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ON THE REGRESSION CF A RANDOM VARIABLE WITH RESPECT TO A 
STEJCHASTIC PROCESS AND, POSSIBLY, p RANDOM VARIABLES 

by 

J. LEGOUPIL 
(University de Rennes) 

SUMMARY 

In th8 first section, previous publications are reviewed sta­
ting the origin of the problem and the mathematical properties of the 
linear mean square regression of a random variable Y with respect to a 
random function X(t). In the second section, estimation problems are stu­
died when eigenfunctions and eigenvalues of the covariance of X(t) are 
known and when they are unknown by using limit theorems. In section 3, 

n of the sample being given. In section 4 , we consider a generalization 
the ca93where there are p random variables Z.. and we ha^e to study the 
multiple regression Y^ of Y with respect to the p,Zj and the random f u . • 
tion XCt). 
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INTRODUCTION 

I began working on this subject in 1958 after a conversation 
with Pr. Darmois and Pr. Dugue, they told me it would be interesting to 
think again about the old paper of Fisher "on the influence of rainfall 
on the yield of wheat at Rothamsted". This paper is in fact a statistical 
study of the influence of a stochastic process XCt) representing the rain­
fall during the year T preceding the crop on the random variable Y repre­
senting the crop. 

Their impressions were that a generalization to stochastic proces: 
of the polynomial approximation Weierstrass theorem was implicitely * 
in the Fisher's paper. 

(Dugu6 1958 preface page IV and p. 125-138). 
With the development of the theory of stochastic processes, it 

seemed interesting to give a more sound mathematical foundation of Fisi., 
paper ans hence of the statistical problem of the influence of a stochr-
tic process XCt) on a random variable Y. 

Just a few words about the Fisher's paper : 
1°) The first method being triod by Fisher was to divide the year 

sixty one periods of six days T^i = 1...61), XCt) dt being the rainfall 
during t , t + dt. 'thon he studied the multiple regression of Y with 
respect to the 61 random variables jj XCt) dt rainfall during T^. Bnf h R 
had only samples of size 65 and it was not possible to get good estim^. ;r 

of the 61 regression parameters. 
2°) The method finally used by Sir R. Fisher was to consider a 
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regression of the form OLQ + J T p(t) X(t) dt ( T = 3 6 6 days = 6 * 6 1 ) . He 
thought it was possible to find a good approximation of XCt) with 
E P^tt) (i = 1 , . . . 6 ) . p^(t) being non random functions chosen to be 
orthogonals and normed over T, are random variables. He was led to a 
regression a Q • £ (/T p^(t) p(t) dt) A^, which is a multiple linear regres­
sion with respect the A^ or with respect to the / p^(t) X(t) dt. 

Of course, there were others factors having an influence on the yield 
of wheat, but Fisher thought that they were not so important and it was 
possible to remove these; effects with appropriate corrections. 

Hence the importance of developing a theory relative to the following 
points : 

1) It is necessary to give a precise definition and to set up pro­
perties of the mean square linear regression Y and of the correlation 

x 
coefficient C of Y relative to X(t) defined over T. 

About approximations, it is necessary to get a rigorous mathematical 
foundation, justifying the pratical use of such approximations, 
particulary : 

a) Concerning the first method finally not used by Fisher, but 
that could be useful in other applications, we have to study limit theo­
rems giving Y x and C as limits, when L —> •oo, of the multiple regression 
and of the multiple correlation coefficient of Y with the L random 
/_ X(t) dt (i 3 1,...L) (The T. being a partition of the year T) every 

Ti 1 

1^ tending to 0. 
b) Concerning the second method finally used by Fisher we shall 

not suppose X C t ) ^ I A. p.(t) ; (i = 1 , . . . 6 ) , we shall study limit theorems 
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giving Y and C as limits when L •*• +co of the multiple regression and of 
X 

the multiple correlation coefficient of Y with the L random variables 
Jj p (t) X(t) dt (i = 1...L) 

Although some specific models have been proposed to describe rainfall 
(for example Gabriel 1962), in most cases, it does not seem reasonable to 
admit the validity of a specific model. We have to study statistical 
problems of estimation and of testing hypotheses using the sample of size 
n : Y 1 Ct) (observed over T), Y 2 X2(t)...Y^ (observed over T). 
We can consider limit theorems when the size n of the sample tends to 
infinity but in practical applications, often the size of the sample is 
not very large and we have to think about the possibility of getting, 
result in the case of not very large samples. 
Results about this problem have been presented in 4 "notes aux comptes 
rendus" (4), J. Legoupil from 1959 to 1962 and an exposition of results 
obtained on this (and on others related tthin^s too) up to the end of 
1961 has been published in (5). Other results have been obtained since 
then. Before proceeding further, let us give a brief account of some of 
the main results in this paper. 

