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LINEARIZED RANK ESTIMATES AND SIGNED - RANK ESTIMATES

FOR THE GENERAL LINEAR HYPOTHESIS

Charles H. KRAFT and Constance VAN EEDEN

Université de Montréal

1. INTRODUCTION.

The development of methods of estimation from ranks for the parameters
of the general linear hypothesis has proceeded rapidly since the work of Hodges
and Lehmann [ﬂ cn estimates for one - sample and two - sample problems.,
Univariate extensions of these estimates to k - sample problems have been given
by Lehmann [1ﬂ » and Bhuchongkul and Puri Da. 3 to linear regression by Adichie
[1 : and to regression on monotone functions by Rao and Thornby [14] . Koul [7]
studied rank estimates for a wide class of sequences of design matrices which
are assumed to be perpendicular to a vector of constants. He used an approxi-
mation theorem of Jureckova [E] for some of the asymptotic properties. In [ﬂ ,
[1@] the present authors utilized the theorem of Jureckova to study linearized
versions of rank estimates for one - and two - , sample problems. These linea-
rized versions are, in most cases, simpler to compute as well as asymptotically

equivalent to the non - linearized versions.

In the present paper linearized rank estimates are described for a
sub - class of the sequence of design matrices studied by Koul Dﬂ. When Koul's
estimates exist the estimates here can be considered as their linearized versions.
However, the proofs given here do not require their existence. Linearized signed-
rank estimates are given for an analogaus seguence of designs and supposing the
observations have symmetric distributions. Koul Dﬂ has studied estimates based
on signed - rank statistics for more general sequences of designs but with

stronger assumptions on the distributions of the observations.

¥) This work was partially supported by the Mathematics Research Center, United
States Army, Madison, Contract # DA-31-124-ARD-D-4B2 and partially supported
by the National Research Council of Canada. The manuseryt was written in
final form while the authors were visiting the Department of Mathematics,

University of Rennes.



The scquences c¢f design matrices consideresd here have, at least
asymptotically, fixed rank. Thus, the results doc not apply to sequencus of
designs in which there ars an increasing number of nuisance parametcrs as
well as & fixed number of parameters cf interest. Some of the recent results
concerning rank estimates for these more complicated designs can be found in

Lehmann [121 » Greenberg [3] , and Puri and Sen [13] .

The conditicns under which it is shcown here that linearizatiun is
possible for multiparameter problems are stronger than thosc proposed by
Jureckova [ﬁ] . However the conditions here are notationally simpler and can

be simpler to verify.

Section 2 contains the assumpticns ancd theorems ccncerning cstime=-
tes based on rank statistics. Section 3 contains the same for sstimates bascd
on signed - rank statistics. The results of thesa twe sections require cer-
tain initial estimates ana estimatus of scale. Theorems establishing the exis-
tence and construction of such estimates are given in section 4. Section 5
containeg the proofs of the theorems in section 2 and of those in secticn 4
concerning estimates baesed cn rank statistics. Section 6 ccntains the proofs
of the theoremsin secticns 3 and 4 concerning estimates based on signed -~

rank statistics.

The basis cof linearized estimates is the fundamental theorem cf
Jureckova [ﬁ] . Secticn 7 gives a particular extension of this thecorem to
multiparameter problems for mank = statistics and e multiparameter ex=-
tenaion of Van Eeden ' s [lﬁ]analogue, for signed - rank statistics, of Ju-
reckova ' s theorem. In ssction 8 the relation between the extension tc mul-
tiparamster problems cf Jursckova ' s theorem used here and the extension

suggested by her in [ﬁ] is disaussed.



2. LINEARIZED RANK ESTIMATES

Suppose that, for each v = 1, 2,..., for an nv x 1 vector of

Y[v)

obssrvations = (Y (v) Yn(v)

2
” seans } , there exists an n, x (p + q)

\%

{(v)

design matrix, Z ', of known constants and a (p + q) x 1 vector B of

unknown constants such that the components of Y‘v]-Z(V]

B are indepen-

dently and identically distributed as FG%] (b > 0) where F(y) is a

completely specified distribution function. p and g will be fixed and

limits will be as v —> =, (Super- and subscripts v will not be written).
The following standard reduction of the parameters will be

convenient. For the sequencs of design matrices, Z, let

n
- 1 —
Z2-2 (zij - 121 213] and let p be the rank of Z - Z. Then, if

Z1 - Ei is a set of p linearly independent columns of Z - 7 and 22- Eé

is the rest of the columns of Z - Z, Z - Z can (after, if necessary,
rearranging some of the columns) be written as Z - 7 =

(z, -2, , 2, - 221 whars Z1 -2

5 is of size n x p and rank p and

1
Z2 - 32 = [Z1 —.51) c, where ¢ is a p x g matrix. Hence Z B =

-7 7 7 = ' !
[Z1 21] (B1 + c82] + (21 81 + 22 62], where B (81 s Bé] carresponds
to Z = (Z1 , 22]. Let [Z1 - 21] (61 + 062] +* (Z1 81 + Z2 82] =

(z, - 51] 8 + 60 with 60 a vector of constants and the © parameter to be

1
gstimated,

The distributior function F of single observatiocns will be
assumed to satisfy the regularity conditions of Hajek and Sidak Pﬂ.

namely

Assumption A

i) fly) = dZ; ) exists and is absolutely continuous on(=w,«)



! -
ii1) the function ‘YF(uJ = -f% (F~1(u)) can be written as the sum
of two monotone functions cach of which is square integrable on
o <u<1.

