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ON THE GENERAL STOCHASTIC EPIDEMIC 

J. Gani, Michigan State University and the University of Sheffield 

I, Introduction 

The purpose of this paper is to survey some recent results obtained 

in the solution of the model for the general stochastic epidemic, which was 

originally proposed by Bartlett (19^9)* Various aspects of the general epide

mic, particularly in the stationary state, have previously been considered in 

detail by Bailey (1953, 1 9 5 7 ) , Whittle ( 1 9 5 5 ) , Foster (1955) and Kendall 

(1956) , among others. Around October I96U, Siskind at University College, 

London, and I at Michigan State University , Lansing, independently arrived 

at explicit time-dependent solutions for this model ; our complementary re

sults, which differ in various details, have appeared in Biometrika(l965; 

Vol. 52 , Parts 3 and k). What I shall attempt to outline here is an improved 

method of solution for the general stochastic epidemic ; this is, I believe, 

simpler than any so far proposed, and provides greater insight into the struc

ture of the model. The same approach can also be used to attack recurrent 

epidemic processes for which a solution has been sketched (cf. Gani, 1965^)» 

The stochastic epidemic model considered is that for which 

at time t >_ 0, there are in circulation in a closed population of size 

n + a (n,a j> I ) 9 

0 < r < n uninfected susceptibles, 

O j £ s £ n + a - r infectives, 

the remaining n + a - r - s_>0 individuals having been removed through 

immunity or death. At time t = 0, the population is known to consist of 

n susceptibles and a infectives. 
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Let the probabilities of possible transitions in the interval 

(t, t + 6 t) be 

Pr { r, s > r - ï , s + H s r s î t + 0 (6 t), 

Pr { r, s > r , s - 1 }=/s a + o (a), 

where for convenience the usual infection parameter g is set equal to 4 

andf denotes the (relative) removal parameter. The process { r, s } is 

Markovian and the transition probabilities of r susceptibles and s infectives 

at time t >_ 0, 

P (t) = Pr { r, s at time t | n, a at time 0 } 
r s 

satisfy the equations 

(i.D 

d prs 
— = ( r + î ) ( s ~ f ) P r +Î, s-î -

 s ir+r] P rs
 + / ( s + 1 ) P r, 8 + 1 at ' 

(0 < s < n + a - r ; 0 < r < n ) 5 

where the p.. = 0 if i or j are outside their appropriate ranges. 

The initial condition is p (0) = 1 . 
•*na 

It is well - known that the associated probability generating function 

(p.g.f.) 
( 1 . 2 ) 

TT f ± \ v / a- \ S ( I Z 1 , IWI < Î ) 
ÏÏ z,v,t = I p (t) z w — 

r,s ^rs 

satisfies the partial differential equation 

( 1 . 3 ) 

3 II = w (w-z) 3 2n + o(i-w) 3 n 
9 t 3z3w Tv 

/ \ r a 
with the initial condition IT (z tw f0) = z A w . 
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The essence of both Siskind's and my own methods of solution 

consists of noting that if we vrite 

(I.h) 
n r 

H (zf w, t) = r| 0 z f r (w, t) 

n+a-r s where f (wf t) = Z w p (t), then the order of the partial r s =o r s 

differential equation (1.3) may be reduced to the first. Substituting 

(i.h) in (1.3) and equating coefficients of zT on right and left hand 

sides, we obtain 
( 1 . 5 ) 

d fr = w 2 (r + 1 ) 9 f^+T . ( ( r + f) w - f ) 8 f r 

9 t 3 w 9 w 
(r = 0, 4 , , . . , n - l ) . 

At this stage Siskind proceeds by direct recursive integration of 

the f̂  (w, t ) 0 My own approach makes use of Laplace transforms 

( 1 . 6 ) 
— st 

F (w, s) = e f (w, t) dt 
r J r 

0 

( Re (s) > 0 ) 

to reduce the equations (1.5) to 
( 1 . 7 ) 

sF n (v,s) - w a = - ( (n + f) v -p) 3 F n , 
3 w 

sF r (w,s) = w 2 (r + 1) 3 F ^ - ( (r + j>) v - f) 3 F. 
3 w 3 W 

( r = 0 , . . . , n - l), 
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for which recursive solutions are also found. I think it could "be fairly said 

of "both methods that they involve a good deal of untidy algebra ; the follo

wing approach may simplify the solution while at the same time clarifying the 

structure of the process, 

2 . The solution in matrix form 

Let us write ( 1 . 7 ) in the matrix form 

( 2 . 1 ) 

A (w) jM? + s F = ^ E 

3 w 

where F (w,s) and E are column vectors whose transposes are Ff (w,s) = 

{ F (w,s),..., F (w,s) }, E f = { l t 0, 0 }, and 
n 0 

Xri+f) W - f 
2 

- n w (n-I+f>) w - J> 

(2 .2) A (w) = - (n-1) w 2 (n-2+f) w -f 

... ... ... 
- 2 w 2 (o.+y3) v - f> 

- w 2 fv-f> 

Then, we may write Taylor's theorem for F(w,s) in the form 
(2 .3) 

