Charles H. Kraft

Constance Van Eeden

Linearized Rank Estimates and Signed-Rank Estimates for the General Linear Hypothesis

```
Publications des séminaires de mathématiques et informatique de Rennes, 1969-1970, fascicule 2
«Séminaire de probabilités et statistiques », , exp. n \({ }^{\circ} 4\), p. 1-31
<http://www.numdam.org/item?id=PSMIR_1969-1970___2_A4_0>
```

[^0]Charles H. KRAFT and Constance VAN EEDEN
Université de Montréal

1. INTRODUCTION.

The development of methods of estimation from ranks for the parameters of the general linear hypothesis has proceeded rapidly since the work of Hodges and Lehmann [5] on estimates for one - sample and two - sample problems. Univariate extensions of these estimates to k - sample problems have been given by Lehmann [11], and Bhuchongkul and Puri [2] ; to linear regression by Adichie [1] ; and to regression on monotone functions by Rao and Thornby [14]. Koul [7] studied rank estimates for a wide class of sequences of design matrices which are assumed to be perpendicular to a vector of constants. He used an approximation theorem of Jureckova [6] for some of the asymptotic properties. In [9], [10] the present authors utilized the theorem of Jureckova to study linearized versions of rank estimates for one - and two - , sample problems. These linearized versions are, in most cases, simpler to compute as well as asymptotically equivalent to the non - Iinearized versions.

In the present paper linearized rank estimates are described for a sub - class of the sequence of design matrices studied by Koul [7]. When Koul's estimates exist the estimates here can be considered as their linearized versions. However, the proofs given here do not require their existence. Linearized signedrank estimates are given for an analogous sequence of designs and supposing the observations have symmetric distributions. Koul $[8]$ has studied estimates based on signed - rank statistics for more general sequences of designs but with stronger assumptions on the distributions of the observations.
*] This work was partially supported by the Mathematics Research Center, United States Army, Madison, Contract \# DA-31-124-ARD-D-462 and partially supported by the National Research Council of Canada. The manuseryt was written in final form while the authors were visiting the Department of Mathematics, University of Rennes.

The sequences of design matrices considerad here have, at least asymptotically, fixed rank. Thus, the results do not apply to sequencus uf designs in which there are an incroasing number of nuisance parametors as well as a fixed number of parameters of interest. Some of the recent results concerning rank estimates for these more complicated deslens can be found in Lehmann [12], Greenberg $[3]$, and Puri and Sen $[13]$.

The conditions under which it is shown here that linearizatiun is possible for multiparameter problums are stronger than those proposec by Jureckova [6]. However the conditions here are notationally simpler and can be simpler to verify.

Section 2 contains the assumptians and theorems concerning estimetes based on rank statistics. Section 3 contains the same for astimates basud on signed - rank statistics. The results of these two sections require certain initial estimates and estimatus of acala. Theorems establishing the existence and construction of such estimates are given in suction 4 . Section 5 contains the proofs of the theorems in section 2 and of those in section 4 concerning estimates besed on rank statistics. Section 6 contains the proufs of the theoremsin sections 3 and 4 concerning estimates based on signad rank statistics.

The basis of linearized estimates is the fundemental theorem of Jureckova [6]. Section 7 gives a particular extension of this thoorom to multiparameter problems for ank - statistics and a multiparametor ex-tenajon of Van Eaden 's [15]analogue, for signed - rank statistics, of Jureckova " s theorem. In section 8 the relation between the extension to multiparameter problems of Jurackova" s theorem used here and tha extansion suggested by her in [6] is disoussed.

2. LINEARIZED RANK ESTIHATES

Suppose that, for each $v=1,2, \ldots$, for an $n_{v} \times 1$ vector of observations $y^{(v)}=\left(Y_{\mathcal{1}}(\nu), \ldots Y_{n_{v}}(v)\right.$, , there exists an $n_{v} \times(p+q)$ design matrix, $z^{(v)}$, of known constants and $a(p+q) \times 1$ vector B of unknown constants such that the components of $Y^{[v]_{-}} Z^{(v)_{\beta}}$ are independently and identically distributed as $F\left(\frac{y}{b}\right)(b>0)$ where $F(y)$ is a completely specified distribution function. p and q will be fixed and limits will be as $v \longrightarrow \infty$: (Super- and subscripts v will not be written).

The following standard reduction of the parameters will be convenient. For the sequence of design matrices, Z, let $Z-\bar{Z}=\left(Z_{i j}-\frac{1}{n} \sum_{i=1}^{n} Z_{i j}\right)$ and let p be the rank of $Z-\bar{Z}$. Then, if $Z_{1}-\bar{Z}_{1}$ is a set of p linearly independent columns of $Z-\bar{Z}$ and $Z_{2}-\bar{Z}_{2}$ is the rest of the columns of $Z-\bar{Z}, Z-\bar{Z}$ can (after, if necessary, rearranging some of the columns) be written as $Z-\bar{Z}=$ $\left(Z_{1}-\bar{Z}_{1} \cdot Z_{2}-\bar{Z}_{2}\right)$ where $Z_{1}-\bar{Z}_{1}$ is of size $n \times p$ and rank p and $Z_{2}-\bar{Z}_{2}=\left(Z_{1}-\bar{Z}_{1}\right) c$, where c is a $p \times q$ matrix. Hence $Z \beta=$ $\left(Z_{1}-\bar{Z}_{1}\right)\left(\beta_{1}+c \beta_{2}\right)+\left(\bar{Z}_{1} \beta_{1}+\bar{Z}_{2} \beta_{2}\right)$, where $B=\left(\beta_{1}^{\prime} \cdot B_{2}^{\prime}\right)^{\prime}$ corresponds to $Z=\left(Z_{1}, Z_{2}\right) . \operatorname{Let}\left(Z_{1}-\bar{Z}_{1}\right)\left(\beta_{1}+c \beta_{2}\right)+\left(\bar{Z}_{1} \beta_{1}+\bar{Z}_{2} \beta_{2}\right)=$ $\left(Z_{1}-\bar{Z}_{1}\right) \theta+\theta_{0}$ with θ_{0} a vector of constants and the θ parameter to be estimated.

The distribution function F of single observations will be assumed to satisfy the regularity conditions of Hajek and Sidak [4], namely

Assumption A

1) $f(y)=\frac{d F(y)}{d y}$ exists and is absolutely continuous on $(-\infty, \infty)$
ii) the function $\Psi_{F}(u)=-\frac{f^{\prime}}{f}\left(F^{-1}(u)\right)$ can be written as the sum of two monotone functions each of which is square integrable on $0<u<1$.

Let any two vectors u and v be called similarly ordered if $\left(u_{i}-u_{j}\right)\left(v_{i}-v_{j}\right) \geqq 0$ for all $1, j$. For the sequence Z of design matrices let $z=Z_{1}-\bar{Z}_{1}$. It is supposed that the sequence $\left\{z=\left(z{ }_{i j}^{(v)}\right\}\right\}$ satisfies

Assumption B
i)

$$
1 \leq i \leq n^{\max _{i j}^{2}} \rightarrow 0
$$

$$
j=1, \ldots, D
$$

$$
\sum_{i=1}^{n} z_{i j}^{2}
$$

ii) $\quad \frac{1}{n} z^{\prime} z \longrightarrow \sum$ where \sum is positive definite.

11i) For each $j_{1}, j_{2}\left(j_{1} \neq j_{2}, j_{1}, j_{2}=1, \ldots, p\right)$ there exists a number $\gamma_{j_{1}} j_{2} \neq 0$ such that, for $n>n_{0}, z_{j_{1}}$ and $z_{j_{1}}+\gamma_{j_{1}}, j_{2} z_{j_{2}}$ are similarly ordered, where $z_{1} \ldots \ldots z_{p}$ are the column vectors of z.

Assumption C

It will be supposed that there exists a sequence $\hat{\theta}_{1}$ of initial estimates of θ which satisfies
i) $\hat{\theta}_{1}\left(\frac{Y-z \theta}{a}\right)=\frac{\hat{\theta}_{1}(Y)-\theta}{a}$ for all θ and all $a>0$
ii) $P_{\theta}\left\{\sqrt{n}\left(\hat{\theta}_{1}-\theta\right) \in A\right\} \rightarrow P(A)$ for some fixed p-dimensional distribution P.

Note that $\left.C_{1}\right)$ is satisfied for the least squares estimates $\hat{\theta}_{1}$ and
that, under assumption Bil and ii), (ii) will also be sotisfied if $\int y^{2} d F(y)<\infty$. In section 4 a class of jusigns is given for which a sequence $\hat{\theta}_{1}$ satisfying C can be constructed fron cartain medians. Define now an $n \times 1$ vector

$$
\phi_{F}(\theta)=\left\{\varphi_{P}\left(\frac{R(Y-z \theta)}{n+1}\right)\right\}
$$

where $R_{(Y-z \theta)_{i}}$ is the rank of the $i^{\text {th }}$ component of $Y-z \theta$ among all n components. A linearized rank estimate $\hat{\theta}$ will be defined by
$(2 ; 1) \quad \hat{\theta}=\hat{\theta}_{1}+\frac{\hat{b}}{K_{F F}}\left(z^{\prime} z\right)^{-1} z^{\prime} \Phi_{F}\left(\hat{\theta}_{1}\right)$.
whore $K_{F F}=\int_{0}^{1} P_{F}^{2}(u) d u a n d$ where \hat{b} is a consistent estimate of the scale parameter b.

In section 5 the following theorem will be proved.

Theorem 2; 1. If the components of $\gamma-2$ have common distribution function $F\left(\frac{y}{b}\right)$, if F satisfies A, if z satisfies B, if $\hat{\theta}_{1}$ satisfies C and if \hat{b} is a consistent estimate of b, then $\sqrt{n}(\hat{\theta}-\theta)$, where $\hat{\theta}$ is given by (2,1), has asymptotically a normal distribution with mean zero and covariance $\frac{\mathrm{b}^{2}}{\mathrm{~K}_{\mathrm{FF}}} \Sigma^{-1}$.