Let any two vectors u and v be called similarly ordsred if

[ui - UJ] [vi - vj] > o for all 1, j. For the sequence Z of design matrices
let z = Z1 - 71. It is supposed that the sequence {z = (z i;))}satisfies
Assumption B 2
max Z
121x<n 1]
i) -0 J ® 1,000, P
n
zzij
i=1
ii) %— 2* z —— ) where ) is positive definite.

111} For each 31 P 32 (31 7 J2 ' J1 , j2 = 1,405 p) there exists a

number Yj . # 0 such that, for n > n,» 2

j and 2z
1 32 1

ty 4
are similarly ordered, where 21,.... zp ars the column

vectors of z.

Assumption C

It will be supposed that there exists a sequencs 3 of initial

1
estimates of 6 which satisfies
A

il 61 = . for all 6 and all a8 > o
a a

11) Py {\/E (61 -9) e A}—-—) P(A) for some fixed
p~dimensional distribution P.

Note that Ci) is satisfied for the least squares estimates %, and

1



that, under assumption Bi) and ii), Cii} will also be =atisfied if
I y2 d F(y) < =, In section 4 a class of dusigns is given for which o
sequence 31 satisfying C can be constructed from certain medians.

Define now an n x 1 vector

R -
9.00) = { [Yn +z1e]i)}

where R(Y -2 8) is the rank of the ith component of ¥ - z 6 among
i

all n components. A linearized rank cstimate 6 will be defined by

~

(z' z]-1

(2,1 B=%, +7

z' @[6 ),
FF P

/I

where KFF - f ‘fi(u)duand where B is a consistent estimate of the
o

scale parameter b,

In section 5 the following theorem will be proved.

Theorem 2 ; 1. If the components of Y = Zg have common distribution

function FG%J , if F satisfies A, if z satisfies 3, if 61 satisfies C

and if B is a consistent estimate of b, then Vﬁ'(@ - 68), whers D is

given by (2 3 1), has asymptotically a normal distribution with mean

2

zero and covariance o Z-1 .
KFF

In order to find the asymptotic distribution of the estimate
{2 ;3 1) when the components of Y = Z8 are independently and identically
distributed with a common distribution functicn Gly), the fcllowing

assumption A, concerning G(y) and assumption D concerning the initial

1

”~
estimate 6,l will be needed.



Assumption A1

i) assumption Ai)
1 .

11) [ 2w au <
o

and F.,

Let, fur two distribution functions F1 2

A
K = . (u) @ (u) du and call two sequences of estimates %, and t.
ff2 1o Fy "2 L 2

- . . ( A
G-eguivalent if PG{\fﬁ ﬂt1-t2H >e}—0. It will be supposed that the

cy s " i P
initial estimste 01 satisfies

Assumption D

~
~ Y-z 9 81[ Y)}-296
61(‘——————) = for all 8 and all a > o

ii} if 0 = o, @1 is G=equivalent to EJ_ (z' z)-1z' ¢s[0]

[ =
(=)
for some distribution function S satisfying assumption A,

Theorem 2 ; 2. If the components of y- Z8 have common distribution function

P . N » A
Gly}, i¥ F and S satisfy A, if G satisfies A1, if z satisfies B, if @1 gsatis-

fies D, then, for O defined by (2 3 1), VA0 - 6) has asymptotically a normal

distribution with mean o and covariance

2

, "ss hac 2Kgpe Keg | %] o

(23 2) ) —— "X | KK T-% Tl
KZ FF SGFF FF FF

wﬁere c = F’[3 - lim?:u.

In secction 4 examples of initiel estimates 5 satisfying assump-

1
tion D will be given ; section 4 also contains a method of constructing
estimates’B which are censistent estimetes of b if the components of

Y = ZB have distribution function FE%] and for which ¢ can easily be



found when the components of Y~ZB have distribution G(y).
In section 8 it is shown that the assumption Biii) can be

replaced by an alternate assumption proposed by Jureckova [6].
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3. LINEARIZED SIGNEL~RANK ESTIMATES

)

(v) (v)

Let now, for cach v = 1, Ziase, Y(U]=[ Y, Ve, Y v )
v

(v])

be an nv x 1 vector of ohservations, let Z be an n, X [p1 + q1)

design matrix and let B be & (p1 + q1J x 1 vecter of unknown constants such

(v Z(v] 8 are indepaendaently and identically

that the components of Y
distributed as FG%J. where F(y) is a completely specifisd distribution
function, Py and a, will be fixed and limits are as v — =, Super-
and subscripts v will not bc written.

Let Py be the rank of Z., Then Z can be written as Z = (x, x,J,
where x is a scot of Py lincarly independent columns cf Z and x, = x d,
where d 1s a p1 X q1 matrix.

Let B = (6'3 s Bél' correspond to Z = (x , x1] then Z8 =
x(63 + d 84]. The parameter to be estimated is w = B

3t d By
Note that, in section 2, Z3 = (Z1 - 21 s 1) (61..-. ep. 60],,

where (Z1 -'71. 1) is the n x {p + 1) matrix consisting of the p cclumns
of 21 - fa and a8 column of 1's 3 this matrix (Z1 - 71, 1) is of rank
p + 1, The estimation procedure ta be given in this section can thus bu

used to estimate the parameter (61,.... & OD]) of section 2, This

p 1]
leads to two different estimates for (61,.... ep]) which, as will be

seen, have asymptotically the same distribution i# the underlying distri-

butions arc symmaotric,

The distribution function F of single observations will be

assumed to satisfy
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?
Azsumption A

d F(y)
dy

oexists and is apsolutely continuous on (=«,=)

1) fly) =

11) e lu) == (Héli can be written as the sum of two sguars

F
integrable functions ¢1(u) and wz(u), where w1(u] is
nondecreasing and nonnegative and wz(u] is neonincreasing

and nonpositive

ii1) f(y) = f(-y) for all y.

