and $P(Y \leqslant 2)$ are defined by (2; 31.2) and (2, 32.2) respectively.

If $\beta_{1}>0$, condition (2, 29) reduces to Condition A_{n} and from Lemma 2,3 it then follows that
(2, 33) $\quad P(x \leqslant x) \leqslant P(y \leqslant x)$ for all x.
If $\beta_{1}=0$, condition $(2,29)$ is Condition $A_{n, M}$ for $M=N_{T}-N_{1}=n-n_{1}$,
so that in this case (2;24) holds for $M \leqslant n-n_{1}$, which proves $(2 ; 33)$
From (2, 33) it follows that
(2, 34)

$$
\varepsilon_{x} \geqslant \varepsilon_{y}
$$

which is equivalent to
(2) 35)

$$
\sum_{s=1}^{T} \beta_{s} \sum_{\ell=N_{s-1}+1}^{N_{s}} \varepsilon_{\ell} h\left(i_{\ell}\right) \geqslant \sum_{s=1}^{T} \beta_{s} \sum_{\ell=N_{s-1}+1}^{N_{s}} \delta_{\ell} h\left(j_{\ell}\right)
$$

whish is equivalent to
(2, 36)

$$
\sum_{\ell=1}^{n} \alpha_{\ell} \varepsilon_{\ell} h\left(i_{\ell}\right) \geqslant \sum_{\ell=1}^{n} \alpha_{\ell} \delta_{\ell} h\left(j_{l}\right)
$$

Q. E. D.

III, MAIN RESULTS.

$$
\text { Let, for each } v=1,2, \ldots, x_{v, 1} \ldots \ldots x_{v, n_{v}} \text { be independently }
$$ and identically distributed random variables with common distribution function $F(x)$ satisfying

(3; 1)

$$
\left\{\begin{array}{l}
\text { 1. } F(x) \text { has an absolutely continuous density } f(x) \\
\text { 2. } \int_{0}^{1} \varphi_{F}^{2}(u) d u<\infty^{\prime} \text {, where } \varphi_{F}(u)=-\frac{f^{\prime}\left(F^{-1}(u)\right)}{f^{\prime}\left(F^{-1}(u)\right)}(0 \leqslant u \leqslant 1) \\
\text { and where } f \text { ' is the derivative of } f \\
\text { 3. } f(x)=f(-x) \text { for all } x .
\end{array}\right.
$$

Let Y (u) (osus1) be a function satisfying
$(3,2)$

$$
\left\{\begin{array}{l}
\text { 1. } Y_{(u)} \text { can be written as the sum of two functions } \Psi_{1}(u) \\
\text { and } \psi_{2}(u) \text { where } \psi_{1}(u) \text { is non decreasing and non negative } \\
\text { and } \psi_{2}(u) \text { is non increasing and non positive } \\
\text { 2. } \int_{0}^{1} \Psi_{1}^{2}(u) \text { du }<\infty(i=1,2) \text { and } \int_{0}^{1} \psi^{2}(u) \text { du> } 0
\end{array}\right.
$$

Lot $p_{v 1} \ldots \ldots p_{v, n}$ and $q_{v, 1} \ldots \ldots q_{v, n_{v}}$ be vectors of constants satisfying
$(3,3) \begin{cases}1 . & \sum_{i=1}^{n} p_{v, i}>0 \\ & \begin{array}{l}\max p_{v, i}^{2} \\ 2 . \\ \\ \\ \\ \\ \\ \\ \sum_{i=1}^{v i s i m} p_{v, i}^{2}\end{array}=0,\end{cases}$