In order to find the asymptotic distribution of the estimate $(2 ; 1)$ when the components of $Y-Z \beta$ are independently and identically distributed with a common distribution function $G(y)$, the following assumption A_{1} concerning $G(y)$ and assumption D concerning the initial estimate $\hat{\theta}_{1}$ will be needed.

Aswumption A_{1}
i) assumption Ai$)$
ii) $\int_{0}^{1} \varphi_{G}^{2}(u) d u<\theta_{0}$

Let, for two distribution functions F_{1} and F_{2},
$K_{F_{1} F_{2}}=\int_{0}^{1} \varphi_{F_{1}}(u) \quad \varphi_{F_{2}}(u)$ du and call two sequences of estimates \hat{t}_{1} and \hat{t}_{2}
G-equivalent if $P_{G}\left\{\sqrt{n}\left\|\hat{t}_{1}-\hat{t}_{2}\right\|>\varepsilon\right\} \rightarrow 0$. It will be supposed that the initial estimete $\hat{\theta}_{1}$ setisfies

Assumption D

i) $\hat{\theta}_{1}\left(\frac{Y-z \hat{\theta}}{a}\right)=\frac{\hat{\theta}_{1}(Y)-\theta}{a}$ for all θ and all $a>0$
ii) if $\theta=0, \hat{\theta}_{1}$ is G-equivalent to $\frac{1}{K_{S G}}\left(z^{\prime} z\right)^{-1} z^{\prime} \Phi_{S}(0)$ for some distribution function S satisfying assumption A.

Theorem 2: 2. If the components of $y-28$ hove common distribution function G(y), if F and S satisfy f_{1}, if G satisfies A_{1}, if z satisfies B, if $\hat{\theta}_{1}$ satisfies D, then, for $\hat{\theta}$ defined by $(2,1), \sqrt{n}(\hat{\theta}-\theta)$ has asymptotically a normal distribution with mean o and covariance
(2;2) $\left\{\frac{K_{S S}}{K_{S G}^{2}}\left[1-\frac{c K_{F G}}{K_{F F}}\right]^{2}+\frac{2 K_{S F^{c}}}{K_{S G} K_{F F}}\left[1-\frac{c K_{F G}}{K_{F F}}\right]+\frac{c^{2}}{K_{F F}}\right\} \sum^{-1}$. where $c=P_{G}-\lim \hat{b}$.

In section 4 examples of initial estimates $\hat{\theta}_{1}$ satisfying assumption D will be given s section 4 also contains a method of constructing estimates \hat{b} which are consistent estimates of b if the components of $Y-Z \beta$ have distribution function $F\left(\frac{V}{b}\right)$ and for which c can easily be
found when the components of $Y-Z \beta$ have distribution $G(y)$.
In section 8 it is shown that the assumption Biii) can be replaced by an alternate assumption proposed by Jureckova [6].

Let now, for each $v=1,2, \ldots, r^{(v)}=\left(r_{1}{ }^{(v)}, \ldots, Y_{n_{v}}{ }^{(v)}\right)^{\prime}$
be an $n_{v} \times 1$ vector of observations, $\operatorname{let} z^{(v)}$ be an $n_{v} \times\left(p_{1}+a_{1}\right)$ design matrix and let β be a $\left(p_{1}+q_{1}\right) \times 1$ vector of unknown constants such that the components of $y^{(\nu)}-z^{(\nu)} \beta$ are independently and identically distributed as $F\left(\frac{y}{b}\right)$, where $F(y)$ is a completely specified distribution function. p_{1} and q_{1} will be fixed and limits are as $v \longrightarrow \infty$. Superand subscripts u will not be written.

Let p_{1} be the rank of Z. Then Z can be written as $Z=\left(x_{1} x_{1}\right)$, where x is a set of p_{1} linearly independent columns of Z and $x_{1}=x$, where of is a $p_{1} \times q_{1}$ matrix.

Let $\beta=\left(\beta_{3}^{\prime}, \beta_{4}^{\prime}\right)^{\prime}$ corrospond to $Z=\left(x, x_{1}\right)$ then $Z \beta=$ $\times\left(\beta_{3}+\alpha \beta_{4}\right)$. The parameter to be estimated is $\mu=\beta_{3}+\alpha \beta_{4}$.

Note that, in section $2, Z \beta=\left(Z_{1}-\bar{z}_{1}, 1\right)\left(\theta_{1}, \ldots, \theta_{p}, \theta_{0}\right)^{\prime}$, where $\left(Z_{1}-\bar{Z}_{1}, 1\right)$ is the $n \times(p+1)$ matrix consisting of the p columns of $Z_{i}-\bar{Z}_{1}$ and a column of 1 's, this matrix $\left(Z_{1}-\bar{Z}_{1}, 1\right)$ is of rank $p+1$. The estimation procedure to be given in this section can thus be used to estimote the parameter $\left(\theta_{1}, \ldots, \theta_{p}, \theta_{0}\right)$ of section 2. This leads to two different estimates for $\left(\theta_{1}, \ldots, \theta_{p}\right)^{\prime}$ which, as will be seen, have esymptotically the same distribution if the underlying distributions are symmotric.

The distribution function F of single observations will be assumed to satisfy

As sumption A^{\prime}

1) $f(y)=\frac{d f(y)}{d y}$ exists and is absolutely continuous on $(-\infty, \infty)$
ii) $\psi_{F}(u)=\psi_{F}\left(\frac{u+1}{2} ; j\right.$ can be written as the sum of two square integrable functions $\psi_{1}(u)$ and $\psi_{2}(u)$, where $\psi_{1}(u)$ is nondecreasing and nonnegative and $\psi_{2}(u)$ is nonincreasing and nonpositive
iii) $f(y)=f(-y)$ for all y.

For the sequence of design matrices it will be supposed that x satisfies

Assumption B^{\prime}

ii) $\frac{1}{n} x^{\prime} x \longrightarrow \quad \sum_{1}$, where Σ_{1} is a positive definite matrix.
iii) for each pair $\left(j_{1}, j_{2}\right)\left(j_{1} \neq j_{2} ; j_{1}, j_{2}=1, \ldots, p_{1}\right)$ there exists a number $\gamma_{j_{1}} j_{2} \neq 0$ such that, for $n>n$,

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { 1. } x_{i j_{1}}\left(x_{i j}+\gamma_{j_{1}} j_{2} x_{i j_{2}}\right\} \geq 0 \text { for all } i \\
\text { 2. }\left|x_{j_{1}}\right| \text { and }\left|x_{j_{1}}+\gamma_{j_{1}} j_{2} x_{j_{2}}\right| \text { are similarly }
\end{array}\right. \\
& \text { ordered, where } x_{1}, \ldots, x_{p_{1}} \text { are column vectors of } x
\end{aligned}
$$

estimates $\hat{\mu}_{1}$ of μ satisfying
i) $\hat{\mu}_{1}\left(\frac{Y-x \mu}{a}\right)=\frac{\hat{\mu}_{1}(Y)-\mu}{a}$ for all μ and all a>0
ii) $P_{\mu}\left(\sqrt{n}\left(\hat{\mu}_{1}-\mu\right) \in A\right) \rightarrow P(A)$ for some fixed p_{1}-dimensional distribution P.

Let $\Psi_{F}(\mu)$ be the $n \times 1$ vector

$$
\Psi_{F}(\mu)=\left\{\psi_{F}\left(\frac{R\left|(Y-x \mu)_{1}\right|}{n+1}\right) \operatorname{sgn}(y-x \mu)_{i}\right\} .
$$

where ${ }^{R}\left|(Y-x \mu)_{i}\right|$ is the rank of the absolute value of the i th component $(Y-X \mu)_{i}$ of $Y-X \mu$ among the absolute values of all: its components and

$$
\operatorname{sgn} x=\left\{\begin{aligned}
1 & \text { if } x>0 \\
-1 & \text { if } x<0
\end{aligned}\right.
$$

A linearized estimate $\hat{\mu}$ of μ will be defined by
$(3 ; 1) \quad \hat{\mu}=\hat{\mu}_{1}+\frac{\hat{b}}{K_{F F}}\left(x^{\prime} x\right)^{-1} x^{\prime} \Psi_{F}\left(\hat{\mu}_{1}\right)$,
where \hat{b} is a consistent estimate of b.
In section 6 the following theorem will be proved.

Theorem 3;1 : If the components of $Y-Z B$ have common distribution function $F\left(\frac{y}{b}\right)_{,}$if F satisfies A^{\prime}, if \times satisfies B^{\prime}, if $\hat{\mu}_{1}$ satisfies C^{\prime}, if \hat{b} is a consistent estimate of b, then $\sqrt{n}(\hat{\mu}-\mu)$, with $\hat{\mu}$ given by $(3 ; 1)$, has asymptotically a normal distribution with mean 0 and coveriance

In order to find the asymptotic distribution of the estimate (3;1) when the components of $Y-Z B$ are independently and identically distributed as $G(y)$, the following assumption A_{1} concerning $G(y)$ and assumption D^{\prime} concerning the initial estimate $\hat{\mu}_{1}$ are needed.

Assumption A_{1}^{\prime}
i) assumption $\left.A^{\prime} 1\right]$
ii) $\int_{0}^{1} \varphi_{6}^{2}(u) d u<\infty$

1ii) assumption A^{\prime} iii).

