Differential forms on log canonical spaces
Publications Mathématiques de l'IHÉS, Tome 114 (2011), pp. 87-169.

The present paper is concerned with differential forms on log canonical varieties. It is shown that any p-form defined on the smooth locus of a variety with canonical or klt singularities extends regularly to any resolution of singularities. In fact, a much more general theorem for log canonical pairs is established. The proof relies on vanishing theorems for log canonical varieties and on methods of the minimal model program. In addition, a theory of differential forms on dlt pairs is developed. It is shown that many of the fundamental theorems and techniques known for sheaves of logarithmic differentials on smooth varieties also hold in the dlt setting.

Immediate applications include the existence of a pull-back map for reflexive differentials, generalisations of Bogomolov-Sommese type vanishing results, and a positive answer to the Lipman-Zariski conjecture for klt spaces.

DOI : https://doi.org/10.1007/s10240-011-0036-0
PUBLISHER-ID : s10240-011-0036-0
@article{PMIHES_2011__114__87_0,
     author = {Greb, Daniel and Kebekus, Stefan and Kov\'acs, S\'andor J and Peternell, Thomas},
     title = {Differential forms on log canonical spaces},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {87--169},
     publisher = {Springer-Verlag},
     volume = {114},
     year = {2011},
     doi = {10.1007/s10240-011-0036-0},
     zbl = {1258.14021},
     language = {en},
     url = {http://www.numdam.org/articles/10.1007/s10240-011-0036-0/}
}
TY  - JOUR
AU  - Greb, Daniel
AU  - Kebekus, Stefan
AU  - Kovács, Sándor J
AU  - Peternell, Thomas
TI  - Differential forms on log canonical spaces
JO  - Publications Mathématiques de l'IHÉS
PY  - 2011
DA  - 2011///
SP  - 87
EP  - 169
VL  - 114
PB  - Springer-Verlag
UR  - http://www.numdam.org/articles/10.1007/s10240-011-0036-0/
UR  - https://zbmath.org/?q=an%3A1258.14021
UR  - https://doi.org/10.1007/s10240-011-0036-0
DO  - 10.1007/s10240-011-0036-0
LA  - en
ID  - PMIHES_2011__114__87_0
ER  - 
Greb, Daniel; Kebekus, Stefan; Kovács, Sándor J; Peternell, Thomas. Differential forms on log canonical spaces. Publications Mathématiques de l'IHÉS, Tome 114 (2011), pp. 87-169. doi : 10.1007/s10240-011-0036-0. http://www.numdam.org/articles/10.1007/s10240-011-0036-0/

[Bar78] Barlet, D. Le faisceau ω X · sur un espace analytique X de dimension pure, Fonctions de plusieurs variables complexes III (Sém. François Norguet, 1975–1977) (Lecture Notes in Math.) (1978), pp. 187-204 | Article | MR 0521919 | Zbl 0398.32009

[BS95] Beltrametti, M. C.; Sommese, A. J. The Adjunction Theory of Complex Projective Varieties, de Gruyter Expositions in Mathematics, de Gruyter, Berlin, 1995 ( 96f:14004 ) | Zbl 0845.14003

[BCHM10] Birkar, C.; Cascini, P.; Hacon, C. D.; McKernan, J. Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010), pp. 405-468 | Article | MR 2601039 | Zbl 1210.14019

[Cam04] Campana, F. Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble), Volume 54 (2004), pp. 499-630 | Article | MR 2097416 | Zbl 1062.14014

[Car85] Carlson, J. A. Polyhedral resolutions of algebraic varieties, Trans. Am. Math. Soc., Volume 292 (1985), pp. 595-612 | Article | MR 808740 | Zbl 0602.14012

[{Cor}07] Corti, A. et al. Flips for 3-Folds and 4-Folds, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, Oxford, 2007 | Article | MR 2352762 | Zbl 05175029

[Del70] Deligne, P. Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Springer, Berlin, 1970 ( 54 #5232 ) | Zbl 0244.14004

[DB81] Du Bois, P. Complexe de de Rham filtré d’une variété singulière, Bull. Soc. Math. Fr., Volume 109 (1981), pp. 41-81 | MR 613848 | Zbl 0465.14009