1.1, Mean square_JLinear regression. 
We make the following assumptions (Hypotheses A) : X(t) is a mesura-

r 2 i 
ble stochastic D r o c e r s c »>' (t?_ nnd is L-integrable over "!\ v 

a random variable such that t[Y^J exists. 
We study the Infimum of E(Y - a - /_ p(t) X(t) dt) for a real, J o 'T o 

p(t) s. L«(T). Let A. and ¥.(t) the eigenvalues and the ortogonal normed 
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aigenfunctions of cov [X(t) , XCt'3}. 
[jj cov {X(tJ XCt')} VAt') dt' = ~ — ] 

Let f^ the coefficients c ? the development of cov [Y,X(t)] with respect 
to the H^Ct) (it can be proved that such a development exists, even when 
the orthogonal normed set of functions ¥^(tl is not complete. The conver­
gence of this development is a mean square convergence over T. 

Let Y - E(Y) + E X. f, / ¥.(t) [X(t) - E{X(t)}] dt x 1 i I 1 

We have the following results i 

Theorem 1,1. 
Under the hypotheses A : 

1°) Eft - a - L p(t) XCt) dt] 2 > Eft - Y ] 2 = var Y - £ X. f? 
0 J T J _ L X J 1 1 1 

^ ̂  2 2 
2°) When the series £ X. f. converges, there exist a and p(t) 

1 1 1 to o 
such that the equality in 1) holds, this pCt) is a solution of 

Jj cov {XCt),XCt')} pCt') dt 1 = cov[Y,XCt)] 
(almost everywhere) and 

a Q = ECY) - J pCt) E {XCt)} dt 
and for these a , p(t) : a + L pCt) XCt) dt = Y . 

o o J T x 
2 2 

3°) Even when Z X^ f does not converge, for every sequence of a and of p (t) c L0Ct) such that : on n 2 
E {Y - a - L p ft) XCt) dt} 2 —^ ECY - Y ) 2 when n + '— on ; T n x 

then : 
a + p Ct) XCt) dt mean square —> Y . o 'T n x 
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The preceding theorem justifies the following definition : 
Y x is the mean square linear regression of Y with respect to X(t) over T. 

Theorem 1.2. 
Under the hypotheses A : 

a) E(Y) = ECY ) 
x 

b) cov [Y,Y ] = var Y 
X X 

c) cov [CY - Y.),X(t)] = 0 almost everywhere. 
x 

1.2, ~ Correlation coefficient. 

Under the hypotheses A, let C the supremum of the correlation coef­
ficient of Y with a + L pCt) XCt) dt for a real and p(t) e L 0(t), then 

o J T o 2 
C « (var Y / var Y ) 1 / 2 

x 
and 

var (Y - Y ) » (1 - C 2) var Y 
x 

1.3. Limit theorems. 

Considering the regression Y x as a limit of a multiple regression of 
Y with respect to L random variables when L + +00 , we get the following 
results : 

Theorem 1.4. 
Under the hypotheses A, if the interval T is divided in L intervals 

T i, the multiple regression Y^ of Y with respect to the L random variables 
Jj X(t) dt mean square converges to Y x when L + + C Q all the tending to 0. 
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Theorem 1,5. 
Under the hypotheses A, if XCt) is mean square continuous over T, 

then Y x is mean square limit of the multiple regression of Y with respect 
to the L random variables XCt.) (i = 1;2...L) when L * +oo with t. A < t., 

1 i-1 l 

for every i all the t^-t.^ tending to •. 

Theorem 1.6. 
Under the hypotheses A, if (t)..«p^[t)... is a complete system of 

functions base of L^fT), the multiple regression Y^ of Y with respect to 
the L random variables fj p^(t) XCt) dt (1 = 1,...L) mean square tends to Y when L ->+CD . x 

Similar limit theorems exist about the correlation coefficient. 

2 - Statistical inference on the regression of Y 
with respect to XCt) 

2.1. Function of regression. 

When expectations, variances, covariance and intercovariance functions 
a^e known, the linear mean square regression Y is Known Cfrom what has 

x 
been mentioned before). But generally such a Knowledge is not available. 