F (v,s) = F (0,s) + wF ( 1 ) ( 0,s) + w 2F ( 2 ) (0,s) + ... + w n + a F ( n + a \ n „* 
2 ' (n+a)l 

where, since the highest degree (of the polynomial F^ (w,s) ) in w is 
n + a , the series must terminate with the term involving the (n+a) - th 

derivative of F (w,s) at w * 0, namely F^ n + C^ (0,s). 
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From (2.1) it is possible to express all higher derivatives in terms 

of F (0,s). For, it is seen directly that 
(1) 

A (0) F ( 0,s) = _ s F ( 0 js) 

or from (2.2), since A (0) = -fl 

(2.10 

F ( l ) (0,s) = _s p ( 0 j S ) > 

Differentiating (2.1) with respect to w, we obtain 

(2.5) 
(1) (̂  (2) 

{ A u ' (w) + si } F (w,s) + A (w) F (w,s) = aw a E 
( a > 1), 

whence setting w = 0, 

(2.6) 

f ( 2 ) ( 0 , s ) = 1 { A ( 1 ) (0) + si} F ( l ) (0,s) - a ! 6 E 

• ' f (1) , x I a 

with 6^ as the Kronecker delta, and A (0) the diagonal matrix 

n + f 

n - 5 + j> 

A ( 1 )(0) = . . . 

The next derivative ca,n be found from (2.5) as 

A ( 2 )(w) F ( 1 )(w,s) + { 2A ( 1 )(v) + si } F ( 2 )(w,s) + A (w) F ( 3 )( w,s) = a(a-l)wa~2E 

or, setting w = 0 

(2.T) 

F ( 3 )(0,s) =_t { 2A ( 1 )(0) + si } F ( 2 )(0,s) + A ( 2 )(0)F W )(0,s) - a! 6 g E , 
f [ N 

A ( 2 )(0) = - & 0 

i n O 

* • • 

1 . O 
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We may show in general that the following (2n + 2) -rowed vectors 

satisfy the equations 

< 2 ; 8 ' I f ' f 1 
F ( 1 + 1 , ( 0 , s ! < ( i A W ) ( 0 ) * si } jd.p A < 2 > ( 0 ) F(i) { E 

F ( i> (o,.)" I 2 / o F' 1"" / " . 

( i = 0, 1, ... ), 

where F^~"^s 0, F ^ = F (0,s). This may "be simplified by rewri

ting the vectors in the form 

(2.9) 

(i + 1 ) ( i\ 

(0,s) = B^ j - a 1 6-aE ( i = 0, 1,... ) 

where E is now a (2n + 2) X 4 column vector. 

It follows that for a 21 1» we can write 
(2.10) 

i-l (0) 
f = { n B.}f ( i - l a ), 

(i) i-l (0) i-l 
f = { n B } ̂> - a ! { H B } E 

j=0 o j=a+l j 

( i = a+1, ..., n+a+1), 
a . i-I 

where n B is defined as I, and the products JI B. ~ B ... B and 
j=a+I j 0 = o J i-l 0, 

i-l . . . 
IT B = B ... B must be carried out in the particular order indica-j=a+l j i.i a + 1 

ted. 

Thus, since 

(2.II) r f . 

i=o ii T i =o TT F(i-i) p ( v > e ) d y 

lo 
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we obtain that 

(2.12) 

F (w,s) n+a+î i i-í / 0 N n+a+î i i-î 

= Z { ÏÏ 3 }fK) Z w ai { n B } E j 

£ WF (v,s) civ i=0 i! j=0 j i=a+l J\ p j=a+l j 

k-í /Q\ F (0 S) 
where, as above, II B is defined as I. The unknown = ' may 

J= k j 0 

be found by equating the first n + î rows of (2.12) to zeio since these are 
n+a+1 

coefficients of w } which is a degree higher than that of any of the po

lynomials in F (w,s). 

We see that this gives 

n+a F (0,s) n+a 0 

j = =° á . 0 J f ô=a+îj F ( n + a )(0,s) 

so that 

( 2 . 1 3 ) 

F (O.B) = { n r B } -1

 {

nr B } ; 
j=0 0 n+í ^ j=a+î j n + i 

where . indicates the truncated (n+î) X (n+î) matrix of 
c -n+î 

the first n+î rows and columns. It is clear that 

{ n B } 
j=0 j n + î 

(1) (2) 

is non - singular, since from the structure of A (0) 9 A (o) this pro

duct is seen to be a triangular matrix with non - zero eigenvalues for 

Re (s) > 0. 
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3. An illustration of the method : the 2-person family 

Let a = n = 1 ; then 

(3.1) <| . 
( 1 ) * + / 0 , * 0 0 

A ^ ' ( 0 ) = , A ( 2 j ( 0 ) = 
O P -2 0 

The matrices are readily seen to be 

(3.2) 

B = s 0 0 0 i B-= It/^s 0 0 0 , B = 2 (!+/>)+s 0 0 0 0 ._ 1 -j— 2 J 
0 _s 0 0 0 p +s 0 0 0 2/>+s -2 0 

1 0 0 0 1 0 0 0 1 0 0 0 

0 1 0 0 0 - 1 0 0 0 l o o 

and the required products B^B Q and B^B^BQ are therefore 

(3.3) 

BJBQ = s (!+/>+s) 0 0 0 , B^BJBQ = s(l+p+s) (2+2p+s) 0 0 0 . 