[DBJ74] Du Bois, P.; Jarraud, P. Une propriété de commutation au changement de base des images directes supérieures du faisceau structural, C. R. Acad. Sci. Paris Sér. A, Volume 279 (1974), pp. 745-747 | MR 376678 | Zbl 0302.14004

[dJS04] Jong, A. J.; Starr, J. Cubic fourfolds and spaces of rational curves, Ill. J. Math., Volume 48 (2004), pp. 415-450 | MR 2085418 | Zbl 1081.14007

[EV82] Esnault, H.; Viehweg, E. Revêtements cycliques, Algebraic threefolds (Lecture Notes in Mathematics) (1982), pp. 241-250 | Article | MR 0672621 | Zbl 0493.14012

[EV90] Esnault, H.; Viehweg, E. Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Compos. Math., Volume 76 (1990), pp. 69-85 Algebraic geometry (Berlin, 1988). | MR 1078858 | Zbl 0742.14020

[EV92] Esnault, H.; Viehweg, E. Lectures on Vanishing Theorems, DMV Seminar, Birkhäuser, Basel, 1992 | Article | MR 1193913 | Zbl 0779.14003

[FGI+05] Fantechi, B.; Göttsche, L.; Illusie, L.; Kleiman, S. L.; Nitsure, N.; Vistoli, A. Fundamental Algebraic Geometry, Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2005 (Grothendieck’s FGA explained.) | MR 2222646 | Zbl 1085.14001

[Fle88] Flenner, H. Extendability of differential forms on nonisolated singularities, Invent. Math., Volume 94 (1988), pp. 317-326 | Article | MR 958835 | Zbl 0658.14009

[Fog69] Fogarty, J. Invariant Theory, W. A. Benjamin, Inc., New York, 1969 | MR 0240104 | Zbl 0191.51701

[God73] Godement, R. Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1973 (Troisième édition revue et corrigée, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII, Actualités Scientifiques et Industrielles, No. 1252.) | MR 0345092 | Zbl 0275.55010

[Gra72] Grauert, H. Über die Deformation isolierter Singularitäten analytischer Mengen, Invent. Math., Volume 15 (1972), pp. 171-198 | Article | MR 293127 | Zbl 0237.32011

[GR70] Grauert, H.; Riemenschneider, O. Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math., Volume 11 (1970), pp. 263-292 | Article | MR 302938 | Zbl 0202.07602

[GKK10] Greb, D.; Kebekus, S.; Kovács, S. J. Extension theorems for differential forms, and Bogomolov-Sommese vanishing on log canonical varieties, Compos. Math., Volume 146 (2010), pp. 193-219 | Article | MR 2581247 | Zbl 1194.14056

[GKKP10] D. Greb, S. Kebekus, S. J. Kovács, and T. Peternell, Differential forms on log canonical varieties, Extended version of the present paper, including more detailed proofs and color figures. arXiv:1003.2913, March 2010.

[GLS07] Greuel, G.-M.; Lossen, C.; Shustin, E. Introduction to Singularities and Deformations, Springer Monographs in Mathematics, Springer, Berlin, 2007 | MR 2290112 | Zbl 1125.32013

[Gre80] Greuel, G.-M. Dualität in der lokalen Kohomologie isolierter Singularitäten, Math. Ann., Volume 250 (1980), pp. 157-173 | MR 582515 | Zbl 0417.14003

[Gro60] Grothendieck, A. Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math., Volume 4 (1960), p. 228 | Article | Numdam | MR 0217083 | Zbl 0118.36206

[Gro71] Grothendieck, A. Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, Springer, Berlin, 1971 Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. | MR 0354651 | Zbl 0234.14002

[GNPP88] Guillén, F.; Navarro Aznar, V.; Pascual Gainza, P.; Puerta, F. Hyperrésolutions cubiques et descente cohomologique, Lecture Notes in Mathematics, Springer, Berlin, 1988 (Papers from the Seminar on Hodge-Deligne Theory held in Barcelona, 1982.) | MR 972983 | Zbl 0638.00011

[HK10] Hacon, C. D.; Kovács, S. J. Classification of Higher Dimensional Algebraic Varieties, Oberwolfach Seminars, Birkhäuser, Boston, 2010 | Article | Zbl 1204.14001

[HM07] Hacon, C. D.; McKernan, J. On Shokurov’s rational connectedness conjecture, Duke Math. J., Volume 138 (2007), pp. 119-136 | Article | MR 2309156 | Zbl 1128.14028