In favourable situations, we have a good Knowledge of the stochastic 
process Cwe Know E[x(t)] and cov[x(t),XCt1)], and we have to maKe a 
statistical study of the influence of this stochastic process on Y. But 
in most cases, very little? is Known about the stochastic process. 
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Suppose we have observed a sample of n independent realizations 
X 1(t) f Y r X 2(t), Y2... X (t), Y R. 

The most natural idea is to try to estimate a Q and pCt), when they 
exist, such that : 

a + / p(t) XCt) dt » Y y. 

In that case pCt) is solution of the integral equation : 

fj cov[X(t).X(t')]p(f ) dt* = cov[Y,X(t)J a.e. 
Let cov[x(t),X(t')] = r(t,t') and cov [Y,X(t)] « t(t) for abbreviating 

X X notations. We may try to use estimates r Ct,t') and f (t) of r(t,tJ) and n n 
f(t) for estimating p(t) by p CtD solution of : 

L r x(t,f) P X(f) dt' = 4>xCt) a.e. JJ n n n 
There are difficulties in doing so for the following reasons : 

1°) The existence of P(t) such that : 
a + L p(t) XCt) dt = Y v 

O | A 
R 2 2 is not requires the convergence of ^ f^ and this^'easy to verify. Tests this 

hypothese (i.e. convergence) are also difficult. 

2° ) Even when V* At f. converges : i l l 
a) the function of regression pCt) is not necessarily unique 
b) When a , p(t) are such that : 

o 
a + L p(t) XCt) dt = Y v o J T X 

If we consider a , P^Ct) such that : 

E ( Y - a - /_ p.(t) XCt) dt) is close to E|Y - a - /_ p(t)X(t)dt'J" 
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generally P^Ct] is not close to p(t) and this is a major difficulty for 
a statistical sutdy. 

v 2 2 xP-̂  3°) Even when V< ̂  ^ converges, p(t) is unique,^"good" con-
X X x sistent estimates r (t t') , ° (tj exist, the convergence of r (t t') and n n n 

u' (t) toward r(t t') and ^(t) does not have, as a consequence, the conver-n 
gence of Pn(t} to p(t). There is generally no such convergence. 

In a most favourable case when r(t t') is Known, the convergence of 
x x p (t) toward p(t) is not a consequence of the convergence of *p (t) to T(t). n n 
{Jj Tit t 1) P*lt') dt' = H>*(t)}. In this case,it is possible to handle the 
situation. Let f the coefficients of the development of an estimate nv ^ 
fX(t') e L o m D f f(t') with respect to the * (t f). When we have a mean n 2 v 

x 2 square convergence of f (t') to f(t'), we have (f - f ) — > 0 when ^ to n v nv v 
n-M-oo . The existence of p^ft') solution of the integral equation requires 

- 2 2 the convergence of ^ A f which is not a consequence of our hypotheses & v v nv ^ y^ 
and of the consistency of the estimate *f ft'), (for we have A +oo 

J n v 
when v —^ +co). Out it is possible to modify an estimate of f(t') for 
example the following : 

f X ( f ) = CY. - Y) {X. (f ) - XCt')}] (K = 1...n) 1 n n-1 L K K K 4 

with 
Y = (Y1 +...+ Yn)/n , XCt) = {X1(t) + ...+ Xn(t)}/n 

such that all the f = 0 for v > v (n) Cv being an increasing function 
nv o o 

of n). 
The mean square convergence over T of Pn(t) toward p(t) requires 
2 2 £ A (f - f ) — > • when n — * +oo, and it is possible to get this v v nv v 
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with such a modified estimate of ^{tf)s S \̂  f being assumed conyergent 
for the existence of p(t) B Therefore it is possible to handle the situa­
tion. But the caseof a random process X(t) pretty well Known is rare in 
practical applications. We Fee how much we have to be cautions for the 
estimation of p(t) even in most favourable cases. 

2.2 - Estimation of Y Y 

For all the reasons stated before, instead of estimating a regression 
function p(t), we are going to estimate the random variable Y^ defining 
the regression, whose existence and uniqueness does not require strong 
assumptions. In order to do this, we can use limit theorems given before : 
Y is the mean square limit of multiple regression Y of Y with respect 

A L 
to L random variables when L —>+oo. So we have, as soon as L > L (e), 

o 
E[Y - Y. j < e (e > 0 arbitrary small). We are going to estimate the 

A L 

approximation Y^, the advantage of this is that we have just a finite 
number of parameters to estimate. For example we shall use the limit theo­
rem 1.6. given before. The results are somewhat different when expecta­
tions of Y ard X(t) are known and when they are not known. We shall state 
results when they are unknown. Y^ is defined by the values of a Q 

CI = 1...L) such that : 
2 E [ Y - a - V ex. /- pn(t) X(t) dtl is minimum (1 = 1 . . . U L o 1 1 J J 1 J 

x x We consider mean square estimates of a a n , a a. such that : ^ o 1 o 1 

T F Yi ~ ao ~ al A* p l ( t ) X i t t J d t^ 2 

Ci = 1...n ; 1 - 1...L) 
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is minimum (n is the size of the sample, Y^ X^(t) are the observed rea­
lizations of Y and X(t)). 