and, for each $v=1,2, \ldots$, either
(3, 5) $\quad \begin{cases}1, p_{v, i} q_{v, i} \geqslant 0 & \text { for all } i=1, \ldots, n_{v} \\ 2,\left(\left|p_{v, i}\right|-\mid p_{v, i} d\right)\left(\left|q_{v, i}\right|-\left|q_{v, i}\right|\right) \geqslant 0 \text { for all } i, 1,=1, \ldots, n_{v}\end{cases}$
$(3,6)\left\{\begin{array}{l}\text { 1. } p_{v, 1} q_{v, i} \leqslant 0 \text { for all } i=1, \ldots, n_{v} \\ \text { 2. }\left(\left|p_{v, 1}\right|-\left|p_{v, i}\right|\right)\left(\left|q_{v, 1}\right|-\left|q_{v, i},\right|\right) \geqslant 0 \text { for all } 1,1,=1, \ldots, n_{v}\end{array}\right.$
Let $R_{\mid x_{v, i}}-q_{v, i}{ }^{\theta} \mid$ be the rank of $\left|x_{v, i}-q_{v, i} \theta\right|$ among
$\left|x_{v, 1}-q_{v, 1}{ }^{\theta}\right| \ldots \ldots\left|x_{v, n_{v}}-q_{v, n_{v}} \theta\right|$, let
(3;7)
$\operatorname{sgn} u=\left\{\begin{array}{r}1 \text { if } u>0 \\ -1 \text { if } u<0\end{array}\right.$
and let

Theorem 3; 1. If $F(x)$ is continuous, if $\Psi(u)$ is non decreasing and non negative then, for each $v=1,2, \ldots, \tau_{v}(\theta)$ is with probability one a non increasing step function of θ if $(3,5)$ holds and a non dacreasing step function of θ if $(3,6)$ holds :

Proof : In the proof the index v will be omitted. The proof will be given for the case that ($3 ; 5$) holds. The result for the case that $(3 ; 6)$ holds is then obvious.

If $F(x)$ continuous, $T(\theta)$ is, with probability one, not well defined only for those values of θ satisfying $\theta=-\frac{x_{i}}{q_{i}}$ for some i with $q_{i} \neq 0$ and for those values of θ satisfying $\left|x_{i}-q_{i} \theta\right|=\left|x_{i},-q_{i}, \theta\right|$ for some pair (i,i') with $q_{i} \neq$ o or $a_{1}, \neq 0$. These values of θ where $T(\theta)$ is not well defined, define a finite number of intervals for θ within each of which $T(\theta)$ is independent of θ.

Now consider two values θ_{1} and θ_{2} of θ for which $T(\theta)$ is well defined and let $\theta_{1}<\theta_{2}$. Then it will be proved that $T\left(\theta_{1}\right) \geqslant T\left(\theta_{2}\right)$. Without loss of generality the X_{1} can be numbered in such a way that $\left|p_{1}\right| \leqslant \ldots \leqslant\left|p_{n}\right|$ Then, by $(3 ; 5.2),\left|q_{1}\right| \leqslant \ldots \leqslant\left|q_{n}\right|$. Write $T(\theta)$ as
$(3,9) \quad T(\theta)=\sum_{k=1}^{n} \left\lvert\, p_{k} M\left(\frac{\left|x_{k}-q_{k} \theta\right|}{n+1}\right) \operatorname{sgn} p_{k}\left(x_{k}-q_{k} \theta\right)\right.$,
where, for $p_{k}=0$, $\operatorname{sgn} p_{k}\left(X_{k}-q_{k} \theta\right)$ is defined as 1.
Now apply Lemma 2,4 with, for $k=1, \ldots, n$
(3: 10) $\left\{\begin{array}{l}\alpha_{k}=\left|p_{k}\right| \\ \varepsilon_{k}=\operatorname{sgn} p_{k}\left(x_{k}-q_{k} \theta_{1}\right) \quad \delta_{k}=\operatorname{sgn} p_{k}\left(x_{k}-q_{k} \theta_{2}\right) \\ i_{k}=R_{1 x_{k}}-q_{k} \theta_{1}\left|\quad j_{k}=R_{\mid x_{k}}-q_{k} \theta_{2}\right|\end{array}\right.$
Then $T\left(\theta_{1}\right) \geqslant T\left(\theta_{2}\right)$ if $(2 ; 29)$ is satisfied. That $(2,29)$ is satisfied can be seen from the following steps a], b) and c)
a) $\{2,29.1 〕$ is identical with

$$
\left\{p_{k}\left(x_{k}-q_{k} \theta_{2}\right)>0, p_{k} \neq 0\right\} \Longrightarrow p_{k}\left(x_{k}-q_{k} \theta_{1}\right)>0
$$

which follows immediately from (3 , 5.1) and

$$
p_{k}\left(x_{k}-q_{k} \theta_{1}\right)=p_{k}\left(x_{k}-q_{k} \theta_{2}\right)+p_{k} q_{k}\left(\theta_{2}-\theta_{1}\right)
$$

b) $(2 ; 29.2)$ is identical with

$$
\begin{array}{r}
\left\{p_{k}\left(x_{k}-q_{k} \theta_{2}\right)>0, p_{k} \neq 0, \ell<k,\left|x_{\ell}-q_{\ell} \theta_{2}\right|<\left|x_{k}-q_{k} \theta_{2}\right|\right\} \Rightarrow \\
\\
\left|x_{\ell}-q_{\ell} \theta_{1}\right|<\left|x_{k}-q_{k} \theta_{1}\right|
\end{array}
$$