[Har77] Hartshorne, R. Algebraic Geometry, Graduate Texts in Mathematics, Springer, New York, 1977 | MR 0463157 | Zbl 0367.14001

[HM89] Hauser, H.; Müller, G. The trivial locus of an analytic map germ, Ann. Inst. Fourier (Grenoble), Volume 39 (1989), pp. 831-844 | Article | MR 1036334 | Zbl 0678.32013

[Hei91] Heinzner, P. Geometric invariant theory on Stein spaces, Math. Ann., Volume 289 (1991), pp. 631-662 | Article | MR 1103041 | Zbl 0728.32010

[Hir62] Hironaka, H. On resolution of singularities (characteristic zero), Proc. Int. Cong. Math. (1962), pp. 507-521 | Zbl 0122.38602

[Hoc75] Hochster, M. The Zariski-Lipman conjecture for homogeneous complete intersections, Proc. Am. Math. Soc., Volume 49 (1975), pp. 261-262 | MR 360585 | Zbl 0311.13007

[Hol61] Holmann, H. Quotienten komplexer Räume, Math. Ann., Volume 142 (1960/1961), pp. 407-440 | Article | MR 120665 | Zbl 0097.28602

[HL97] Huybrechts, D.; Lehn, M. The Geometry of Moduli Spaces of Sheaves, Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997 | MR 1450870 | Zbl 0872.14002

[JK09a] K. Jabbusch and S. Kebekus, Families over special base manifolds and a conjecture of Campana, Math. Z., to appear. doi:10.1007/s00209-010-0758-6, arXiv:0905.1746, May 2009. | Zbl 1238.14024

[JK09b] K. Jabbusch and S. Kebekus, Positive sheaves of differentials on coarse moduli spaces, Ann. Inst. Fourier (Grenoble), to appear. arXiv:0904.2445, April 2009. | Numdam | Zbl 1253.14009

[Kaw88] Kawamata, Y. Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. Math., Volume 127 (1988), pp. 93-163 | Article | MR 924674 | Zbl 0651.14005

[KK07] S. Kebekus and S. J. Kovács, The structure of surfaces mapping to the moduli stack of canonically polarized varieties, preprint (July 2007). arXiv:0707.2054.

[KK08] Kebekus, S.; Kovács, S. J. Families of canonically polarized varieties over surfaces, Invent. Math., Volume 172 (2008), pp. 657-682 | Article | MR 2393082 | Zbl 1140.14031

[KK10a] Kebekus, S.; Kovács, S. J. The structure of surfaces and threefolds mapping to the moduli stack of canonically polarized varieties, Duke Math. J., Volume 155 (2010), pp. 1-33 (arXiv:0812.2305) | Article | MR 2730371 | Zbl 1208.14027

[Kol] J. Kollár, Algebraic groups acting on schemes, Undated, unfinished manuscript. Available on the author’s website at www.math.princeton.edu/~kollar.

[Kol96] Kollár, J. Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics, Springer, Berlin, 1996 | MR 1440180 | Zbl 0877.14012

[Kol07] Kollár, J. Lectures on Resolution of Singularities, Annals of Mathematics Studies, Princeton University Press, Princeton, 2007 | MR 2289519 | Zbl 1113.14013

[KK10b] Kollár, J.; Kovács, S. J. Log canonical singularities are Du Bois, J. Am. Math. Soc., Volume 23 (2010), pp. 791-813 | Article | Zbl 1202.14003

[KM98] Kollár, J.; Mori, S. Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1998 (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. 2000b:14018 ) | Article | Zbl 0926.14003

[{Kol}92] Kollár, J. et al. Flips and Abundance for Algebraic Threefolds, Astérisque, 211, Société Mathématique de France, Paris, 1992 Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991 (1992). | Numdam | MR 1225842 | Zbl 0782.00075

[KS09] Kovács, S. J.; Schwede, K. Hodge theory meets the minimal model program: a survey of log canonical and Du Bois singularities, Topology of Stratified (2001), pp. 51-94

[Lau73] Laufer, H. B. Taut two-dimensional singularities, Math. Ann., Volume 205 (1973), pp. 131-164 | Article | MR 333238 | Zbl 0281.32010

[Lip65] Lipman, J. Free derivation modules on algebraic varieties, Am. J. Math., Volume 87 (1965), pp. 874-898 | Article | MR 186672 | Zbl 0146.17301