For the sequence of design matrices it will bc supposed that x satisfies

Assumption B‘

3> o foreach J = 1540044 Py

ii]i}x' x —> ], » where ], is o positivo definite matrix.

1

iii) for each pair (J1. le [J1 d J2 3 j1. j2 = 1000, p1)

# o such that, for n>n ,

there exists a number y i
J1 2 8]

} 2 o0 forall i

10 X,. (x +y X,
13, 43, " Vi, 3, 3,

2. li | and |x | are similerly
1

+" X
NPRR A P P4
ordered, where x1..... xp are column vectors of x

1

Assumption C'

It will be supposed that there exists a sequence of initiz



..1u-

estimates U, of v satisfying

1

A
A Yexuy u1(Y) u
i) u, @ ] =
1" &

for all u and all a>o

ii} Pu( VB(ﬁ1-u]€ A} — P(A) for some fixed Dq‘dimQHSional
distribution P.

Let WF[u) S5e¢ the n x 1 vector

+

| Rl v, | }
?F(u] = {¢FE————E—T———) sgn(Y-xu]i ,

where RKY-xu)i| is the rank of the absolute value of the itb component

(Y-xu]i of Y-xu among ths absolute values of all - its components and
1 if x>0
sgn x =
-1 if x<ao.

A linearized estimate 1 of u will be defined by
: 1

. = ] - P Y]
(3;1) Moo= U, KFF {x'x) X fF(ﬁ1) ,

where % is a consistent astimate of b.

In section 6 the following theorem will be proved.

Theorem 3;1 : If the components of Y-ZB have common distribution function

Y ; ’r . I .. : A
fjb), if F satisfies A , if x satisfies B, if ¥, satisfies C, if b is a

consistent estimate of b, then VA ({1-p), with given by (3;1), has asympto-
: 2 -1

tically a normal distribution with mean o and covariance . .

FE__ 1

In order to find the asymptotic distribution of the estimate (3;1)
when the components of Y-ZB are independently and identically distributed as

G(y), the following assumption A; concerning G(y) and assumption D’ concerning

the initiel estimate ﬁ1 are needed.

1
i) assumption A'i)

Assumption A

B
ii) “fﬁ(U) du < ®
Jg ’

1ii) assumption A*iii).



_1’} -

L
Assumotion D

~
Y =x u1(YJ-u
i) %, ¢ L for all u and all a>o
1" a a
~ . 1 Q=1
11) 1f w = o, ¥, is G-equivalent to E——-[x x)  x us(o)

SG
for some distribution function S satisfying A,

Theorem 2;2 ¢ If the components of Y=-Z8 nave commun dist, ..ucion tunction

G(y), if F and S satisfy A’, 1f G satisfiss A%, if x satisfies B', if

ﬁ1 satisfies D' then, for § definad by (3;1), VR{fi~y) has asympto-

tically a normal distribytion with mean ¢ and covariance

K K 2 2 K_.c K 2 -1
(3;2) 28 [1-c KFG] + SE [1-c —fﬁ] + £ 21
Kes rr? “se MeF

where c = PG - 1im 3.

Examples of initial estimates ﬁ1 satisfying 0 are given in

section 4.

/
In section 8 it is shown that assumption Biii) can be replaced by

an alternate assumption.

4, INITIAL ESTIMATES OF © AND 1 AND ESTIMATES OF THE SCALEPARAMETER b,

INITIAL ESTIMATES.

Perhaps the two most well known choices for initial estimates of
© and v are those corresponding to the mean and the median. The resulting
relative efficiency of the linearized estimate can be found from Theorem 2;2
(resp. Theorem 3;2) if it is known that the initial estimate satisfies D

{(resp. D’] for some ‘¥S. Identifying such initial estimat956 {resp. 31) and

1

the corresponding ?S is the purpose of the following four theorems which

~
will be proved in section 5 for 01 and in section 6 for ﬁ1.



Theorem 4;1 : If the components of y-Z8 have common distribution function

G(x), where G satisfies Aaand has a variance, if z satisfies 8i) and 1i)

then O, = (22)"" 2'Y satisfies D with qg(u] = &1y,

A construction of an initial estimate 51 corresponding to the
median can be most easily described for replicated designs. Suppose

Z' = [Z%,Z',...,Zé] where, for each i, Z

5 = Zo where Z0 is a k x (p+g) matrix.

i
let z_span Z_ -~ 7 so that z’ z_ > o. Then z_ is K x p so that the tctal

o o o] oo 0
number of observations is nk. For sinmplicity suppose that the k rows of z0
are distinct. Then the n observations corresponding to a given row in z, are
a sample from a population with the same location (If zO has soms equeal
rows there will be available more observations for agivcn "row”) Let

ms=s [m1,m2,....mk]' be the medians of the cbservations corresponding to sach

of the k rows of Zo'

Theorem 4;2 : If the components of y-ZB have common distribution function

G(x), where G(x) satisfies A,and has a positive density at its median, then
t

z) z_m satisfies D with S the double exponential gistributien.

The corresponding statement for an initial estimate, based on the

mean, of ¥ is Theorem 4;3.