Assumption D
i) $\hat{\mu}_{1}\left(\frac{Y-X \mu}{a}\right)=\frac{\hat{\mu}_{1}(Y)-\mu}{a}$ for all μ and all $a>0$
ii) If $\mu=0, \hat{\mu}_{1}$ is G-equivalent to $\frac{1}{K_{S G}}\left(x^{\prime} x\right)^{-1} \times{ }^{\prime} Y_{S}(0)$
for some distribution function S satisfying A^{\prime}.
Theorem $3_{2} 2$: If the components of $\gamma-\angle \beta$ nave commu, dist $H_{\text {aterition }}$ tunction $G(y)$, if F and S satisfy A^{\prime}, if G satisfies A^{\prime}, if x satisfies B^{\prime}, if $\hat{\mu}_{1}$ satisfies D^{\prime} then, for $\hat{\mu}$ defined by $(3 ; 1), \sqrt{n}(\hat{\mu}-\mu)$ has asympto-
tically a normal distribution with mean c and covariance

$$
\begin{equation*}
\left\{\frac{K_{S S}}{K_{S G}^{2}}\left[1-c \frac{K_{F G}}{K_{F F}}\right]^{2}+\frac{2 K_{S F}{ }_{S G}}{K_{S G} K_{F F}}\left[1-c \frac{K_{F G}}{K_{F F}}\right]+\frac{c^{2}}{K_{F F}}\right\} \sum_{1}^{-1} \tag{3;2}
\end{equation*}
$$

whare $c=P_{G}-\lim \hat{b}$.
Examples of initial estimates $\hat{\mu}_{1}$ satisfying 0^{\prime} are given in section 4.

In section 8 it is shown that assumption Biii) can be replaced by an alternate assumption.
4. INITIAL ESTIMATES OF θ AND μ AND ESTIMATES OF THE SCALEPARAMETER b. INITIAL ESTIMATES.

Perhops the two most well known choices for initial estimates of θ and μ are those corresponding to the mean and the median. The resulting relative efficiency of the linearized estimate can be found from Theorem 2;2 (resp. Theorem 3;2) if it is known that the initial estimate satisfies D (resp. D') for some ψ_{S}. Identifying such initial estimates $\hat{\theta}_{1}$ (resp. $\hat{\mu}_{1}$) and the corresponding φ_{S} is the purpose of the following four theorems which will be proved in section 5 for $\hat{\theta}_{1}$ and in section 6 for $\hat{\mu}_{1}$.

Theorem 4:1 : If the components of Y - $Z \beta$ have common distribution function $G(x)$, where G satisfies A and has a variance, if z satisfies $3 i)$ and il) then $\hat{\theta}_{p}=\left(z^{\prime} z\right)^{-1} z^{\prime} Y$ satisfies D with $S^{\prime}(u)=G^{-1}(u)$.

A construction of an initial estimate $\hat{\theta}_{1}$ corresponding to the median can be most easily described for replicated designs. Suppose $Z^{\prime}=\left\{Z_{1}^{\prime}, Z_{2}^{\prime}, \ldots, Z_{n}^{\prime}\right\}$ where, for each $i, Z_{i}=Z_{o}$ where Z_{0} is a $k \times(p+q)$ matrix. Let $z_{0} \operatorname{span} Z_{0}-\bar{Z}_{0}$ so that $z_{0}^{\prime} z_{0}>0$. Then z_{0} is $k \times p$ so that the total number of observations is $n k$. For simplicity suppose that the k rows of z_{o} are distinct. Then the n observations corresponding to a given row in z_{0} are a sample from a population with the same location (If z_{o} has some equal rows there will be available more observations for a given "row") Let $m=\left(m_{1}, m_{2}, \ldots, m_{k}\right)^{\prime}$ be the medians of the observations corresponding to each of the k rows of z_{0}.

Theorem 4:2: If the components of $Y-Z \beta$ have common distribution function $G(x)$, where $G(x)$ satisfies A and has a positive density at its median, then $\hat{\theta}_{1}=\left(z_{0}^{\prime} z_{0}\right)^{-1} z_{2}$ satisfies D with S the double exponential distribution.

The corresponding statement for an initial estimate, based on the mean, of μ is Theorem 4;3.

Theorem 4;3: If the components of $Y-Z \beta$ have common distribution $G(x)$, where $G(x)$ satisfies A^{\prime} and has a variance, if x satisfies $\left.B^{\prime} i\right)$ and ii), then $\hat{\mu}_{1}=\left(x^{\prime} x\right)^{-1} x^{\prime} Y$ satisfies D^{\prime} with $\psi_{S}(u)=G^{-1}\left(\frac{u+1}{2}\right)$.

For an initial estimate $\hat{\mu}_{1}$ based on medians, consider again an n-times repeated fixed design matrix. Let $x=\left(x_{0}^{\prime}, \ldots, x_{0}^{\prime}\right)^{\prime}$ with x_{0} a $k x p_{1}$ matrix and $x_{0}^{\prime} x_{0}>0$. Let $t=\left(t_{1}, t_{2}, \ldots, t_{k}\right)^{\prime}$ be the medians of the observations corresponding to each of the k rows of x_{0}.

Theorem 4:4 : If the components of $Y-2 B$ have common distribution function $G(x)$, where G satisfies A^{\prime} and has a positive density at its median, then $\hat{u}_{1} \equiv\left(x_{0}^{\prime} x_{0}\right)^{-1} x_{0}^{\prime} t$ satisfies D^{\prime} with S the double exponential distribution.

Estimates of the scale parameter

Estimates of the scale parameter b can e.g. be obtained as follows. Most measures of dispersion D, defined for distribution functions H, H_{n} on $(-\infty, \infty)$, have the following properties
i) $b D(H(y))=U\left(H\left(\frac{y-a}{b}\right)\right)$ for all a and all $b>0$
i1) $D\left(H_{n}(y)\right) \rightarrow D(H(y))$ whenever $\sup _{y}\left|H_{n}(y)-H(y)\right| \rightarrow 0$ and $D(H(y))<\infty$. Given such a measure of dispersion $D, \hat{b}, \frac{y}{}$.section 2 , can be taken as $\frac{D\left(\hat{F}_{n}(y)\right)}{D(F[y)]}$, where $\hat{F}_{\eta}(y)$ is the empirical distribution function of the components of $Y-z \hat{\theta}_{1}$ and $F(y)$ is the distribution function from which $\varphi_{F}(u)$ is computed. Then, if the components of $Y-Z \beta$ have common distribution $F\left(\frac{y}{b}\right)$, if $\hat{\theta}_{1}$ satisfies C and If $D(F(y))<\infty, \hat{b}$ is a consistent estimate of b. If the components of $Y-Z \beta$ have common distribution $G(y)$, if $\hat{\theta}_{1}$ satisfies D, if $D(F(y)\}<\infty$ and $D(G(y))<\infty$ then, in Theorem $2 ; 2, c=\frac{D(G(y))}{D(F(y))}$. The same remarks hold for estimating b in section 3.

D can be taken, for instance, as an interpercentife range or, if the observations have a variance, as the standard daviation.

In $[10]$ some numerical values of the relative efficiencies of linearized estimates are given ; these relative efficiencies are computed as the ratio of the Cramer-Rao lower bound $\frac{1}{\int_{0}^{1} \varphi_{G}^{2}(u) d u}$, for the estimation
problem, to

$$
\frac{K_{S G}}{K_{S G}^{2}}\left[1-c \frac{K_{F G}}{K_{F F}}\right]^{2}+\frac{2 K_{S F}}{K_{S G} K_{F F}}\left[1-c \frac{K_{F G}}{K_{F F}}\right]+\frac{c^{2}}{K_{F F}}
$$

These efficiencies are given in $[10]$ for several choices of F and $G, f 0 r \hat{b}$ as the standard deviation or as the interquarti.e range, and for both choices of the initial estimate given above.

5 - PROOF OF THEOREM $2: 1,2 ; 2,4: 1$, and $4: 2$.
Proof of Theorem 2;1.
Since \hat{b} is a consistent estimate of b, it is sufficient to prove that, for the estimate $(2 ; 1)$ with \hat{b} repleced by b, the distribution of $\sqrt{n}(\hat{\theta}-\theta)$ converges tu a normal distribution with mean zero and covariance $\frac{U^{2}}{K_{F F}} \Sigma^{-1}$.

The asymptotic distribution of $\sqrt{n}(\hat{\theta}-0\}$ with \hat{b} replaced by b can be found as follows.
a) For $c=\left(c_{1}, \ldots, c_{p}\right)^{\prime} \neq 0$ and $\theta=U$ it follows from Hajek and Sidak [4] (p. I63) that. $\frac{b}{\sqrt{n} K_{F F}} c^{\prime} z^{\prime} \Phi_{F}(0)$ is asymptotically normal with mean zero and variance $\frac{Q^{2}}{K_{F F}} c^{\prime} \Sigma c$ provided that $c^{\prime} z^{\prime}$ satisfies $\left.B i\right)$ and Bii). That it does if z satisfies Bil and Bii) is immediate upon noting that, for

$$
\frac{\frac{1}{n} \max _{1 \leq i \leq n}\left(\sum_{j=1}^{p} c_{j} z_{i j}\right)^{2}}{\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{p} c_{j} z_{i, j}\right)^{2}}
$$