[Loj64] Lojasiewicz, S. Triangulation of semi-analytic sets, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (1964), pp. 449-474 | MR 173265 | Zbl 0128.17101

[ML95] Mac Lane, S. Homology, Classics in Mathematics, Springer, Berlin, 1995 (Reprint of the 1975 edition.) | MR 1344215 | Zbl 0818.18001

[{Mas}1899] Maschke, H. Beweis des Satzes, dass diejenigen endlichen linearen Substitutionsgruppen, in welchen einige durchgehends verschwindende Coefficienten auftreten, intransitiv sind, Math. Ann., Volume 52 (1899), pp. 363-368 | Article | JFM 30.0131.01 | MR 1511061

[Nam01] Namikawa, Y. Extension of 2-forms and symplectic varieties, J. Reine Angew. Math., Volume 539 (2001), pp. 123-147 | Article | MR 1863856 | Zbl 0996.53050

[OSS80] Okonek, C.; Schneider, M.; Spindler, H. Vector Bundles on Complex Projective Spaces, Progress in Mathematics, Birkhäuser, Boston, 1980 | Article | MR 561910 | Zbl 0438.32016

[PS08] Peters, C. A. M.; Steenbrink, J. H. M. Mixed Hodge Structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer, Berlin, 2008 | MR 2393625 | Zbl 1138.14002

[Pri67] Prill, D. Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J., Volume 34 (1967), pp. 375-386 | Article | MR 210944 | Zbl 0179.12301

[Rei80] Reid, M. Canonical 3-folds, Algebraic Geometry (1980) | Zbl 0451.14014

[Rei87] Reid, M. Young person’s guide to canonical singularities, Algebraic Geometry, Bowdoin, 1985 (Proc. Sympos. Pure Math.) (1987), pp. 345-414 | MR 927963 | Zbl 0634.14003

[SS72] Scheja, G.; Storch, U. Differentielle Eigenschaften der Lokalisierungen analytischer Algebren, Math. Ann., Volume 197 (1972), pp. 137-170 | Article | MR 306172 | Zbl 0223.14002

[Sei50] Seidenberg, A. The hyperplane sections of normal varieties, Trans. Am. Math. Soc., Volume 69 (1950), pp. 357-386 | MR 37548 | Zbl 0040.23501

[Sha94] Shafarevich, I. R. Basic Algebraic Geometry. 1, Springer, Berlin, 1994 (Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid.) | Article | MR 1328833 | Zbl 0797.14001

[SvS85] Steenbrink, J.; Straten, D. Extendability of holomorphic differential forms near isolated hypersurface singularities, Abh. Math. Semin. Univ. Hamb., Volume 55 (1985), pp. 97-110 | Article | MR 831521 | Zbl 0584.32018

[Ste85] Steenbrink, J. H. M. Vanishing theorems on singular spaces, Astérisque, Volume 130 (1985), pp. 330-341 Differential systems and singularities (Luminy, 1983). | Numdam | MR 804061 | Zbl 0582.32039

[Sza94] Szabó, E. Divisorial log terminal singularities, J. Math. Sci. Univ. Tokyo, Volume 1 (1994), pp. 631-639 | MR 1322695 | Zbl 0835.14001

[Tei77] Teissier, B. The hunting of invariants in the geometry of discriminants, Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) (1977), pp. 565-678 | MR 0568901 | Zbl 0388.32010

[Ver76] Verdier, J.-L. Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math., Volume 36 (1976), pp. 295-312 | Article | MR 481096 | Zbl 0333.32010

[Vie10] Viehweg, E. Compactifications of smooth families and of moduli spaces of polarized manifolds, Ann. Math., Volume 172 (2010), pp. 809-910 (arXiv:math/0605093.) | Article | MR 2680483 | Zbl 1238.14009

[VZ02] Viehweg, E.; Zuo, K. Base spaces of non-isotrivial families of smooth minimal models, Complex Geometry (Göttingen, 2000) (2002), pp. 279-328 | Article | MR 1922109 | Zbl 1006.14004

[Wah85] Wahl, J. M. A characterization of quasihomogeneous Gorenstein surface singularities, Compos. Math., Volume 55 (1985), pp. 269-288 | MR 799816 | Zbl 0587.14024

Cité par Sources :