Theorem 4;3 : If the components of Y-Z8 have common distribution G(x), where

’
G (x) satisfies Az and has a variance, if x satisfies B i) and 1i), then

A
a4, = (x’xl.1 x'Y satisfies O’ with ws[u] = <5-1¢#}%ll

For an initial estimate ﬁ1 based on medians, consider again an
n-times repeated fixed design matrix. Let x = (xé....,xé]l with x, @ ng1matrix
and xé %o > o, Let t = [t1,t2,...,tk)' be the medians of the observations

corresponding to each of the k rows of Xy
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Theorem 4;4 : If the components of Y-Zf have common distribution function

J
G (x), where G satisfies A, and has a positive density at its median, then
1

N ~ ]
i, = [xé xO] 1 xét satisfies D with S the double exponential distribution,

Estimates of the scale parameter

Estimates of the scale parameter b can e.g. be obtained as follows.
Most measures of dispersion DB, defined for distribution functions H, Hn on
(=°,»), have the following propsrties
1) b D(H(y)) = O(HEE)) for all a and all b0

11) D(H_(y)) — D(H(y}) whenever sup IHn(y]—H(yJI — 0 and D(H(y)) <=,
LY D(’F‘n(yn
Given such a measure of dispersion D, q1n.section 2, can be taken as —ETFTJTT’

where ?n(y] is the empirical distribution function of the componsnts of

Y-z 61 and F{y) is the distribution function from which‘PF(u] is computed.

Then, if the components of Y-Z8 have common distribution Fﬁ%].if @1 satisfiss C and
i1f D(F(y))<= , b is a consistent estimate of b. If the components of Y~Z8

have common distribution G(y), if 51 satisfies 0, if DO(F(y))<=® and

_blaly))

= ETET?TT_ . The same remarks bold for

D(G(y)) <= then, in Theorem 2;2, c
estimating b in ssction 3.

D can be taken, for instance, as an interpercentife range or, if the obser-
vations have a variance, as the standard deviatien.

In [10] some numerical values of the relative efficiencies of

linearized estimates are given ; these relative efficiencies are computed as
1

T3 , for the estimation
[ fplu) du
o]

the ratio of the Cranér-Rao lower bound

problem, to

Kee Kegl2 2 Kgr® Kegl o2
= o) ok e T
K6 Frr

ke FF K FF

FF
Fa)
These efficiencies are given in [10] for several choices of F and G, forb as

the standard deviation or as the interquarti.z range, and for both choices of

the initial estimate given above.
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5 - PROOF OF THEOREM 281, 232, 431, and 4i2.

Proof of Theorem 2;1.

A
Since b is a consistent estimate of b, it is sufficient to prove

~
that, for the estimate (231] with b replaced by b, the distribution of

- A . ) K3 >
Vn(e ~ @) converges tu & normal distribution with mean zeroc and covariance

A A
The asymptotic distribution of vh (0 - 0) with b replaced by b can
be found as follows.

a) For c = (c,s ssa, cp)' # 0 and © = U it follows from Hajek and

1
3idak [{] (p. 163) that = i c*z? QF {0) is asymptotically normal with
n
2 FF
mean zero and variance Kb c's c provided that c'z' satisfies Bi) and Bii),
FF

That it does if z satisfies Bi) and Bii) 1s immediate upon noting that, for

1 P 2
= max (£ c. zij]
1<i<n §=1 9
n p
1 3 (I ¢ zi.]z
o= 3=t 3 T

Bii) implies that the denominator converges to ¢® £ ¢ > 0. Hence, by taking

c* = (0, «ae, 0, 1, 0, .a., 0), it follows from Bi) that-l max z2 approa-

l<icn M
ches zero for scach j.
P 5 -
But max [ g cj 21.32.5 M“pz max  max z2 s, where M2 = max 02 .
leien =1 J 1<jep leicn 1 1<j<p

A A
b) It follows from Ci) that 2 (Y - 2z @) = olY) - 0 so we can sup-

b (z'z)-l 2* ¢ (0) it is irmedicte
Ker F

A

from a) that {ﬁ' 0o 1s asymptotically ncrmal with mean O and covariance
2 -1

o

— L

Kee

A
pose that @ = 0. If 0, is defined by

— A A
c) Assuming O = 0 it remains to show that Vn ||¢ - 0] converges
~ ~
to zero and hence that vh 0 and vh Qo have asymptotically the same distribu-

tion. However


file:///fniO

el I ~  b/n -1 - :
(551) JFllo-eOu = || /n 0, + K;E (z'2)"" {z* o (0,) - z ¢ (01}

By C€Cii) a number d can be chosen so that P{HO1 “ _<_E:= } is arbitrarily
n
close to one for all sufficiently largc n.Hence the right hand side of

(5;1) will be, with arbitrarily high probebility, bounded by

sup I/me E’/; (z'2)7" {z' 0 (8) - 2 o (ol ,
el <& FF
/A

which can alsoc be written as

" /n [Z'Z]-‘I

Ker
sup {z' o_(8) - 2' ¢ () + 2'z — £} ||

K
FF
lell < &
n

Further, by an extension of the theorem of Jureckova [6] ,(see section 7

and 8),
K
sup | A= {z' o (£) -z' o (o) + —= z'z £} ]|
d Vs F F b
lell < —
/n

converges to zero in probability if © = 0. Since n (z'z]—1 — Z—l, it

A A
follows that vn IG) - eo|| ——> 0. This completes the proof.