Let X... = fT p.ft) X.Ct) dt. These estimates a x a x are solution of il ' T 1 i o 1 
the following system : 

°o * ^ "l' Il Xil / n> • ' f V i , / n 

(i = 1...n ; 1 = 1...L t m = 1,2..L) 
Let the vectorial space having for base p^(t)...p^(t). If there is no 
function p(t) c E^ such that p(t) XCt) dt = 1 almost surely, the 

X X X 
probability of the uniqueness for all n > N of a Q ... > 1 when 
N — j , +oo . Then : 

L 
Y L = ao + 1̂ 1 al ^T P l ( t ) X ( t ) d t 

almost surely tends to Y^ when n — > +co . 
We can study the tendancy of VrT L ^ a * - a^) p^CtD] (1 = 1...L) 

and \ZrT (a x - a ) toward gaussian multivariate law, but this does not have o o 
as a consequence the tendancy of \fr\ IV - Y^) toward gaussian law. 

3 - Choice of a limit theorem. 

After having reviewed previous publications on this topic we shall 
speak of further developments. In 1963, A„ Zinger asked me the following 
questions : wich limit theorem to choose and when we choose the theorem 
1.6., wich set of complete function p (t).. .p (t)... to use in a practical 
application. 
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First let us say just a few words about cases where the Knowledge we 
have or the hypotheses it is reasonable to assume on Y and XCt) in the 
field of applications we are considering leads naturally to a choice. 

1°) If we study fatigue of a part of an aircraft under random 
vibrating strength XCt), we can consider one or several random variables 
Y describing the state of the considered part at the end of the period T 
the plane is supposed to fly before this part is to be checKed or repla­
ced. The value of the random variable Y has to be still safe at that 
moment. We have to study the influence of XCt) during T on Y. It seems 
advisable in this case to get the highest resonance frequencies and to use 
the limit theorem VI, using the p^Ct) corresponding to these frequencies. 

2°) When we study the influence of a seasonal phenomenon XCt) 
defined for example on one year on Y Cthis happens in economics), when it 
seems reasonable to assume Y is not much affected by short periodical 
fluctuations of XCt), we may use the theorem 1.6. too with p^Ct) sinusoi­
dal functions with periods T, T/2, T/3. In many economical problems a 
major difficulty is to get a sample of n independant identically distri­
buted realizations. 

3°) When in another field, it seems reasonable to assume that 
XCt) is a function with independant increments, and that the influences 
of theses increments on Y are additive, it seems advisable to use limit 
theorem 1.4. and to consider the mean square linear regression of Y with 
respect to X(t^l..X(t ), or what is equivalent the regression of Y with 
respect to X(t^) and the independant increments XCt^) - XCt^).. .XCt^-XCt^ ) 
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1 ? n 
We shall now examine the case when there is no previous Knowledge 

leading to a choice. 

In every method we consider multiple regression requiring 
only the Knowledge of C parameters such that : 

2 
E(Y^ - Ŷ } < e te not too large) 

as soon as L > L (e), o 
Naturally it is not possible when we don't Know pretty well Y and 

X(t) to give the expression of L 0(e). 
What we can do is to checK or to test the hypotheses of E(Y - Y^)" 

2 

much smaller than EfY ). If this is the case, we have the following upper 
bound fdr the distance between Y and Y. because we have got 

X L 
E ( Y V - Y. ] 2 < E C Y - Y. ) 2 

X L L 

If we wish to improve the precision of our estimation we may try to 
use another Kind of Y^ say Y^t (or to use a non linear regression but we 
shall not discuss this point to day). It is possible in some cases not to 
have an improvement possible, (for example if Y = Y^ + U, U independant 
of X(t)). If we use Y^, instead of Y^ (for example by using another set 
of functions p^(t)), it is generally not advisable to increase the number 
of parameters (L* > L) the increased precisions of Y^f being matched by 
the decreasing of the quality of estimation of a larger number of parame­
ter when we can't have larger samples. 