Bii) implies that the denominator converges to c' $\Sigma c>0$. Hence, by taking $c^{\bullet}=(0, \ldots, 0,1,0, \ldots, 0)$, it follows from Ei) that $\frac{1}{n} \max _{1<i<n} z_{i j}^{2}$ approaches zero for tach j.
But $\max _{1 \leq i \leq n}\left(\sum_{j=1}^{p} c_{j} z_{i j} j^{2} \leq M_{i}^{2} \max _{1 \leq j \leq p} \max _{1 \leq i \leq n} \quad z_{i j}^{2}\right.$, where $M^{2}=\max _{1 \leq j \leq p} c_{j}^{2}$.
b) It follows from (i) that $\hat{\theta}(Y-z \quad \hat{O})=\hat{\theta}(Y)-\theta$ so we can suppose that $\theta=0$. If $\hat{\theta}_{0}$ is defined by $\frac{b}{K_{F F}}\left(z^{\prime} z\right)^{-1} z^{\prime} \Phi_{F}$ (0) it is immediate from a) that $\sqrt{n} \hat{\theta}_{0}$ is asymptotically normel with mean 0 and covariance $\frac{D^{2}}{K_{F F}} \Sigma^{-1}$.
c) Assuming $0=0$ it remains to show that $\sqrt{n}\left\|\hat{\theta}-\hat{\theta}_{0}\right\|$ converges to zero and hence that $\sqrt{\pi} \hat{\theta}$ and $\sqrt{n} \hat{\theta}_{0}$ have asymptotically the same distribution. However
$(5,1)$

$$
\sqrt{n}\left\|\hat{\theta}-\hat{\theta}_{0}\right\|=\left\|\sqrt{n} \hat{\theta}_{1}+\frac{b \sqrt{n}}{K_{F F}}\left(z^{\prime} z\right)^{-1}\left\{z^{\prime} \Phi_{F}\left(\hat{\theta}_{1}\right)-z^{\prime} \Phi_{F}(0)\right\}\right\| \cdot
$$

By Ciil a number a can be chosen so that $P\left\{\left\|\hat{\theta_{1}}\right\| \leq \frac{d}{\sqrt{n}}\right\}$ is arbitrarily close to one for 311 sufficiently largo n. Hence the right hand side of $(5,1)$ will be, with arbitrarily high probability, bounded by

$$
\|\xi\| \leq \frac{d}{\sqrt{n}} \sup \left\|\sqrt{n} \xi+\frac{b \sqrt{n}}{K_{F F}}\left(z^{\prime} z\right)^{-1}\left\{z^{\prime} \Phi_{F}(\xi)-z^{\prime} \Phi_{F}(0)\right\}\right\|,
$$

which can also be written as

$$
\sup _{\|\xi\| \leq \frac{d}{\sqrt{n}}}\left\|\frac{\sqrt{n}\left(z^{\prime} z\right)^{-1}}{K_{F F}}\left\{z^{\prime} \Phi_{F}(\xi)-z^{\prime} \Phi_{F}(0)+z^{\prime} z \frac{K_{F F}}{b} \xi\right\}\right\|
$$

Further, by an extension of the theorem of Jureckova [6] , (see section 7 and 8),

$$
\sup _{\|\xi\| \leq \frac{d}{\sqrt{n}}}\left\|\frac{1}{\sqrt{n}}\left\{z^{\prime} \Phi_{F}(\xi)-z^{\prime} \Phi_{F}(0)+\frac{K_{F F}}{b} z^{\prime} z \xi\right\}\right\|
$$

converges to zero in probability if $\theta=0$. Since $n\left(z^{\prime} z\right)^{-1} \longrightarrow \Sigma^{-1}$, it follows that $\sqrt{n} \mid \hat{\theta}-\hat{\theta}_{0} \| \longrightarrow 0$. This completes the proof.

Proof of Theorem 2;2

As in the proof of Theorem 211 , we can suppose that $\theta=0$. By the extension of the theorem of Jureckova [G] (see section 7 and 8) we have, for $\theta=0$,
$(5,2) \quad P_{G}\left\{\sup ^{\|\xi\| \leq \frac{d}{\sqrt{n}}}\left\|\frac{1}{\sqrt{n}}\left(z^{\prime} \Phi_{F}(\xi)-z^{\prime} \Phi_{F}(0)+K_{F G} z^{\prime} z \xi\right)\right\|>\varepsilon\right\} \rightarrow 0$
If $\hat{\theta}_{00}=\left(1-c \frac{K_{F G}}{K_{F F}}\right) \hat{\theta}_{1}+\frac{c}{K_{F F}}\left(z^{\prime} z\right)^{-1} z^{\prime} \Phi_{F}(0)$ and $\hat{\theta}_{01}=$
$\frac{1}{K_{S G}}\left(z^{\prime} z\right)^{-1} z^{\prime} \Phi_{S}(0)$ it follows from $(5,2)$ and the fact that $\hat{b} \xrightarrow{P_{G}} c$. as in the proof of theorem $2 ; 1$, that $P_{G}\left\{\sqrt{n}\left\|\hat{\theta}_{00}-\hat{\theta}\right\|>\varepsilon\right\} \rightarrow 0$.

Further, by assumption $0, P_{G}\left\{\sqrt{n}\left\|\hat{\theta}_{01}-\hat{\theta}_{1}\right\|>\varepsilon\right\} \rightarrow 0$. Hence the asymptctic distribution of $\sqrt{n} \hat{\theta}$ is that of $\sqrt{n} \hat{\theta}_{02}$, where

$$
\hat{\theta}_{o 2}=\left(1-c \frac{K_{F G}}{K_{F F}} \frac{\left(z^{\prime} z\right)^{-1}}{K_{S G}} z^{\prime} \Phi_{S}(c)+\frac{c}{K_{F F}}\left(z^{\prime} z\right)^{-1} z^{\prime} \Phi_{F}(0) .\right.
$$

It follows from Hajok and Sidak [4] (p. 163) that the asymptotic distribution of $\sqrt{n} \hat{\theta}_{02}$, and hance that of $\sqrt{n} \hat{\theta}$, is normal with mean o and covariance given by $(2 ; 2)$. Q.E.D.

Proof of Theorem 431.
Gbviously, $\hat{\theta}_{1}$ satisfies Di). Furthar $G^{-1}(u)$ is nondecreasing in u and $\int_{3}^{1}\left(G^{-1}(u)\right)^{2} d u=\int_{-\infty}^{+\infty} y^{2} g(y) d y<\infty$ so that S satisfies A if G satisfies A_{1} and has a variance. Further it follows from Hajek and Sidak [4] ($p .160$) that $\left(z^{\prime} z\right)^{-1} z^{\prime} \Phi_{S}(0)$ is, if $\theta=0$, G-equivalent to

$$
\left(z^{\prime} z\right)^{-1} z^{\prime}\left(\varphi_{S}\left[G\left[Y_{1}\right]\right), \ldots \varphi_{S}\left(G\left(Y_{n}\right)\right)^{\prime}=\left(z^{\prime} z\right)^{-1} z^{\prime} Y .\right.
$$

Since $K_{S G}=1$ the result fullows.
For the proof of Theorem 412. the following lemma is needed.

Lemma 5:1.
If the components of $y-Z \theta$ have common distribution function $G(x)$, where G satisfies A_{1} and has a positive tensity at its median n, then, for $\theta=0$, Gach median m_{j} is G-oquivalont to $n+\frac{1}{n K_{S G}} \delta_{j}$ where S is the double exponential distribution and where δ_{j} is the sum of +1 's according as the observations corresponding to the $j^{\text {th }}$ row of $z o$ are $<n$.

Prcof:
It is sufficient to show that, assuming $\eta=0$,

$$
\varphi_{G}\left\{\left.\left[\sqrt{n}\left(2 g(0) m_{j}-\frac{\delta_{j}}{n}\right)\right]^{2} \right\rvert\, m_{j}\right\} \xrightarrow{P_{G}} \text { o since } K_{S G}=2 g(0)>0 .
$$

Let n_{j}^{*} be the number of observations corresponding to the $j^{\text {th }}$ row of z_{0} which ere betwuen 0 and m_{j}. Then $\delta_{j}= \pm 2 n_{j}^{*}$ according as $m_{j}<\boldsymbol{0}$. The conditional, given m_{j}, Jistribution of n_{j}^{*} is $B\left\{\frac{\Pi}{2}, p_{j}\right\}$ where $p_{j}=\frac{\left|G\left(m_{j}\right)-G(0)\right|}{G\left(m_{j}\right)}$. Hence
$\xi_{G}\left\{\left.n\left[2 g(0) m_{j}-\frac{\delta_{j}}{n}\right]^{2} \right\rvert\, m_{j}\right\}=n\left[2 g(0)\left|m_{j}\right|-p_{j}\right]^{2}+2 p_{j}\left(1-p_{j}\right)$
which can be writen as
$\frac{n m_{j}^{2}}{G^{2}(0)}\left\{g(0)-\frac{\left|G\left(m_{j}\right)-G(0)\right|}{\left|m_{j}\right|} \cdot \frac{G(0)}{G\left(m_{j}\right)}\right\}^{2}+2 p_{j}\left(1-p_{j}\right)$.
Since $\sqrt{n} m_{j}$ has an asymptotic distribution and

$$
\frac{\left|G\left(m_{j}\right)-G(0)\right|}{\left|m_{j}\right|} \xrightarrow{P_{G}} g(0) \text { the result follows. }
$$

Proof of Theorem 4:2.
Since, for the double exponential distribution,

$$
\varphi_{S}(u)=\left\{\begin{array}{r}
1 \text { if } u>1 / 2 \\
-1 \text { if } u<1 / 2
\end{array}\right.
$$

$\Phi_{S}(0)$ is a vector of ± 1 's according as $Y_{i}>\operatorname{med}\left(Y_{1}, \ldots, Y_{n k}\right)$. Letting $\varepsilon^{\prime}=\left(\delta_{1}, \ldots ., \delta_{k}\right)$, with δ_{j} as in Lemma 5,1 , it follows from the lamma that $\hat{\theta}_{1}$ is G-equivelent to (note that $2{ }_{0}^{\prime} n=0$)

$$
\frac{1}{K_{S G}} \frac{\left(z_{0}^{\prime} z_{0}\right)^{-1}}{n} z_{0}^{\prime} \delta_{.} \text {However } z_{0}^{\prime} \delta=z^{\prime} \Delta \text { where } \Delta \text { is an } n k \times 1
$$

vector of $\pm 1^{\prime} s$ according as $Y_{i}<\eta$. The conclusion of the theorem will follow if 敖 is true that
$(5 ; 3) \quad \frac{1}{\sqrt{n k}}\left\|z^{\prime}\left(\Delta-\Phi_{S}(0)\right)\right\| \xrightarrow{P_{G}} 0$.