Proof of Theorem 252

As in the proof of Theorem 231, we can suppose that © = g. By the

extension of the thecrem of Jureckova [6] (see section 7 and 8) we have, for

0 =0,
1 L} L] ’
(5,2) Pa sup [— (z 0 (E) - 2’ o lo) + Kp 2 zel|>e | > o
d vn
el =
n
P KFG AN c -1 I
Ifo_ = (1-c - ) 61 * Y (z'z) =z’ d>F[o] and eo1=
o0 FF FF
|—(—1— {(z'z) 1 2! <I>S[o] it follows from (532) and the fact that b > e,
SG

Al A
as in the proof of Theorem 251, that P (/mlle. -0l >el —o-

0o
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Further, by assumption 0, P {/n "001 - @1H > £} + o. Hence the asymptctic

distribution of vh © is thet of /n ©_, , where

A~ K y _1
002 = (1-cC RFG] EEREA—— z' @S(C] +
FF SG ‘ FF

1

€ (z'z) ' z' QF(o].

It follows from Hajek and Sidak [4] (p. 163) that thc asymptotic

distribution of /; Ooz , and hence that of vh 0, is normal with mean ¢ and

covariance given by (2;2). Q.E.D.

Proof cf Theorem 431.

Cbviously ,'6 satisfies Di). Further G—1(u] is nondecreasing

1

1. 4o
in u and f (G 1[u]]2 du = f y2 gly) dy < «» so that S satisfles A if G
:J -

satisfies A and has a variance. Further it follows from Hajek and Sidak [ﬁ]
(p. 160) that (z'z)” 2z %0} is, 1f 0 = 0, G-equivalent to

(z'2)”" 2 (P (BIY )Y, evs g (GLY D)* = 22yt 2y,

Since KSG = 1 the result follows.

For the proof of Theorem 4312, the following lemma is needed.

Lemma 511.

If the cocmpornents of Y-ZO have common distribution function G{x]),

where G satisfies A1and has_a positive ggpsity at its mediann, then, for

® = o, gach median m

is G-cguivalent to n +
3 nKSG
exponential distribution and where % is the sum of +1's according as ths

6j where S is the double

>
cbservations corresponding tc the 1th row of z are _n -°

Prcof : It is sufficient to show that, assuming n = Q,

s, 2
G
f% [ /n (2g(0) mJ - FJJ] ' mJ > p since KSG = 2g (o) > o.
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¥

nJ be the number of observations corresponding to the jth

Lut

row of zO which ers between © =nd m,. Then «Sj = + Zn".t according as mj :o.

3

The conditional, given mj. distribution of d? is B [%, pj] whers
|G(mj] - Glp)|
pJ = G[mj] . Hence

)

%; §j 2 2
5 n[Zg[o] m, -E-] mj( = n ]:Zg(o]lmjl - pj] + 2pj(1-pjl

which can be writen as

2
nzmj glo) - IG(mTi] il . G‘?("i Z, 2p, (1-py).
6‘e) msl ™ J
Since Vn mJ has an asymptctic distribution and
|[6tm,) - Gla)| Pg
Jipn | > glo) the result follows.
J

Proof of Theorem 432.

Since, for the double exponential distribution,

1 if u > 1/2
Pglul =
-1 if u < 1/2
>
2 + ' i
@S[o] is a vector of £ 1's according as Yi . med (Y1....,Ynk]. Letting
& = ( q....., %ﬂ, with % as in Lemma 551, it follows from the lemma
that @1 is G-equivelent to (note that 25 n = 0]
. 2z
C z' & However z' 6= 2'A where A is an nk x 1
K n 0 0

SG

vector of £ 1's according as Yi : n. The conclusion of the theorem will
follow if 1§ is true that

1 PG

nk

(533) Iz (8 - ogtol

> D
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From Hajek and Sidek Dﬂ (p. 61} it follows that thc conditional,

given Y, expectaticn of the squarc of cach slsment of z'({A - @S[o]] is

bounded by
#Hof Y, betvsen n and nk
i 2
4 I z ziJ s
} i=1
) nk 5
where M = med (Y,,...,Y_ ). Since — I z,. > I,. , (5;3) and the
1 nk nk 121 ij 13

theorem follow.

6. PROOF OF THEOREM 3;1, 3;2, 4,3, and 4,4.

The following proofs of theorem 3;1 and 3;2 are the analoguss for
signed rank statistics to those of theorem 2;1 and 232 for rank statistics.
Accordingly they require =z linearization thecorem for signed rank statistics.

Such a linearization thecorem has, for p, = 1, been given in [ﬂs] ; for the

1

extension to P4 > 1 see section 7 and 8.

Proof of Thecrem 3;1.

-

Since b is a consistent estimate of b, it is sufficient to prove

that, for the estimate (3;1) with b replaced by b, o (u-u) has asymptoti-
2
cally a normal distributicn with mean o and covariance b~ z 1 .

KFF 1

The asymptotic distribution of /n (u-u) with b replaced by b can

be found as follows.

al For c = [01,...,cp]' # 0 and u = o, it follows from Hajek and Sidak Dﬂ

/'
(p. 166) and the assumptions B’'i) and 1i) that —P—— ¢ x’ ¥ (0) is asympto-
2 Vh K
tically normal with mean o and variance'K-— c' 21 C.

FF
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b) It follows from C'1i) that u(Y-xu) = ulYl-u so we @an suppose w = O, With

Mo definad by KE_ [x'x]m1 x' YF[o] it follows from a) that Jﬁ'uo has
FF
2
asymptctically a ncrmal distribution with msan o and covariance KE— 211.
FF
c) Assuming u = o, it remains tc show that ﬁ?||u-u0” converges to zero
However
A A A b/n_ , _1 , ~ _ ,
/n Ju ug" | & My * K (x'x) " {x ¥elu,) - x WF(ol}“
ec that, using assumption C'ii) it is sufficient tc show that
K P
F
(6351) sup || e ¥ (8) - x' ¥ (o) + bF x' xE}]; C_> 0 if p=o.
g P

n
(6;1) follows from the linearization thcorem for signed rank statistics

provad in section 7 and 8 (sse also [15]).