This can be seen as follows. We have
$-\frac{p_{k}}{\left|p_{k}\right|}\left(x_{k}-q_{k} \theta_{2}\right)<x_{\ell}-q_{\ell} \theta_{2}<\frac{p_{k}}{\left|p_{k}\right|}\left(x_{k}-q_{k} \theta_{2}\right)$
so that, using (3, 3),

$$
\begin{aligned}
x_{\ell}-q_{\ell} \theta_{1}< & \frac{p_{k}}{\left|p_{k}\right|}\left(x_{k}-q_{k} \theta_{1}\right)+\left(\theta_{2}-\theta_{1}\right)\left(q_{\ell}-\frac{p_{k}}{\left|p_{k}\right|} q_{k}\right) \\
& =\frac{p_{k}}{\left|p_{k}\right|}\left(x_{k}-q_{k} \theta_{1}\right)+\left(\theta_{2}-\theta_{1}\right)\left(q_{\ell}-\left|q_{k}\right|\right) \leq \\
& \leqslant \frac{p_{k}}{\left|p_{k}\right|}\left(x_{k}-q_{k} \theta_{1}\right) \\
x_{\ell}-q_{\ell} \theta_{1}> & =\frac{p_{k}}{\left|p_{k}\right|}\left(x_{k}-q_{k} \theta_{1}\right)+\left(\theta_{2}-\theta_{1}\right)\left(q_{\ell}+\frac{p_{k}}{\left.\left|p_{k}\right| q_{k}\right)}\right. \\
& =-\frac{p_{k}}{\left|p_{k}\right|}\left(x_{k}-q_{k} \theta_{1}\right)+\left(\theta_{2}-\theta_{1}\right)\left(q_{\ell}+\left|q_{k}\right|\right) \geqslant \\
& \geqslant-\frac{p_{k}}{\left|p_{k}\right|}\left(x_{k}-q_{k} \theta_{1}\right)
\end{aligned}
$$

so that $\left|x_{\ell}-q_{\ell} \theta_{1}\right| \leqslant\left|x_{k}-q_{k} \quad \theta_{1}\right|$.

$$
\text { c) }(2,29.3) \text { is identical with }
$$

$$
\left\{p_{k}\left(x_{k}-q_{k} \theta_{2}\right)<0, p_{k} \neq 0, \ell<k,\left|x_{\ell}-q_{\ell} \theta_{2}\right|>\left|x_{k}-q_{k} \theta_{2}\right|\right\}
$$

$$
\left|x_{l}-a_{l} \theta_{1}\right|>\left|x_{k}-a_{k} \theta_{1}\right|
$$

The preof of this is analogeus to that for (2.29.2). Q. E. D.
A special case of Theorem $3 ; 1$ with $Y(u)=u$ and
$p_{v, i}=q_{v, 1}\left(i=1, \ldots, n_{v}\right)$ was proved by koul $([5]$, Lemma 2,2$\}$.

Theorem 3, 2. If $(3,1)-(3,4)$ and $(3,5)$ or $(3,6)$ are satisfied then
(3 , 11) $\underset{\sim}{\lim _{\rightarrow \infty}} P\left\{\sup _{|\theta| \leqslant C}\left|T_{v}(\theta)-T_{v}(0)+\theta K \sum_{i=1}^{n_{v}} p_{v, i} q_{v, i}\right|>\varepsilon \sigma\left(T_{v}(0)\right)\right\}=0$,
where $K=\int_{0}^{1} \psi_{(u)} \varphi_{F}\left(\frac{(u+1}{2}\right) d u$.
Proof : The index ν will be omitted in the proof. It is sufficient to prove the theorem for the case where $\Psi_{2}(u)=0$ for all u. Further the proof will be given for the case where (3; 5) holds; the result for
the case where (3, 6) holds is then obvious.
The proof is analogous to the procf of Jureckova of her Theorem 3 , 1 in $[2]$. As in her case it can be supposed without loss of generality that $\sum_{i=1}^{n} p_{i}^{2}=1$ and it can be seen, using the result of Hájok and Sidák
([1]. Theorem 1.7) that it is sufficient to prove