(When we increase the number of parameters L such that L >_ n, we are 
in the situation when we can adjust perfectly Y to fit the data , but 
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this is not an indication of the quality of the estimation and we have no 
possibility to test the quality of the fitting). 

2 
The best it seems possible to do is to compare estimates ECY - Y^J 

for different possible Y^. 
Let us examine the case whora 

Y, = a + £ / a p ft) X(t) dt CI = 1,...,L-1) 
L o 1 ' T 1 1 

We shall use the following : 

Theorem 3.1. 
Under the hypotheses A the following identity holds for every a Q real 

p(t) * L2CT) : 
E[Y - a - L pCt) XCt) dt] 2 = E[Y - Y Y ] 2 + EfY -a -/T pCt)X(t)dt]2 

O J A A O I 

when we try to compare 
Y = a + 2 1 J a p.(t) XCt) dt (1 = L,...,L-r) 
L O 1 J T 1 1 

and 
Y.1 = a • £ /_ a, pj(t) XCt) dt (1 = 1,...,L'-1) 
L o 1 ; T l 1 

Cp^(t) being another set of functions). 
2 

We deduce from the preceding theorem that reducing ECY - Y^) 
increases the accuracy of the approximation Y of Y because from ; 

L A 

ECY - YJ,) 2 < ECY - Y L ) 2 

results : 
ECY^, - < E(Y L " Y X ) 2 

2 
Furthemore the increasing of the obtained accuracy (measured by ECY. -Y ) ) 

L A 

is equal to the decreasing of E C Y - Y^) (when Y^ is replaced by Y^,) 
E(Y L - Y x ) 2 - ECYJ, - Y x ) 2 = E C Y - Y^) 2 - E C Y - Y ^ r ) 2 
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(We have not the same situation about regression functions p(t), reducing 
E(Y " a

0 " /j P C"t3 X(t) dt) does not have as a consequence p(t) get nearer 
from the regression function p (t) such that a + L p (t) XCt) dt = Y.J * o o J i o X 
therefore it seems advisable to divise by random choice the sample of size 
n, X^(t)...X^tt) Y^.-.Y^ in two independent completary sets, the first 
being used for estimating parameters in one or a few reasonable Y^ requi­
ring only the estimation of quite a few number L of parameters. The other 

2 
part of the sample will be used to get estimates of ECY - Y^) and so to 
test the adequacy of what has been obtained by using Y^ and by the esti­
mation using the first subset. 

4 - Generalization. 

4.1. Introduction. 
I have been led to the following generalization from the following 

problem of strength of materials. Schematically we have p random variables 
Zj tj = 1...p) caracterizing the state of a material at the end of the 
fabrication process. W E consider the random strains XCt) during the given 
time T this material is to be used before being rep>aced or cheeked up. 
One or several random variable (s) Y caracterize the state of the material 
at the end of the period T. We consider the influence of the Z. and XCt) 

3 

(during T) on Y. We have no precise indication on the nature of the sto­
chastic process X(t). We have a finite number n of independent observations 
realized on Y , X(t) (over T) and the Z (Ŷ  X^t) Z ^ . . ^ Xp(t) Z ). 
(We meet the same kind of problem when we study the influence on the yield 
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of wheat Y not only of the rainfall XCt) but of others factors Z. too). 
J 

We shall define and study an optimum linear mean square regression 
of Y with respect to the 2 , XCt) (over T), this being done in order 

to study statistical estimation. 
4.2. Hypotheses B. 

XCt) is a measurable process defined over T,E[x Ct)] exists and is 
L-integrable over T, Y and the have second order moments. 

4.3. Notations : 
Let V^Ct) > ̂  "the orthogonal normed eigenfunctions and eigenvalues 

of cov[x(t) XCt')] , let f i and f ^ the coefficients of the development 
of cov[Y,X(t)J and cov[Zj,X(t}] with respect to the H^Ct). (It is possible 
to prove the existence of this development even when the (t) is not a 
complete system, the convergence of this development being mean sq? are 
convergence). Let the a° a solution of the system : 

£ a°[cov(Z. Z.J - A. f . . f ., . j = covCY Z.J - £ A. f. f . J J J J l l ji j'iJ j 1 l i l J'I 

(j = 1...p ; j' = 1...p) 
(there is always a solution, but it is possible to have more than one 
solution, this fact being connected with the linear dependence or inde­
pendence of X(t) over T and the Ẑ ) . 