Proof of Theorem 3;2.

As in the proof of Theorem 3;1 we can suppose that v = o,

Let K
M= [1-ckf—9 )y ') T ! ¥_ (o)
© FF FF
-~ 1 _1
., = -— (x'x) x' Y.(0)
o " Ky S
K -1
- FG . (x'x) -1
b = (1-c ) x' ¥ (0] + x'x)"7 x' ¥_(0)
o2 Ker Ksg S Kep F

then it follows from (see theorem 7;2).

(632) PG sup

1
| — (x* ¥(E) - x' ¥_(0) + K. x'xE] > ¢ —>0
I e||:9/—_ T " e
n
P

C . ¢ that the asymptotic distribution of /i u is the

and the fact that b
same as that of /n Hoo * From Hajek and Sidak [ﬁ] (p. 166) it follows that
the asymptotic distribution of /n Moz is normal with mean O and covariance

given by (312].



Proof of Theorsm 4,3.

Obviously Hy satisfies D'i). That S satisfies A' follows from the

fact that G-1(E%l) is non decreasing and non negative,

+

1 -1 w1 2
I DG ( 5 Y] du = y- gly) dy < » and that symmetry for G

0 ~®

implies symmetry for S.

From Hajek and Sidak [ﬁl {(p. 166) it follows that [x'x]-1 x'Wgtol
is, if u = o0, G equivalent to
Oxd ™ X L (260Y, 3710, wees b (260 3-1Y = ()T XY,
S 1 R - n

The result then follows from the fact that KSG = 1,

Proof of Theorem 434.

Obviously Hy satisfies D'i) and the double exponential distribution
satisifies A'.

To prove D*ii} it needs to be shown that, if u = o,

)
', -1 - ___1__ R s ._G__
Ivm {[xcxol X!t e (x*x) = x VS[o)}H > o.

Let sj be the sum of * 1's according as the observations in the

th . > = ? : ' = ’
J row of X, are _ o, let ¢ [51 S e e ek] , then x VS(o} x € and

] -1 ' - 1 ¢ -1 ' -
/n {[xcJ xO] xot Rg— (x*x)}  x VSIOJ} =
G
n(x'x].1 1
= — 2 - x'" (nt = =——r ).
e a] 2g (o)

Hence it is sufficient to prove that

P
1 1 2 G
L - >
(633) = & R ORILER? 0
and (6;3) follow§ as in the proof of Lemma 531, from the fact that the
e, t,
conditional, given tj’ distribution of 51- —EJT is B [%, pJ] where
J
G(t,) - Glo)
) | t,) - Glo |

p -
G(t,)
3 (ty



7. AN EXTENSION AND AN ANALOGUE OF A THEOREM OF JURECKOVA [8].

The following theorem is an extension to more dimensions of

Theorem 3;1 of Jureckova [6].

Theorem 7;1.

If the components of Y have common distribution function Gix), if

F satisfies A, if G satisfies AT,iF z satisfies B, if

R P
n Y- L z,E
=4 T127°%
§ig) = & oz, ¢, (——2 )
] i=1 J ! n+1
then, for each j=1,...,p,
£ Keg P n
(7;1) 1imP4 sup — §s, (=) - S {0} + - r g, I 1 zipl>e = 0
s [|g|<d/; IR Mnog=1 =1 M

fer each d > o0 and sach € > 0.

For p=1 Theorem 7,1, is a special case of Theorem 3;1 of Jureckova
[5]. In the following it will be supposed that p > 1.

The proof will be given for j=1. As W%[u) is the sum of two
monotone sguare integrable functions it is sufficient to prove (7;1) for
the case where QF(u] is non decreasing. The proof consists of two parts.

It will first be shown that,under A and Bi}) and ii), for any fixed set of
[KJ (k)

r points [E Ep )}, k=1,...,1
(k] K p n
(7;2) P 1 |S1[g )} - S1(o] + L8 z Eikl Loz, 12|<E for each
n /n /nooe=1 i=1

k=1,-n|,r —>1-

Jureckova Eﬂ proves (7;2) for p=1 in her Lemmas 3;1-3;8.
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That (732} holds for p > 1 can be seen by noting that Jureckova's lemmas

3;1 -3;8 hold for 81 (E—) if z satisfies

n

[ -  max Zij —> 0 for each J=1,...,p

(7;3)
1 0.2
] | Loz, | <M for each j=1,...,p where M is a positive
constant.

Then (7;2) follows from the fact that (7;3) is implied by Bi)

and 11i).
In the second part of the proof it will be shown that for each

d > 0 there exists a set of r fixed points Etk], k=1, ...,r such that, for

n>ng .
(k) K p n
(7;4) [-1— |s E—) -5, (0) + & E[k) z z,. | < e for sach
b e ! Aoamr bogeq WA
k=1,...,T =
K p n
[ sup i [S1P£—] - 51[0J + G T g,z ziizizl:-zp Te ]
lel<d Vn /n nooe=1 i=1

The theorem then follows from (7:2) and (7;4).

The set of points E[k]. k=1,...,r satisfying (7;4) can be found

as follows. By Biiilihere exists, for each 3=2,....,p, a numbezr*v(:J # 0 such

that, for n > n0 s

(7:5) [zi11- zi21) [2111- 2121 +yj (Z%J- Zizj)] 2o for alli,.i,.