$$
\cup \xrightarrow{\lim } P\left\{\begin{array}{l}
\sup _{|\theta| \leqslant C}
\end{array}\left|T(\theta)-T(0)+\theta K \sum_{i=1}^{n} p_{1} q_{1}\right|>\varepsilon\right\}=0
$$

As in Jureckova's proof and using the results of Hajek and Sidak ([1], section VI. 2. 5) it can be proved that for any fixad set of points $\theta_{1} \ldots . . \theta_{r}$

$$
\lim _{\nu \rightarrow \infty} P\left\{\left|T\left(\theta_{1}\right)-T(0)+\theta_{1} K \sum_{i=1}^{n} p_{1} q_{1}\right| \leqslant \varepsilon \text { for all } 1=1 \ldots r\right\}=1
$$

Further, for a fixed $C>0$, choosing $\theta_{1}, \ldots . \theta_{r}$ with

$$
-C=\theta_{1}<\theta_{2}<\cdots<\theta_{r-1}<\theta_{r}=C
$$

and

$$
K\left|\left|\theta_{i+1}-\theta_{i}\right| \leq \frac{1}{2} \frac{1}{\sqrt{M}},\right.
$$

where M is the constant in (3, 4), it can be seen, as in Jurackova's proof and using theorem 3;1 above, that

$$
\left.\begin{array}{r}
\left\{\left|T\left(\theta_{1}\right)-T(0)+\theta_{i} K \sum_{i=1}^{n} p_{1} a_{1}\right| \leqslant \frac{\varepsilon}{2} \text { for alli=1,....r}\right\} \\
|\theta| \leqslant C
\end{array}\right\}
$$

The conditions on the $p_{\nu, i}$ and $q_{v, 1}$ in Theorem 3,2 can be weakened as follows. (see also Jurecková [2]. Remark: page 1897). For every sequence of pairs of vectors ($p_{v, 1} \ldots \ldots p_{v, n_{v}}$), ($q_{v, 1} \ldots \ldots q_{v, n}$) it is possible to find a sequence of ruadruplets of vectors $\left(p_{\nu, 1}^{(\ell)} \ldots, p_{\nu, n_{v}}^{(\ell)}, \ell=1,2,3,4\right.$ such that for each $v=1,2, \ldots$
(3, 12)

$$
\left\{\begin{array}{l}
\text { 1. } p_{v, i}^{-16-}=\sum_{\ell=1}^{4} p_{v, i}^{(\ell)} \quad 1=1, \ldots, n_{v} \\
2 . p_{v, i}^{(l)} q_{v, i} \geqslant 0 \text { for } \ell=1,2, i=1, \ldots, n_{v} \\
p_{v, i}^{(\ell)} q_{v, i} \leqslant 0 \text { for } \ell=3,4, i=1, \ldots, n_{v} \\
3 .\left(\left|p_{v, i}^{(\ell)}\right|-\left|p_{v, i}^{(\ell)},\right|\right)\left(\left|q_{v, i}\right|-\left|q_{v, 1}\right|\right) \geqslant 0 \ell=1,2,3,4 \\
\\
\text { and } 1,11=1, \ldots, n_{v}
\end{array}\right.
$$

That this is possible can be seen as follows. For every pair of vectors ($p_{v, 1} \ldots \ldots p_{v, \eta_{v}}$) , ($q_{v, 1} \ldots \ldots q_{v, \eta_{v}}$) one can find $\alpha_{v, 1} \ldots \ldots \alpha_{v, n_{v}}, \beta_{v, 1} \ldots \ldots \beta_{v, n_{v}}$ such that $p_{v, 1}=\alpha_{v, i}+\beta_{v, 1}$ and

$$
\begin{aligned}
& \left(a_{v, 1}-\alpha_{v, 1}\right)\left(\left|q_{v, 1}\right|-\left|a_{v, 1}\right|\right) \geqslant 0 \text { for all } 1,1,=1, \ldots, n_{v} \\
& \left(\beta_{v, 1}-\beta_{v, 1}\right)\left(\left|q_{v, 1}\right|-\left|q_{v, 1},\right|\right) \leqslant 0
\end{aligned}
$$