From Hajek and Sidak [4] (p. 61) it follows that the conditional, given Y, expectation of the square of each elament of $z^{\prime}\left(\Delta-\Phi_{S}(0)\right)$ is bounded by

where $M=\operatorname{med}\left\{Y_{1}, \ldots, Y_{n k}\right\} . \operatorname{Since} \frac{1}{n k} \sum_{i=1}^{n k} z_{i j}^{2} \longrightarrow \Sigma_{i j},(5 ; 3)$ and the theorem follow.

6. PROOF OF THEOREM $3: 1,3 ; 2,4 ; 3$, and 4,4 .

The following proofs of theorem 3,1 and 3,2 are the analogues for signed rank statistics to those of theorem 2,1 and 2,2 for rank statistics. Accordingly they require a linearization theorem for signed rank statistics. Such a linearization theorem has, for $p_{1}=1$, been given in $[15]$; for the extension to $p_{1}>1$ see section 7 and 8.

Proof of Theorem 3:1.

Since b is a consistent estimate of b, it is sufficient to prove that, for the estimate $(3 ; 1)$ with \hat{b} replaced by $b, \sqrt{n}(\hat{\mu}-\mu)$ has asymptotically a normal distribution with mean 0 and covariance $\frac{b^{2}}{K_{F F}} \Sigma_{1}^{-1}$.

The asymptotic distribution of $\sqrt{n}(\hat{\mu}-\mu)$ with \dot{b} replaced by b cen be found as follows.
a) For $c=\left(c_{1}, \ldots, c_{p_{1}}\right\}^{\prime} \neq 0$ and $\mu=0$, it follows from Hajek and Sidak [4] ($p .166$) and the assumptions $\left.B^{\prime} i\right)$ and ii) that $\frac{b}{\sqrt{n} K_{F F}} c^{\prime} x^{\prime} \Psi_{F}(0)$ is asympto-
tically normal with mean o and variance $\frac{b^{2}}{K_{F F}} c^{\prime} \Sigma_{1} c^{\prime}$.
b) It follows from $[.1)$ that $\hat{\mu}(Y-X \mu)=\hat{\mu}(Y)-\mu$ so we can suppose $\mu=0$. With $\hat{\mu}_{0}$ defined by $\frac{b}{K_{F F}}\left(x^{\prime} x\right)^{-1} x^{\prime} \psi_{F}(0)$ it follows from a) that $\sqrt{n} \hat{\mu}_{0}$ has asymptctically a ncrmal distribution with mean o and covariance $\frac{b^{2}}{K_{F F}} \Sigma_{1}^{-1}$. c) Assuming $\mu=0$, it remains tc show that $\sqrt{n}\left\|\hat{\mu}-\hat{\mu}_{0}\right\|$ converges to zero However

$$
\sqrt{n}\left\|\hat{\mu}_{-\hat{\mu}_{0}}\right\|=\left\|\sqrt{n} \hat{\mu}_{1}+\frac{b \sqrt{n}}{K_{F F}}\left(x^{\prime} x\right)^{-1}\left\{x^{\prime} \psi_{F}\left(\hat{\mu}_{1}\right)-x^{\prime} \psi_{F}(0)\right\}\right\|
$$

sc that, using assumption C'ii) it is sufficient to show that
$(6,1) \quad \sup _{\|\xi\| \leq \frac{d}{\sqrt{n}}}\left\|\frac{1}{\sqrt{n}}\left\{x^{\prime} \psi_{F}(\xi)-x^{\prime} \Psi_{F}(0)+\frac{K_{F F}}{b} x^{\prime} x \xi\right\}\right\| \xrightarrow{P_{G}}$ oif $\mu=0$.
(6,1) follows from the linearization theorem for signed rank statistics provad in section 7 and 8 (see also [15]).

Proof of Theorem 3,2.
As in the proof of Theorem 3,1 we can suppose that $\mu=0$.
Let

$$
\begin{aligned}
& \hat{\mu}_{O O}=\left(1-c \frac{K_{F G}}{K_{F F}}\right) \hat{\mu}_{1}+\frac{c}{K_{F F}}\left(x^{\prime} x\right)^{-1} x^{\prime} \Psi_{F}(0) \\
& \hat{\mu}_{O 1}=\frac{1}{K_{S G}}\left(x^{\prime} x\right)^{-1} x^{\prime} \Psi_{S}(0) \\
& \hat{\mu}_{O 2}=\left(1-c \frac{K_{F G}}{K_{F F}}\right) \frac{\left(x^{\prime} x\right)^{-1}}{K_{S G}} x^{\prime} \Psi_{S}(0)+\frac{c}{K_{F F}}\left(x^{\prime} x\right)^{-1} x^{\prime} \psi_{F}(0)
\end{aligned}
$$

then it follows from (see theorem 782).
$(6,2) \quad P_{G}\left\{\sup _{\|\xi\| \leq \frac{d}{\sqrt{n}}} \| \frac{1}{\sqrt{n}}\left(x^{\prime} \Psi_{F}(\xi)-x^{\prime} \Psi_{F}(0)+K_{F G} x^{\prime} \times \xi \|>\varepsilon\right\} \rightarrow 0\right.$
and the fact that $\hat{b} \xrightarrow{P_{G}} c$ that the asymptotic distribution of $\sqrt{n} \hat{\mu}$ is the same as that of $\sqrt{n} \hat{\mu}_{\mathrm{o2}}$. From Hajek and Sidak [4] (p. 166) it follows that the asymptotic distribution of $\sqrt{n} \hat{\mu}_{02}$ is normal with mean o and covariance given by (312).

Proof of Theorem 4, 3.
Obviously μ_{1} satisfies $\left.D^{\prime} i\right)$. That S satisfies A^{\prime} follows from the fact that $G^{-1}\left(\frac{(+1}{2}\right)$ is non decreasing and non negative,

$$
\int_{0}^{1}\left[G^{-1}\left[\frac{u+1}{2}\right)\right]^{2} d u=\int_{-\infty}^{+\infty} y^{2} g(y) d y<\infty \text { and that symmetry for } G
$$

Implies symmetry for S.
From Hajek and Sidak $[4]$ (p. 156) it follows that $\left(x^{\prime} x\right)^{-1} x^{\prime} \Psi_{S}(0)$ is, if $\mu=0, G$ equivalent to

$$
\left(x^{\prime} x\right)^{-1} x^{\prime}\left(\psi_{S}\left(2 G\left(y_{1}\right]-1\right), \ldots, \psi_{S}\left(2 G\left(y_{n}\right)-1\right)\right)^{\prime}=\left(x^{\prime} x\right)^{-1} x^{\prime} y .
$$

The result then follows from the fact that $K_{S G}=1$.

Proof of Theorem 4:4.

obviously $\hat{\mu}_{1}$ satisfies $\left.D^{\prime} i\right)$ and the double exponential distribution satisifies A^{\prime}.

To prove D^{\prime} ii) it needs to be shown that, if $\mu=0$,

$$
\left\|\sqrt{n}\left\{\left(x_{0}^{\prime} x_{0}\right\}^{-1} x_{c}^{\prime} t-\frac{1}{K_{S C}}\left(x^{\prime} x\right)^{-1} x^{\prime} \Psi_{S}(0)\right\}\right\| \xrightarrow{P_{G}} 0
$$

Let ε_{j} be the sum of ± 1 's according as the observations in the $j^{\text {th }}$ row of x_{0} are <0, let $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right)^{\prime}$, then $x^{\prime} \Psi_{S}(0)=x_{0}^{\prime} \varepsilon$ and

$$
\begin{gathered}
\sqrt{n}\left\{\left(x_{0}^{\prime} x_{0}\right\}^{-1} x_{0}^{\prime} t-\frac{1}{K_{S G}}\left(x^{\prime} x\right)^{-1} x^{\prime} \Psi_{S}[0\}\right\}= \\
=\frac{n\left(x^{\prime} x\right)^{-1}}{\sqrt{n}} x_{0}^{\prime}\left(n t-\frac{1}{2 g(0)} \varepsilon\right)
\end{gathered}
$$

Hence it is sufficient to prove that
$(6,3) \quad \frac{1}{n} \mathscr{E}_{G}\left\{\left.\left(n t_{j}-\frac{1}{2 g(0)} \varepsilon_{j}\right)^{2} \right\rvert\, t_{j}\right\} \xrightarrow{P_{G}} 0$
and (6;3) follows, as in the proof of Lerma 511 . from the fact that the conditional, given t_{j}, distribution of $\frac{\varepsilon_{j}}{2} \frac{t_{j}}{\left|t_{j}\right|}$ is $\mathrm{B}\left(\frac{\pi}{2}, p_{j}\right)$ where

$$
p_{j}=\frac{\left|G\left(t_{j}\right)-G(0)\right|}{G\left(t_{j}\right)}
$$

7. AN EXTENSION AND AN ANALOGUE OF A THEOREM OF JURECKOVA [6].

The following theorem is an extension to more dimensions of Theorem 3;1 of Jureckova [6].

Theorem 7;1.
If the components of Y have common distribution function $G(x)$ if
F satisfies A, if G satisfies A_{p} if z satisfies B, if

$$
S_{j}(\xi)=\sum_{i=1}^{n} z_{i j} \psi_{F}\left(\frac{R_{Y_{i}-} \sum_{\ell=1}^{p} z_{i \ell} \xi_{\ell}}{n+1}\right)
$$

then, for each $j=1, \ldots, p$,
$\{7 ; 1] \quad \lim _{u \rightarrow \infty} P\left\{\sup _{\|\xi\| \leq d} \frac{1}{\sqrt{n}}\left|S_{j}\left(\frac{\xi}{\sqrt{n}}\right)-S_{j}(0)+-\frac{K_{F G}}{\sqrt{n}} \sum_{\ell=1}^{p} \xi_{\ell} \sum_{i=1}^{n} z_{i j} z_{i \rho}\right|>\varepsilon\right\}=0$ for each $d>0$ and each $\varepsilon>0$.