[For simplicity of notation the first subscript on 11 j is

omitted).
By the transformetion
P &
Ng =&~ DR
(7;6) j=2 Y3
£
= % L = 2,e0.,p

n
2 Y,
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81[5—] can be written as
n

. - \ a . - n_y . .
By (7;5) and theorem 2;1 of Jureckaova [8], 510 [AT) is, for n > n_,

for fixed values of n1,...,n ._np , with probability one, a non

, M ,
J=1" 3+
increasing step function of n, {j=1,...,p). Now choase the r fixed points

3
Etk] as follows. Let C and € be fixed positive numbers. Let R be an integer

and let r = (2R+1)F. Divide the cube - C <Ny SC (§=1....p) dnta (2r)P

cubes by dividing each axis into 2R equal pieces and choose (2R+1]p noints

n[KJ on the corners of these cubes. These (2R+1)P points n[K) define,

(k]

by (7.6}, (2rR+1)P points & . By choosing R in such a way that

n
P 2 ¢
Keol 7 2 2 g S €
i=1
(7;7) .o -
Kegl b RARTRCTRAS pl geeati=2...p

these points £(k) satisfy, for n > ng >

{k) K B n
}: 'S 5/__] - s, (o) + —Eg_ z gfk] ) 211212[ < € for sach
n n n =1 2 i=1
(7;3) « 5 - = ;...,I‘] =
[ sup ——-ls(~)-s1o)+—F—@z g, I “zlJ 2p'e_-
In; lsr Mmoo A AN EL IR T
3= 1,...,p

That (7:8) holds if R satisfies {7;7) can be seenby using the

above mentioned monotonicity of 510 [;E} and by using the fact that (sac
n

also Jureckova [ﬁ]] if, for a monotone function h(Z) of one variable,

|h(g) - me | <e for £ = £, and for £ = E, [51 < 52], then . sgpE
<t <
|h(g) - mg| < 2e provided |m] (£,-€,) < ¢, ==
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That R can, for n > n1,be chosen 8&uch that (7;7) is satisfied

can be seen as follows. Lat

max |y ]|
2555

Y

G
L]

max |Z, .|, where £ = (2,.)
195 H

then, by Bii)there exists n, such that for n > n

1 1
N
1 L z? < D
no. i1 —
i=1

4 N

L )
| . if’l 2,200 * Y, zizll < 20 (147

80 that, by choosing R such that

IK_ .| 20 Cl14y)
N FG

R

€
(737) is satisfied for n > n,.
Further (7;4) follows from (7;8) by choosing d such that
P2 2
(7;9) pogycdt | = |n3|éc for all 3=1,...,p
i=1

and a d > o satisfying (7;8) is given by

2
[ﬁ min Y.}
2 2

0? = 2 E¥e T

[zmln 5]

<4

The next theorem is a linearization theorem for signed rank

statistics and is an extension of Theorem 3;2 in [js].

Theorem 7,2.

If the components of Y have common distribution G(x), if F satis=-

fies A', if G satisfies A}, if x satisfies B’, if
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R p
ly.- £ x,.& |
n 1 2=1 i€7e I8}
T.(E) = I «x,, ( - ) sgn (Y, - I x,,&,)
j jeq 13 wF n+1 g i =1 iL’%
then, for each j=1,....D,
] 1 3 Keg P n C L
(7:10) limP< sup — [T, (=) - T (o) +-— I T Xy xgl > er= 0
Ve lebea i 9 om0 A=t T i=1

for each d > 0 and each £ > 0.

The following proof is analogous to the proof of Theorem 7:1.
For p=1 the theorem is a special case of Theorem 3.2 of [15]and in the
following it will be suppcsed that p4> 1. The proof will be gliven for j=1.
Asg wF[u] iz the sum of two square integrable functions, one non decresasing
and non negative, the other non increasing and ncon positive, it is suffi-
cient to prove i(7;10) for the case whers wF[u] is non decreasing and non
negative.

It can be shown, analogausly to Jureckova's lemmas (3;1) - (3;8)

and using the results of Hajek and Sidak [4] {p. 219-221}) that,under the as-

sumptions A',A;and B'i) and ii), for any fixed set of points €(K],k=1,....r,
(K] K p n
- F
1 IT1i& )] - T1[o) R r Eik] z xilxillés for each k=1, ...,r ¢ 1
/n n =1 i=1
Further, by B'iii), there exists, for each 3j=2,....p, a number vy,
' J
such that
1. %44 [xi1 + Y3 xij) 2.0 for alli
(7:11) l '
20 Uxe L0 = e L) U o+ oy, %, o= X, . vy X ] > o0
111 121 111 3 i,d i1 J 1,53
111 4
for a 111,12
By the transformation (7;6) T1 PE—] can be written as
/n
n [ R|Y - Lix, ne g (X, +y 0%y, 0N, ) |
n i /ﬁi 1171 gan 41 V271278
n i=1 n+1
p
sgn [Yi - — [xi1n1 + L (xi1+ Ygxiglno 1)
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and 1t follows from (7;11) and Theorem31in[15) that, for n > n , T ) s,
o 10 Ve

for fixed values of n1,...,n ,np with probability 1 a non increasing

ln- 5y s 8
171341
J 3 A

step function of nj (j=1,....p,]).

The rest of the proof is identical to that of Theorem 731

8. ALTERNATE ASSUMPTIONS.

In section 7 an extensicn of Jursckeva's theorem was proved under
the assumptionsA and B. A different set of assumptions has been suggested
by Jureckova in her remark on page 18397 of [B]. The following paragraphs
contain, first, a proof for p=2 of the multiparameter Jureckova theorem
under these assumptions and, second, 2 proof thet the conditions of section
7 imply those here. The application of the stronger approximate linearity
theorem of this section to find linearized estimates is completely analogous
to those of section 2 and 3.