Further one can find $\gamma \geqslant 0$ such that $\alpha_{v, i}+\gamma \geqslant 0, \beta_{v, i}-\gamma_{v} \leqslant 0$ for all $1=1, \ldots, n_{v}$, By taking $P_{v, i}^{\prime}=\alpha_{v, 1}+\gamma, P_{v, i}^{\prime}=\beta_{v, i}-\gamma$ one has found $p_{v, 1}^{\prime} \ldots \ldots, p_{v, n_{v}^{\prime}}^{\prime}$ and $p_{v, 1}^{\prime \prime}, \ldots, p_{v, n_{v}^{\prime \prime}}$ such that $p_{v, i}=p_{v, 1}+p_{v, i}, p_{v, i}^{\prime} \geqslant 0, p_{v, 1} \leq 0 \quad\left(i=1, \ldots, n_{v}\right)$ and

$$
\begin{aligned}
& \left(\left|p_{v, 1}^{\prime}\right|-\left|p_{v, i}^{\prime}\right|\right)\left(\left|a_{v, 1}\right|-\left|a_{v, 1}\right|\right) \geqslant 0 \\
& \left(\left|p_{v, i}^{n}\right|-\left|p_{v, 1}^{n},\right|\right)\left(\left|a_{v, 1}\right|-\left|q_{v, 1}\right|\right) \geqslant 0
\end{aligned}
$$

Further, if $p_{v, 1} \ldots \ldots p_{v, n_{v}}$ and $q_{v, 1} \ldots \ldots q_{v, n_{v}}$ satisfy the condition that the $p_{v, 1}$ all have the same sign and
(3; 13)

$$
\left(\left|p_{v, 1}\right|-\left|p_{v, 1}\right|\right)\left(\left|q_{v, 1}\right|-\left|q_{v, 1},\right|\right) \geqslant 0 \text { all } 1,1=1, \ldots, n_{v}
$$ then one can find $p_{v, 1}^{\prime} \ldots \ldots, p_{v, n_{v}}, p_{v, 1}^{n} \ldots \ldots p_{v, n_{v}}^{n}$ such that

(3:14)

$$
\left\{\begin{array}{l}
\text { 1. } p_{v, i}=p_{v, i}^{\prime}+p_{v, i}^{\prime \prime} \\
\text { 2. } p_{v, i}^{\prime} q_{v, i} \cdot p_{v, i} \geqslant 0, p_{v, i}^{\prime \prime} q_{v, i} \cdot p_{v, i} \leqslant 0 \quad i=1, \ldots, n_{v} \\
\text { 3. }\left(\left|p_{v, i}^{\prime}\right|-\left|p_{v, i}^{\prime},\right|\right)\left(\left|q_{v, i}\right|-\left|q_{v, i}\right|\right) \geqslant 0 \\
\left(\left|p_{v, i}^{\prime \prime}\right|-\left|p_{v, i}^{\prime \prime}\right|\right)\left(\left|q_{v, i}\right|-\left|q_{v, i},\right|\right) \geqslant 0 .
\end{array}\right.
$$

This can be dons as follows. Suppose, without less of generality, $\left|q_{i}\right| \leqslant\left|q_{v, 1+1}\right| i=1, \ldots, n_{v}-1$ and take

$$
p_{v, i}^{\prime}=2 i p_{v, i} \frac{q_{v, i}}{\left|q_{v, i}\right|} \quad p_{v, i}^{\prime \prime}=\left[1-2 i \frac{q_{v, 1}}{\left|q_{v, i}\right|}\right] p_{v, 1},
$$

where $\frac{q_{v 1}}{\left|a_{v, i}\right|}$ is taken as 1 if $q_{v, i}=0$. Then

$$
\begin{aligned}
& p_{v, i}^{\prime} q_{v, i} p_{v i}=2 i p_{v, i}^{2}\left|q_{v, i}\right| \geqslant 0 \\
& p_{v, i}^{\prime} q_{v, i} p_{v i}=\left[q_{v, i}-2 i\left|q_{v, i}\right|\right] p_{v, i}^{2} \leqq 0
\end{aligned}
$$