Proof.
For $p=1$ Fheorem 7:1, is a special case of Theorem 3;1 of Jureckova [6]. In the following it will be supposed that $p>1$.

The proof will be given for $j=1$. As $\varphi_{F}(u)$ is the sum of two monotone square integrable functions it is sufficient to prove (7;1) for the case where $\varphi_{F}(u)$ is non decreasing. The proof consists of two parts. It will first be shown that, under A and $B i]$ and ill, for any fixed set of r points $\left(\xi_{1}^{(k)}, \ldots, \xi_{p}^{(k)}\right), k=1, \ldots, r$
(7;2) $P\left\{\frac{1}{\sqrt{n}}\left|S_{1}\left(\frac{\xi^{(k)}}{\sqrt{n}}\right)-S_{1}(0)+\frac{K_{F G}}{\sqrt{n}} \sum_{\ell=1}^{p} \xi_{\ell}^{(k)} \sum_{i=1}^{n} z_{11} z_{1 \ell}\right| \leq \varepsilon\right.$ for each $k=1, \ldots, r\} \rightarrow 1$.
Jureckova [6] proves $(7 ; 2)$ for $p=1$ in her Lemmas $3 ; 1-3 ; 8$.

That (7;2) holds for $p>1$ can be seen by noting that Jureckova's lemmas 3;1-3;8 hold for $S_{1}\left\{\frac{\xi}{\sqrt{n}}\right\}$ if z satisfies
$(7 ; 3) \quad \begin{cases}\frac{1}{n} \max _{1 \leq i \leq n} z_{i j}^{2} \rightarrow 0 & \text { for } \operatorname{sach} j=1, \ldots, p \\ \left|\frac{1}{n} \sum_{i=1}^{n} z_{i j}^{2}\right| \leq M & \text { for each } j=1, \ldots, p \text { where } M \text { is a positive }\end{cases}$ constant.

Then $(7 ; 2)$ follows from the fact that $(7 ; 3)$ is implied by 日i) and 11).

In the second part of the proof it will be shown that for each $d>0$ there exists a set of r fixed points $\xi^{(k)}, k=1, \ldots, r$ such that, for $n>n_{0}$,
(7;4)

$$
\begin{aligned}
& {\left[\frac{1}{\sqrt{n}} \left\lvert\, S_{1}\left(\left.\frac{\xi^{(k)}}{\sqrt{n}}-1-S_{1}(0)+\frac{K_{F G}}{\sqrt{n}} \sum_{\ell=1}^{p} \xi_{\ell}^{(k)} \sum_{i=1}^{n} z_{11} z_{i \ell} \right\rvert\, \leq \varepsilon\right. \text { for aach }\right.\right.} \\
& {\left[\sup _{k=1, \ldots, r} \frac{1}{\sqrt{n}}\left|S_{1}\left(\frac{\xi}{\sqrt{n}}\right)-S_{1}(0)+\frac{K_{F G}}{\sqrt{n}} \sum_{\ell=1}^{p} \sum_{\ell}^{\xi_{i=1}} \sum_{i=1}^{n} z_{i 1} z_{i \ell}\right| \leq 2^{p-1} \varepsilon\right] \Longrightarrow}
\end{aligned}
$$

The theorem then follows from $(7: 2)$ and $(7 ; 4)$.
The set of points $\xi^{(k)}, k=1, \ldots, r$ satisfying (7;4) can be found as follows. By Biiilthere exists, for each $j=2, \ldots, p$, a number $\gamma_{j} \neq 0$ such that, for $n>n_{0}$.
$(7 ; 5)$

$$
\left\{z_{i_{1} 1}-z_{i_{2} 1}\right\}\left\{z_{i_{1} 1}-z_{i_{2} 1}+w_{j}\left\{z_{i_{1} j}-z_{i_{2} j}\right\}\right\} \geqq 0 \text { for all } i_{1}, i_{2}
$$

(For simplicity of notation the first subscript on $\mathbf{Y}_{1, j}$ is omitted).

> By the transformation
$(7 ; 6] \quad\left\{\begin{array}{l}\eta_{1}=\xi_{1}-\sum_{j=2}^{P} \frac{\xi_{j}}{r_{j}} \\ \eta_{\ell}=\frac{\xi_{\ell}}{r_{\ell}} \ell=2, \ldots, P\end{array}\right.$
$S_{1}\left(\frac{\xi}{\sqrt{n}}\right)$ can bs written as

$$
s_{10}\left(\frac{\eta}{\sqrt{n}}\right) \stackrel{\text { def }}{n} \sum_{i=1}^{n} z_{i 1} \varphi_{F}\left(\frac{R_{i}-\frac{1}{\sqrt{n}}\left(z_{i 1}^{n}+\sum_{\ell=2}^{p}\left(z_{i 1}+\gamma_{\ell \ell} z_{i \ell} h_{\ell}\right)\right.}{n+1}\right)
$$

By $(7 ; 5)$ and theorem $2 ; 1$ of Jureckova $[6], S_{10}\left(\frac{\eta}{\sqrt{n}}\right)$ is, for $n>n_{0}$, for fixed values of $\eta_{1}, \ldots, \eta_{j-1}, \eta_{j+1}, \ldots . \eta_{p}$, with probability one, a non increasing step function of $\eta_{j}(j=1, \ldots, p)$. Now choose the r fixed points $\xi^{(k)}$ as follows. Let C and ε be fixed positive numbers. Let R be an integer and let $r=(2 R+1)^{P}$. Divide the cube $-C \leq \eta_{j} \leq C(j=1, \ldots, p)$ into $(2 R)^{p}$ cubes by dividing each axis into $2 R$ equal pieces and choose $(2 R+1)^{P}$ points $\eta^{(k)}$ on the corners of these cubes. These $\{2 F+1)^{p}$ points $n^{(k)}$ define, by $(7: 6),(2 R+1)^{p}$ points $\xi^{(k)}$. By choosing R in such a way that $(7 ; 7) \quad\left\{\begin{array}{l}\left|K_{F G}\right| \frac{1}{n} \sum_{i=1}^{n} z_{i 1}^{2} \cdot \frac{C}{R} \leqq \varepsilon \\ \left|K_{F G}\right|\left|\frac{1}{n} \sum_{i=1}^{n} z_{i 1}\left(z_{i 1}+\gamma_{\ell} z_{i \ell}\right)\right| \frac{C}{R} \leqq \varepsilon \text { all } \ell=2, \ldots, p\end{array}\right.$ these points $\xi^{(k)}$ satisfy, for $n>n_{0}$,

$$
\left[\frac{1}{\sqrt{n}} \left\lvert\, S_{1}\left[\left.\frac{\xi^{(k)}}{\sqrt{n}}-S_{1}(0)+\frac{K_{F G}}{\sqrt{n}} \sum_{\ell=1}^{p} \xi_{\ell}^{(k)} \sum_{i=1}^{n} z_{i 1} z_{i \ell} \right\rvert\, \leq \varepsilon\right. \text { for aach }\right.\right.
$$

(7; 8)

$$
\left[\sup _{\left|n_{j}\right| \leq f}^{j=1, \ldots, P} 1 \frac{1}{\sqrt{n}} \left\lvert\, S_{1}\left(\frac{\xi}{\sqrt{n}}\right)-S_{1}(0)+\frac{K_{F G}}{\sqrt{n}} \sum_{\ell=1}^{p} \xi_{\ell} \sum_{i=1}^{n} z_{i 1} z_{i l} \leq 2^{P^{-1}} \varepsilon\right.\right]
$$

That $(7 ; 8)$ holds if R satisfies $(7 ; 7)$ can be seanby using the above mentioned monotonicity of $S_{10}\left(\frac{\eta}{\sqrt{n}}\right)$ and by using the fact that (see also Jureckova [6]) if, for a monotone function $h(\xi)$ of one variable, $|h(\xi)-m \xi| \leq \varepsilon$ for $\xi=\xi_{1}$ and for $\xi=\xi_{2}\left\{\xi_{1}<\xi_{2}\right\}$, then $\sup _{\xi_{1} \leq \xi_{1} \leq \xi_{2}}$ $|h(\xi)-m \xi| \leq 2 \varepsilon$ provided $|m|\left(\xi_{2}-\xi_{1}\right) \leq \varepsilon$.

That R car, for $n>\Pi_{1}$, be chosen such that $[7 ; 7$) is satisfied can be seen as follows. Let

$$
\begin{aligned}
& \boldsymbol{r}=\max _{2 \leq j \leq p}\left|\boldsymbol{r}_{j}\right| \\
& \sigma=\max _{1 \leq j \leq p}\left|\Sigma_{1 j}\right|, \text { where } \Sigma=\left(\Sigma_{1_{j}}\right\}
\end{aligned}
$$

then, by Bii)there exists n_{1} such that for $n>n_{1}$

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} z_{i 1}^{2} \leq 20 \\
& \left|\frac{1}{n} \sum_{i=1}^{n} z_{i 1}\left(z_{i 1}+\gamma_{\ell} z_{i \ell}\right)\right| \leqq 20(1+\gamma)
\end{aligned}
$$

so that, by choosing R such that

$$
R \geqq \frac{\left|K_{F G}\right| 2 \sigma C(1+\gamma)}{\varepsilon}
$$

(7;7) is satisfied for $n>n_{1}$.