Let A the determinant of the coefficient of the a°. in the preceding P J 
system and A ^ the determinant obtained by adding to A^ a last row and a 
last column whose elements are : 

6 A . = 6. = cov(Y Z J - 51A. f. f.. (j * 1...p) 
6 A = var Y - A. f? p+1,p+1 i l l 
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Let C° = A. f. - ^ L a 0 f 
i 1 1 J J Ji 

and 
Y M = ECY) + ^ a ° [ z . - ECZj] + Z C° /_ 4>.(t) [XCt) - E{X(t}}] dt 
M J J J J 1 1 1 ^ T 1 J 

CThe convergence of ̂  being m.s. convergence which is a consequence 
of the hypotheses B). 

4,4, mean square regression. 

Theorem 4.1. 
Under the hypotheses B, Y^ is unique, even when the ct̂  C° are not so. 

Theorem 4.2. 
Under the hypotheses B : 

1 ° ) Inf E [v - a - C a. Z. - L p(t) XCt) dt] 2 = ECY - Y J 2 

a a. reals J J J 
o J 

p(t) * 4 C T ) . 

2°) If and only if the series E A 2 f 2 and ^ A 2 f 2 (j = 1...p) converge, 
* 1 1 1 1 ji 

there exist a a. and pCt) £ L0(T) such that : 0 J 2 
ECY - a - E a. Z. - /_ p(t) XCt) dt) 2 « ECY - Y M ) 2 

o J J T M 
and for these a , a. , p(t) : o J 

a + E a, Z. + J T p(t) XCt) dt = Y M o J J T M 
Theorem 4.3. 

Under the hypotheses B, we have : 
E [Y - a - & a. Z. - J T p(t) XCt) dt] 2 = 

= varCY - Y M ) + E [Ym - a « E a, Z, - fT pCt) XCt) dt] 2 

rl L r l O J J T 

V a , a. reals and pCt) * L 0Ct). 0 J 1 
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This theorem is fundamental for application of a method analogous to the 
end of section 3. 

Theorem 4,4. 
If we assume hypotheses B and if A 1 0, 

P 
E(Y - YJ2 = A , / A . 

M p+1 p 
Theorem 4.5, 

Under the hypotheses B, we have : 
E(y) = E(YM) ; cov(Y Y^) = var Y^ 

cov{(Y - Y M) X(t)} = 0 a.e. cov{(Y - Y^) Z } = 0 V j. 

Theorem 4.6. 
Let : C = sup corral, coeff. \Y , a + E a. Z. + L p(t) X(t) dtl 

o J J ' T J 

for a a. reals p(t) e L ?(T). Under the hypotheses B, we have : o j ^ 
1°) C = (var Y^ / var Y ) 1 / 2 

2°) varCY - Y^) = (1 - C 2 ) var Y. 

4.5. Some indications on statistical inference 
The preceding properties of Y^ have been stated in order to make 

statistical inference. The knowledge of Y^ requires the knowledge of an 
infinite number of parameters. When eigenfunctions of cov[x(t) X(tr)] are 
known, it is possible to study estimation prq.blcmof a regression function 
generalizing what has been studied at the beginning of section 2. When 
they are unknown, it is possible to prove limite theorems generalizing 
theorems 1.4., 1.5., 1.6., and to study limit theorems about mean square 
estimation of an approximation Y^ of Y^ whsn the size n of the sample 
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tends to infinity along the same lines as in section 2. 
When we don't Know much about the stochastic process and when the 

size N of the sample is given we have the same kind of problem as in sec­
tion 3. For example we may, from a random subsample of size , decide 
which of the Z. and which of the functions p.(t) seems to have the most 

3 

significant influence on Y and to use the other results (subsample of size 
N - N^) in order to test the adequacy of what has been got. 

In many applications p^ft) will be either trigonometric functions of 
period T/i (fatigue problems for example). In other application an expo­
nential increasing function p(t) can be used and we have to make an opti­
mum choice of the number L of parameters fend of the Zj to use) in the 
approximation Y^ of Y^. Clearly when L is too large we can have Y^ close 
to YJVJ b l Jt Y L

 e s'* : ;i m a^ e °f Y|_ * s bad (the size N of the sample is not too 
large). On the opposit when L is too small we can get good estimate Y^ of 

x 
Y^ but Y L is hot.close to Y^ estimate Y^ of Y^. 

We can proceed along the same lines as in section 3 in order to get 
and to test the adequacy of the estimate Y of Y . 
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