Further, using $(3,13)$,

$$
\left|P_{v, i+1}^{\prime}\right|-\left|P_{v, i}^{\prime}\right|=(2 i+1)\left|p_{v, i+1}\right|-21\left|P_{v, i}\right| \geqslant\left|p_{v, i}\right| \geqslant 0
$$

and, again using $(3 ; 13)$,
$\left|p_{v, i+1}^{\prime \prime}\right|-\left|p_{v, i}^{\prime \prime}\right| \geqslant\left|p_{v, i}\right|\left\{\left|1-(2 i+2) \frac{q_{v, i+1}}{\left|q_{v, i+1}\right|}\right|-\left|1-2 i \frac{q_{v, i}}{\left|q_{v, i}\right|}\right| \geqslant 0\right.$. because $\left|1-2 i \frac{q_{\nu, i}}{\left|q_{v, i}\right|}\right|$ is non decreasing in i.

Further it is clear that, if $F_{v, 1} \ldots \ldots p_{v, n_{v}}$ satisfies \cap_{v} $\sum_{i=1} P_{v, i}^{2}>0$ for each $v($ condition $3,3.1)$, then, for each v, there exists an $\ell(\ell=1,2,3,4)$ such that $\sum_{i=1}^{v}\left\{p_{v, i}(\ell)\right\}^{2}>0$. Also. if $P_{v, i}$ is written as $\sum_{\ell=1}^{4} p_{v, 1}^{(\ell)}, T_{v}(0)$ can be written as the sum of four statistics and (3; 11) remains true, If it is true for each of these
four statisties and
(3;15)

$$
\sum_{i=1}^{4} \sum_{i=1}^{n_{v}}\left\{p_{v, i}^{(l)}\right\}^{2} \leq M_{1} \sum_{i=1}^{n_{v}} p_{v, i}^{2}
$$

for some M_{1} independent of v. Further (3;11) is true for each of these four statisties if $(3 ; 1),(3 ; 2)$ and $(3 ; 4)$ are satisfied and the $p_{v, 1}^{(\ell)}$ satisfy $(3 ; 12$? and
$(3,16)$

This proves the following theorem.
Theorem $3 ; 3:$ If $(3,1) ;(3,2)$ and $(3 ; 4)$ are satisfied, if there exist $p_{v, 1}^{(\lambda) \ldots, p_{l}^{(\ell)}(i=1,2,3,4) \text { such that }(3 ; 12),(3,15) \text { and }[3 ; 16)}$ are satisfied then (3; 11) holds.
 used by Kraft and van Eeden $[3]$, $[4]$ to find the asymptotic properties of linearized estimates based on signed ranks for the one sample location problem.

Koul [5] proves a theorem analogous to Theorem 3 , 2 for the p variate case where $R_{X_{v, i}}-a_{v i} \theta \mid$ is replaced by
$R\left|x_{v, i}-\sum_{j=1}^{p} q_{v_{0, i} j} \theta_{j}\right| \quad$. He considers the case where $p_{v, i}=q_{v_{j}}$
for scme j and all $i=1, \ldots, n_{\nu}$, further in his case $\Psi(u)=u$ and his conditions in F are struger than 13,11
[1] Hájek, J. and Sid́ak, Z. (1967). Theory of rank tests. Academic Press, New-Yırk
[2] Jurecková, J. (1969). Asymptctic linearity of a rank statistic in regressicn parameter. Ann. Math. Stat. 40 1889-1900
[3] Kraft, C. H. and van Eeden, C. (1969). Efficient linearized estimates based un ranks. Priceedings of the First International Symposium on N.inparametric Techniques in Statistical Inference, Blcomington, Indiana.
[4] Kraft, C. H. and van Eaden, C. (1969). Relative efficiences of quick and efficient methods of computing estimates from rank tests. Submitted.
[5] Koul, H. L. (1969). Asymptotic behavior of Wilcoxen type confidence regions in multiple linear regression. Ann. Math Stat. 40 1950-1979
[6] Lehmann, E. L. (1966). Scme concepts of dependence, Ann. Math. Stat. 37 1137-1153.