Further (7;4) follows from (7;9) by choosing d such that
$(7 ; 9) \quad\left[\sum_{i=1}^{p} \xi_{i}^{2} \leq d^{2}\right] \Longrightarrow\left[\left|n_{j}\right| \leq c\right.$ for all $\left.j=1, \ldots, p\right]$
and $a d>0$ satisfying $(7 ; 8)$ is given by

$$
d^{2}=C^{2} \frac{\left[\min _{-i \leq p} \boldsymbol{r}_{j}\right]^{2}}{1+\left[\min _{-i \leq p} \mathbf{Y}_{j}\right]^{2}}
$$

The next theorem is a linearization theorem for signed rank statistics and is an extension of Theorem 3,2 in [15].

Theorem 7;2.
If the components of Y have common distribution $G(x)$, if F satis-
fies A^{\prime}, if G satisfies A^{\prime}, If x satisfies B^{\prime}, if

$$
T_{j}(\xi)=\sum_{i=1}^{n} x_{i j} \psi_{F}\left(\frac{{ }^{R}\left|Y_{i}-\sum_{\ell=1}^{p} x_{i \ell} \xi_{\ell}\right|}{n+1}\right) \operatorname{sgn}\left(Y_{i}-\sum_{\ell=1}^{p} x_{i \ell} \xi_{\ell}\right)
$$

then, for each $j=1, \ldots$.... Pp,
(7:10) $\quad \lim _{v \rightarrow \infty} P\left\{\sup _{\| \xi \mid<d} \frac{1}{\sqrt{n}}\left|T_{j}\left(\frac{\xi}{\sqrt{n}}\right)-T_{j}(0)+\frac{K_{F G}}{\sqrt{n}} \sum_{\ell=1}^{p} \xi_{\ell} \sum_{i=1}^{n} x_{i j} x_{i \ell}\right|>\varepsilon\right\}=0$
for each $d>0$ and each $\varepsilon>0$.

Proof:
The following proof is analogaus to the proof of Theorem $7: 1$.
For $p_{;}=1$ the theorem is a special cass of Theoreni 3.2 of [15] and in the following it wili be supposed that $p_{1}=1$. The proof will be given for $j=1$. As $\psi_{F}(u)$ is the sum of two square integrable functions, one non deareasing and non negative, the other non increasing and non positive, it is sufficient to prove $17 ; 10$) for the case where $\psi_{F}(u)$ is non decreasing and non negative.

It can be sinown, analogausly to Jureckova's lemmas (3;1)-(3;8) and using the results of Hajek and Sidak [4] \{p. 219-221) that, under the assumptions $A^{\prime}, A_{1}^{\prime}$ and $\left.B^{\prime} i\right)$ and ii], for any fixed set of points $\xi^{(k)}, k=1, \ldots, r$, $P\left\{\frac{1}{\sqrt{n}}\left|T_{1}\left(\frac{\xi_{2}^{(k)}}{\sqrt{n}}\right)-T_{1}(0)+\frac{K_{F G}}{\sqrt{n}} \sum_{\ell=1}^{p} \xi_{\ell}^{(k)} \sum_{i=1}^{n} x_{i \ell} x_{i \ell}\right| \leq \varepsilon\right.$ for each $\left.k=1, \ldots, r\right\} \rightarrow 1$

Further, by B^{\prime} iiil, there exists, for each $j=2, \ldots, p_{i}$, a number γ_{j} such that

$$
(7 ; 11)\left\{\begin{array}{l}
1 . x_{i 1}\left\{x_{i 1}+y_{j} x_{i j}\right\} \geq 0 \text { for alli } \\
\text { 2. }\left(\left|x_{i_{1} 1}\right|-\left|x_{i_{2} 1}\right|\right)\left(\left|x_{i_{1} 1}+y_{j} x_{i_{1} j}\right|-\left|x_{i_{2} 1}+v_{j} x_{i_{2} j}\right|\right) \geq 0
\end{array}\right.
$$ for alli i_{1}, i_{2}

By the transformation $(7 ; 6) T_{1}\left\{\frac{\xi}{\sqrt{n}}\right\}$ can be written as
$T_{10}\left(\frac{n}{\sqrt{n}}\right)=\sum_{i=1}^{n} x_{i 1} \psi_{F}\left(\frac{\left.R_{\left|Y_{i}-\frac{1}{\sqrt{n}}\left(x_{i 1} \eta_{1}+\sum_{\ell=2}^{p}\left(x_{i 1}+Y_{\ell} x_{i \ell}\right) n_{\ell}\right)\right|}^{n+1}\right)}{n}\right.$ $\operatorname{sgn}\left(y_{i}-\frac{1}{\sqrt{n}}\left(x_{i 1} n_{1}+\sum_{\ell=2}^{P}\left(x_{i 1}+\dot{\gamma}_{\ell} x_{i \ell}\right) n_{\ell}\right)\right)$
and it follows from $(7 ; 11)$ and Theorem 31 in [15] that, for $n>n_{0}, T_{10}\left(\frac{\eta}{\sqrt{n}}\right)$ is, for fixed values of $\eta_{1}, \ldots, n_{j-1}, \eta_{j+1}, \ldots, \eta_{p_{1}}$ with probability 1 a non increasing step function of $n_{j}\left(j=1, \ldots, p_{1}\right)$.

The rest of the proof is identical to that of Theorem 7:1

8: ALTERNATE ASSUMPTIONS.

In section 7 an extension of Jureckeva's theorem was proved under the assumptions A and B. A different set of assumptions has been suggested by Jureckova in her remark on page 1897 of [6]. The following paragraphs contain, first, a proof for $p=2$ of the multiparameter Jureckova theorem under these assumptions and, second, a proof that the conditions of section 7 imply those here. The application of the stronger approximate linearity theorem of this section to find linearized estimates is completely analogous to those of section 2 and 3.

Suppose F satisfies A, G satisfies A_{1} and let z satisfy $\left.B i\right)$ and iil.
For each $n, z_{i 1}$ can be writton as

$$
z_{i 1}=z_{i 1}^{*}+z_{i 1}^{w_{i}^{*}}
$$

such that
$(8 ; 1)$

$$
\left\{\begin{array}{l}
\sum_{1}^{n} z_{i 1}^{*}=\sum_{i=1}^{n} z_{i 1}^{* *}=0 \\
\left(z_{i_{1} 2}-z_{i_{2} 2}\right)\left(z_{i_{1} 1}^{*}-z_{i_{2} 1}^{*}\right) \geq 0 \text { for all } i_{1}, i_{2} \\
\left(z_{i_{1}, 2} \cdots z_{i_{2} 2}\right)\left(z_{i_{1}, 1}^{* *}-z_{i_{2} 1}^{* * *}\right) \leq 0 \text { for all } i_{1}, i_{2} \\
n \\
\sum_{i=1}^{n}\left(z_{i 1}^{*}\right)^{2}>0 \text { or } \sum_{i=1}^{n}\left(z_{i 1}^{* *}\right)^{2}>0
\end{array}\right.
$$

Then $S_{1}\left(\frac{1}{\sqrt{n}} \xi\right)$ can be written as the sum of

$$
S_{1}^{*}\left(\frac{1}{\sqrt{n}} \xi\right\} \underset{=}{\operatorname{def}} \sum_{i=1}^{n} z_{i 1}^{*} \varphi_{F}\left(\frac{R_{Y}-\frac{1}{\sqrt{n}} z_{i 1} \xi_{1}-\frac{1}{\sqrt{n}} z_{i 2} \xi_{2}}{n+1}\right)
$$

and
$S_{1}^{* *}\left(\frac{1}{\sqrt{n}} \xi\right) \underset{=}{\operatorname{def}} \sum_{i=1}^{n} z_{i 1}^{* *} f_{F}\left(\frac{R_{Y_{i}}-\frac{1}{\sqrt{n}} z_{11} \xi_{1}-\frac{1}{\sqrt{n}} z_{i 2} \xi_{2}}{n+1}\right)$
Now suppose

Assumption B iv

$$
\int 1 \cdot \frac{1}{n} \max _{1 \leq i \leq n}\left(z_{i 1}^{*}\right)^{2} \longrightarrow 0, \frac{1}{n} \max _{1 \leq i \leq n}\left(z_{i 1}^{* *}\right)^{2} \longrightarrow 0
$$

$\left\{\begin{array}{l}\text { 2. there exists } n_{0} \text { such that for } n>n_{0} \\ \frac{1}{n} \sum_{i=1}^{n}\left(z_{i 1}^{*}\right)^{2} \leq M \text { and } \frac{1}{n} \sum_{i=1}^{n}\left(z_{11}^{* *}\right)^{2} \leq M\end{array}\right.$
for some positive constant M

That, for $j=1$, the extension of Jureckova's theorem holds if assumption Bili) is replaced by B iv) can be seen as follows. Choose, for a fixed $d>0, r=(2 R+1)^{2}$ points $\xi^{(k)}, k=1, \ldots r$, on the corners of $(2 R)^{2}$ squares obtained by dividing the square $-C \leqq \xi_{j} \leqq C(j=1,2)$ into (2R) ${ }^{2}$ equal squares. Then as in the proof of Theorem $7 ; 1$
$(8 ; 1) P\left\{\frac{1}{\sqrt{n}}\left|S_{1}^{*}\left(\frac{\xi^{(k)}}{\sqrt{n}}\right)-S_{1}^{*}(0)+\frac{K_{F G}}{\sqrt{n}}\left(\xi_{1}^{(k)} \sum_{i=1}^{n} z_{i 1}^{*} z_{i 1}+\xi_{2}^{(k)} \sum_{i=1}^{n} z_{i 1}^{*} z_{i 2}\right)\right| \leqq \varepsilon\right.$
and
$\{8 ; 2]\left\{\left\{\frac{1}{\sqrt{n}}\left|S_{1}^{* *}\left(\frac{\xi^{(k)}}{\sqrt{n}}\right)-S_{1}^{* *}(0)+\frac{K_{F G}}{\sqrt{n}}\left(\xi_{1}^{(k)} \sum_{i=1}^{n} z_{i 1}^{* *} z_{i 1}+\xi_{2}^{(k)} \sum_{i=1}^{n} z_{i 1}^{* *} z_{i 2}\right)\right| \leq \varepsilon\right.\right.$ for all $k=1, \ldots, r\} \rightarrow 1$.
Note that $\sum_{i=1}^{n}\left(z_{i 1}^{*}\right)^{2}$ and $\sum_{i=1}^{n}\left(z_{i 1}^{* *}\right)^{2}$ are not necessarily both positive for all v. However $(0 ; 1)$ follows, as in the proof of Theorem $7 ; 1$ for the subsequence of v for which $\sum_{i=1}^{n}\left(z_{i 1}^{*}\right)^{2}>0$ and $(8 ; 1)$ is obvious for the subsequence of v for which $\sum_{i=1}^{n}\left(z_{i 1}^{*}\right)^{2}=0$. The same holds for $(8 ; 2)$.