0 M£+s) 0 0 _ 2 s s(p+3)(gp+s)o o 
^ 2 w — 7 3 — 

1 0 0 0 s(l+/>+s) 0 0 0 

0 B 0 0 0 s(p+s) n , 
l 7 I — 0 0 

Following the theory outlined in the previous section exactly, 

we find that 
(3.10 

F (0,b) - B ^ j B ^ ± B E 

l ) [f f 

^ s(>>+s) (2P+B) 0 2(*+j^+ s 
U+f+s) (2+^+s) (>+s) (2/-*$) 0 f3 f 2 

2s s(j+f+s) (2+2>*s) 0 

?2 ?z J I 
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F (Ofs) = f 
s(l+/+s) 

2 P

a 

s (p+s) (2f+s) (1+p+s ) 

The full solution to the 2-person epidemic may then be obtained 

by taking only the appropriate parts of the upper left ( 2 X 2 ) matrix in 

{ I + wB_ + w 2 B,rBA , (0) , _ . _ . t* + A * • . • 0 -gj 1 0 } 9 and for simplicity (instead of carrying out in 

detail the algebra involved in the right hand part of Equation ( 2 . 1 2 ) ) dele

ting any terms in powers of w which are known not to appear in any F (w,s). 

Hence we find that . 

F (w,s) 1+ ws 0 fi 
j3 s(i+j^s) 

0 4 + ws + w2s(/o+s) 2 p 2 

f 2! ^ s(p+s)(2p+s)(l+p+s) 

This method has been successfully applied to higher values of n 

and a by J. Moreno of Michigan State University, 

U« Total size of the epidemic 

One of the advantages of the previous analysis of the epidemic 

process is the simplicity of the resulting formulae for the distribution 

of the total size of the epidemic. These have already been discussed in 

several different (algebraically complex) ways by Bailey ( 1953 ) , Whittle 

( 1 9 5 5 ) , Foster (1955) and Siskind (1965) . 

Consider the probabilities { P } of an epidemic of total size 
n-r 

n-r5 not counting the initial cases ; Q <• r _< n will then be the number 
of susceptibles remaining after the epidemic is over. It is clear that 

( ^ . 1 ) P = lim p n (t) n-r . ^r0 t —> 0 0 

= lim sF (O.s). 
r 

s 0 
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In matrix terms 

(U.2) 
1 i* ^ 

P = P,., = lim s F (0,s) = lim sF (0,s). 
0 s->0 n s - » 0 

• • 

Pn F 0 ( ° ' S ) 

We have seen in (2.13) that 

(U.3) 

{ n ^ W r F (°.s) - i l B.> „ E 

and since 

I 0 

we may write (U.3) as 

fn+a , n+a 
l.n B > sF (0,s) = a ! { . n B } . g j=l j n+I j=a+l j n+t 

It is readily found "by taking limits as s -^0 that this leads to 

(h.5) 

n+a r 
{ fil i A ( l ) ( 0 ) j(j-l) A ( 2 )(0) } lim sF(0,s) = 

I b 

i A ( I )(0) j(j-l)A<2)(0)| 

J I i + 1 i o n + I 

from which the vector P of probabilities of total epidemic size 

can be expressed as 
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(U.6) ' m ) -4 

p _ . , n+a ¿ A (o) A (
2 ) ( o ) } 

í i1) (2) 1 
n+a ¿ A (0) j(j-i) A ( 2 ) ( 0 ) 

i n p 2o } E . 

This result involves only a set of direct matrix operations. 

It is clear, as it was earlier at the end of Section 2, that 

r

n t a L l a ( 1 ; ( 0 ) j(j-l)A ( 2 ) (0) , 
1 jh f 2 d } 

I 0 n+1 

is non-singular, since this product results in a triangular matrix with 

non-zero eigenvalues. 

In the case of the 2-person epidemic, for example, we readily 

obtain from (k.6) the known result (cf. Bailey, 1957) 

r - r w 

P • 2 (!+/>) 0 0 0 1 (!+/>) 0 0 0 ] ~ 1 2 ( 1 + p) 

J 0 2 -2 0 0 1 0 0 I 0 

\ f Í 
1 0 0 0 1 0 0 0 / 

0 1 0 0 0 1 0 0 \ 

r 1 1 f ] ' 

2 (l+/>)2 0 - 1 2 (1+ / ) = 0 2 (1+/ ) 
/ / 2 ( 1 + / ) ^ / 

-2 2 0 f 1 0 
/ 2 ( 1 + / ) * 2 J L 

I+f 

_ 1 
1 + / 
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The simplicity of the equation (U.6) for P, provides a straight 

forward method for the numerical evaluation of probabilities of total 

epidemic size for large n and a, given any suitable numerical values ©f p . 
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