Suppose F satisfies A,G satisfics A1 and let z satisfy Bi) and ii).

For each n, zi can be written as

1

;= z* o ¥K
i1 i1 i1
such that
[ n * n X%
X 211 = I Zi1 =0
1 i=1
- X _ % L
(2112 21221 (z111 2i21] 20 for all i,. 1,
(8;1)
. **_*’t< .
(z]..r2 2122) [zi"1 Zi21] <0 for all i 12
n n
pX [221]2 >0 or L (z?f]z >0
L 1=1 i=1

o

Then Sy (1— £} can be written as the sum of

n
RY _ 1.

) 1
n 1~ “i171 7—122
gy def § (PF /n n




and R 1

n Y7 = 2408 T = 23125,

*% 1 def XK p /n /n
/n i=1 n+ 1

Now suppose

Assumption B iv
( 2

1. 1 max (z§1] —> 0, = max [ztﬁ)z ——> 0

1<i<n 1<i<n

2. there exists nO such that for n > n0

*
n n
1 T (2 )2 < M and 1 L (z )2 <M
n . i1 - n . i1 -
i=1 i=1

for some positive constant M

\

That, for j=1, the extension of Jureckova's theorem holds if

assumption Biii) is replaced by B iv) can bs ssen as follows. Choose, for

(k)

a fixed d > g, r = (2R+1)2 points € ", k=1,....r, on the corners of [2R)2

squares obtained by dividing the square ~-C §=gj < C (3=1,2) into [2R]2

equal squares. Then as in the proof of Theorem 7;1

(k] K n n
(8:1) P %:_ISTLEJ;TJ - X0y -+ —%E_[Eikl AT L N |
n n n i=1 i=1
for all k=1,...,r —1,
and
(k) ) K n n
(852) P4 L [s*¥KE ) - s¥k(o) + 8 (gIK) g, L KD M <
e 1 W 1 /e 1 1=1 i1 "i1 2 1=1 i1 7i2
for all k=1,...,ry—1.
n n :
Note that = [z*,]z and ¥ [z**lzare not necassarily both
. it i
i=1 i=1
positive for all v. However (8;1) follows, as in the proof of Theorem 7;1
D% .2
for the subsaquence of v for which I (zi1] > o0 and (8;1) is obvious for
i=1
the subsequence of v for which I (z* 14 = 5. The same holds for (8;2).

=g 11
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Then by choosing (see the proof of Theorem 7;1) R such that

n
| Iy 2 | S«
Kegl 7 Ly P 2l g se
n
1 *X d
Kegl 15 2 25 2l g s
i=1
n
. 1 2 d .
Kegl 7 I 25 7 <°¢
i=1
cne finds that
(k) K n n
1 |S? Lg———i -~ Sf(o] + TG (g*k) ) zai*4 Ziq gék] % z§1 212]| < eand
/n vn /n i=1 ! i=1
(k) . K n n
e Bl B O I TR UL R e ] [P
Ve /n n i=1 i=1
for all k=1,...,r‘} s
' K n n
|
[-sup T 8105-1 - 81[0] + 5 (51 b 251 + 52 T 211212] <8¢«
|_|€J.|_<_d /i /n A i=1 1=1
3=1,2

which proves the extension of Jureckova's theorcm for j=1 under the assumption

4 ii ] 2% a) N -4 = * ke
A, A1 and $3i), ii) and ivi. By analogously writing 245 % 2Zj, * 24, .oAD
extension can be proved four j=2under the assumption A,A1, Bi), 1i} and
5 * L a
an assumption on Zio 0 255 analogous to B 1v).

That assumption B iv) follows from 8iii) can be seen as follows.

By Biii)ihere exists & number Yo 4 # o such that, for all n > n,» 2, and
z, * ¥, 4 2, are gimilarly orderad. Now choose
(
x _ Z12 7 V2,1 Fig
211 - Y
2,4
< if Yp 4> 0
Z** = e ____1__._ z
L i1 y2’1 i,2

and



- 29 =

* 1
z = - ——— oz,
i1 Y2'1 i,2
if vy < 0
< 2,1
JRE Zi2 " Yo,1 %ig
i1 Y5 4
\ b4

then, for n > ng» z* and sz satisfy (8;1). Further from the fact that z

i1

satisfies B1) and 11) it follaws that 2}, and 2** Satisfy B iv).

1 i1

The cltzrnate assumptions for Thezrem 7;2 are, for ng, as follows.

Let F satisfy A'. G satisfy A! and let x satisfy B'i)} end ii). In [15] it is

1 oW
shown that x,, can be written as x = I X,, , such that
i1 il 2=1 i1
( (0 e
1. X4 X4p 2O for cach 1 and £ = 1,2
xtl] X <0 for cach 1 and 2 = 3,4
i1 i2 = ) ’
<
2. Ile and |x§£]| are simarly crdered for 2ach & = 1,....4
n 2
3. z (xg{]] > o for at least one &
L - i1
i=1
£ T g
Then T1 (=) can be written as L T {=—) and, as in the above
ﬁT =1 1 n

proof, it can be seen that, for j=1, assumption B'1iii) can be replaced by

Assumption B'iv

2
1.‘1 max [xili] -—> n for sach 2 = 1,...,4
1<i<n !
n 2
2. 1 L (x!lll <M forn>n_ , 2=1,...,4
n « 1:1 - 8]
i=1
Toow
By analogously writing Xio © L x12 Theorem 7;2 con be proved
=1

for j=2 under the assumptions A', A%, B'i) and ii) and an assumption on

the xizé analogous to B'iv]).
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