Then by choosing (see the proof of Theorem 7:1) R such that

$$
\begin{aligned}
& \left|K_{F G}\right|\left|\frac{1}{n} \sum_{i=1}^{n} z_{i 1}^{*} z_{i 2}\right| \frac{d}{R} \leq \varepsilon \\
& \left|K_{F G}\right|\left|\frac{1}{n} \sum_{i=1}^{n} z_{i 1}^{* *} z_{i 2}\right| \frac{C}{R} \leq \varepsilon \\
& \left|K_{F G}\right| \frac{1}{n} \sum_{i=1}^{n} z_{i 1}^{2} \frac{d}{R} \leq \varepsilon
\end{aligned}
$$

one finds that

$$
\begin{aligned}
& {\left[\frac{1}{\sqrt{n}}\left|S_{1}^{*}\left(\frac{\xi^{(k)}}{\sqrt{n}}\right)-S_{1}^{*}(0)+\frac{K_{F G}}{\sqrt{n}}\left(\xi_{1}^{(k)} \sum_{i=1}^{n} z_{i 1}^{*} z_{i 1}+\xi_{2}^{(k)} \sum_{i=1}^{n} z_{i 1}^{*} z_{i 2}\right)\right| \leq \varepsilon\right. \text { and }} \\
& \frac{1}{\sqrt{n}}\left|s_{1}^{* *}\left(\frac{\xi^{[k]}}{\sqrt{n}}\right) \cdot s_{1}^{* *}(0)+\frac{K_{F G}}{\sqrt{n}}\left(\xi_{1}^{(k)} \sum_{i=1}^{n} z_{i 1}^{* *} z_{i 1}+\xi_{2}^{(k)} \sum_{i=1}^{n} z_{i 1}^{* * *} z_{i 2}\right)\right| \leq \varepsilon \\
& \text { for all } k=1, \ldots, r]=\longrightarrow \\
& {\left[\sup _{\left|\xi_{j}\right| \leq d} \frac{1}{\sqrt{n}} \left\lvert\, S_{1}\left(\frac{\xi}{\sqrt{n}}\right)-S_{1}(0)+\frac{K_{F G}}{\sqrt{n}}\left(\xi_{1} \sum_{i=1}^{n} z_{i 1}^{2}+\xi_{2} \sum_{i=1}^{n} z_{i 1} z_{i 2}\right) \leq 8 \varepsilon\right.\right.} \\
& j=1,2
\end{aligned}
$$

which proves the extension of Jureckova's theorem for $j=1$ under the assumption A, A_{1} and (Bi), ill and ivy. By analogously writing $z_{i 2}=z_{i 2}^{*}+z_{i 2}^{* *}$, an extension can be proved for $j=2$ under the assumption $A, A_{1}, B 1$, ii) and an assumption on $z_{i 2}^{*}, z_{i 2}^{* *}$ analogous tr B iv).

That assumption B iv) follows from viii) can be seen as follows.
By Biol there exists a number $y_{2,1} \neq 0$ such that, for all $n>n_{0}, z_{2}$ and $z_{2}+r_{2,1} z_{1}$ are similarly ordered. Now choose

$$
\begin{cases}z_{i 1}^{*}=\frac{z_{i 2}+\gamma_{2,1} z_{i 1}}{\gamma_{2, i}} \\ z_{i 1}^{* *}=-\frac{1}{r_{2,1}} z_{i, 2} & \text { if } \gamma_{2,1}>0\end{cases}
$$

and

$$
\left\{\begin{array}{l}
z_{11}^{*}=-\frac{1}{r_{2,1}} z_{i, 2} \\
z_{11}^{* *}=\frac{z_{i 2}+r_{2,1} z_{i 1}}{r_{2,1}}
\end{array} \quad \text { if } r_{2,1}<0\right.
$$

then, for $n>n_{0}, z_{i 1}^{*}$ and $z_{i 1}^{* * /{ }_{i}}$ satisfy $(8 ; 1)$. Further from the fact that z satisfies Eij and iij it folliws that $z_{i 1}^{*}$ and $z_{i, 1}^{* *}$ satisfy B iv).

The elternate assumptions for Theorem 7:2 are, for $p_{1}=2$, as follows. Let F satisfy A^{\prime}. G satisfy A_{1}^{\prime} and let \times satisfy $B^{\prime} i l$ and iil. In [15] it is shown that $x_{i 1}$ can be written as $x_{i 1}=\sum_{l=1}^{4} x_{i 1}^{(l)}$, such that

$$
\begin{cases}\text { 1. } & x_{i 1}^{[\ell]} x_{i 2} \geqq 0 \text { for each } i \text { and } \ell=1,2 \\ & x_{i 1}^{(\ell)} x_{i 2} \leqq 0 \text { for each } i \text { and } \ell=3,4 \\ \text { 2. } & \left|x_{2}\right| \text { and }\left|x_{1}^{(\ell)}\right| \text { are simarly ordered for asch } \ell=1, \ldots, 4 \\ \text { 3. } \sum_{i=1}^{n}\left(x_{i 1}^{(\ell)}\right)^{2}>0 \text { for at least one } \ell\end{cases}
$$

Then $T_{1}\left(\frac{\xi}{\sqrt{n}}\right)$ can be written $a s \sum_{\ell=1}^{4} T_{1}^{(\ell)}\left\{\frac{\xi}{\sqrt{n}}\right\}$ and, as in the abcive proof, it can be seen that, for $j=1$, assumption B'iii) cen be replaced by Assumption E'iv

$$
\left\{\begin{array}{l}
1 \cdot \frac{1}{n} \max _{1 \leq i \leq n}\left(x_{i, 1}^{(\ell)}\right)^{2} \rightarrow 0 \quad \text { for sach } \ell=1, \ldots, 4 \\
2 \cdot \frac{1}{n} \sum_{i=1}^{n}\left(x_{i, 1}^{(\ell)}\right)^{2} \leq M \quad \text { for } n>n_{0}, \ell=1, \ldots, 4
\end{array}\right.
$$

By analogously writing $x_{12}=\sum_{\ell=1}^{4} x_{12}^{(l)}$ Theorem 7:2 ann be proved for $j=2$ under the assumptions $\left.A^{\prime}, A_{1}^{\prime}, B^{\prime} i\right)$ and $\left.i i\right)$ and an assumption on the $x_{i, 2}^{(\ell)}$ analogaus to $B^{\prime}(v)$.

REFERENCES

[1] Auichic, J.N.,
"Estimatis ef regression parameturs kasín on rank tosts ",
Ann. Math. Stat. 38 (1967), 894-904
[2] Biluchengkul, S. and Puri, M.L.,
" On the wstimation of contrasts in linuar mudels ",
Ann. Math. Stat. 36 (1965), 196-202
[3] Greunberg, V.L.,
" Rcuust estimation in incomplete black Cesigns ",
inn. Meth. Stat. 37 (1966), 1331-1337
[4] Hajok, J. and Sidak, 7.,
" Thecry af rank tusts ",
Academic Press, New Yerk, 1967
[5] Hodges, J.i.s Jr. Gnci Lehmann, E.L.,
"Estimates of locetion iasod on rank tusts ",
Ann. Math. Stat. 34 (1963), 598-611
[6] Jurackuva, J.,
" Asymptotic iinearity of 3 rank statistic in regression parameter ". Ann. Math. Stat. 40 (1969), 1889-1900
[7] Koul, H.L.,
" Asymptotic behavior of a class of regions basus on ranks ", Technical Report, Department of Stetistics and Probability, Michigan State University, 1969
[8] koul. H.L.,
" Asymptotic behavior of Wilcomon tyde confidence regions in multivariate linear regression ",

Ann. Math. Stet. 40 (1969), 1950-1979
[G] Kraft, C.H., and van Euciuti.,
" Efficient lincarized estimatus jased on ranks ",
Procucdings of the First Ineurnational Sympaium on Nunparametric
Techniquas in Statisticil Inferance,
Elcomington, Indiana, 1969 . Tu appuex.
[10] Kraft, C.H., ane van Eeden, C.,
" Relative ifficiencias of quick anc efficient methods of computing estimates from rank tests ", sulmittul.
[11] Lehmann,E.L..
"Robust estimation in the analysis of variance ",
Ann. Math. Stat. 84 (1963), 957-950
[12] Lehmann, E.L.,
" Asymptcticelly nonparametric inference in some linaar modela with ont. observation per cell "

Ann. Math. Stat. 35 (1964), 726-734
[13] Puri, M.L. and Sen, P.K.,
" On robust ustimation in incomplete blcok designs ",
Ann. Meth. Stat. 38 (1967), 1587-1591
[14] Rav, P.V. and Thorniy, J.I.,
" A robust point estimator in a generilized rogression model ", Ann. Math. Stat. 40 (1969), 1784-1790.
[15] ven Eucen, Constance,
" A cine - sample anslugue of $=$ theorem of Jureckeva ",
Sutmitted to Ann. Math. Stat.

[^0]: © Département de mathématiques et informatique, université de Rennes, 1969-1970, tous droits réservés.
 L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes» implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

