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VARIATIONAL PROBLEMS
FOR RIEMANNIAN FUNCTIONALS

AND ARITHMETIC GROUPS
by ALEXANDER NABUTOVSKY and SHMUEL WEINBERGER

In this paper we introduce a new approach to variational problems on the space
RiemfM^ of Riemannian structures (i.e. isometry classes of Riemannan metrics) on
any fixed compact manifold M1 of dimension n ^ 5. This approach often enables
one to replace the considered variational problem on RiemfW) (or on some subset of
Riem^W)} by the same problem but on spaces Riem{W) for every manifold N72 from a
class of compact manifolds of the same dimension and with the same homology as
M72 but with the following two useful properties: (1) If v is any Riemannian structure
on any manifold N" from this class such that Ric^n^^ ^ -(n- 1), then the volume of
(N\ v) is greater than one; and (2) Manifolds from this class do not admit Riemannian
metrics of non-negative scalar curvature. The first property is obviously helpful when
one knows how to prove uniform diameter and curvature bounds for a minimizing
sequence but wants to ensure that this sequence does not collapse to a metric space
of lower dimension. The second property seems likely to be useful when one studies a
variational problem on the space of Riemannian structures of constant scalar curvature
(compare [An I], [An 2], [Sch]).

As a first application we prove a theorem which can be informally explained as
follows: let M be any compact connected smooth manifold of dimension greater than
four, Met(M) be the space of isometry classes of compact metric spaces homeomorphic
to M endowed with the Gromov-Hausdorff topology, Riem^(M) C Met(M) be the space
of Riemannian structures on M such that the absolute values of sectional curvature do
not exceed one, and Ri(M) denote the closure of Riem^(M) in M^(M). Then diameter
regarded as a functional on Ri(M) has infinitely many "very deep55 local minima.
Moreover, the set of its values at these local minima is unbounded. We also give an
exponentially growing lower bound for the distribution function of these deep local
minima.

These results are motivated by the Problem 1 in S.T. Yau's list of problems
in differential geometry ([Y]) which asks for a way to define canonical Riemannian
metrics on all compact manifolds (of a fixed dimension). According to [Be] this problem
was posed by R. Thorn in 1958. A detailed discussion of this problem can be found
in [Br]. A natural approach is to define canonical metrics as solutions of a natural
variational problem on Riem(M). However, if the variational problem has a solution
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for any compact manifold M (of a fixed dimension ^ 5), then a very significant non-
uniqueness for any such M apparently cannot be avoided (see Remark 1 after the text
of Theorem B for more details and Theorem 3 in [Nl] for the precise statement).
What our theorem does is give a natural variational problem where critical points do
exist for arbitrary manifolds. The type of nonuniqueness that arises here seems to be
quite general, as the reader will see.

To prove these results about local minima we first analyse the geometry
of sublevel sets of diameter regarded as a functional on Ri(M). In particular,
we demonstrate that for all sufficiently large x the sublevel sets of the diameter
diam'1^^, x]) C Ri(M) are not connected; these sublevel sets can be represented as a
union of at least exp(^)^) non-empty subsets separated from each other by "gaps55,
where c(n) > 0 depends only on n\ the infimum of the volume on some of these
subsets is positive, and the number of the subsets with this property also grows at
least exponentially with ^; and this "severe55 disconnectedness cannot be avoided by
allowing a "controllable55 increase of diameter along the path in Ri(M) which connects
Riemannian metrics from different connected components of diam~l{(p, x]).

We then try to apply these ideas to the question of existence of Einstein metrics
(or at least almost Einstein metrics) of non-positive scalar curvature on S72. We propose
an approach which eventually might lead to the construction of such metrics. In the
meantime we use our technique to demonstrate that the (contractible; cf. [L]) space
of Riemannian metrics of constant negative scalar curvature on S", n ^ 5, has very
complicated geometry (see Theorem 2 in section 1).

All these results are based on the existence of ^-dimensional smooth homology
spheres, (n ^ 5), not admitting Riemannian metrics of non-negative scalar curvature
and such that the volume of any of these homology spheres with respect to any
Riemannian metric ofRicci curvature ^ —(n—l) is greater than one. The fundamental
groups of these homology spheres in our construction are "made55 of certain arithmetic
groups with appropriate homology properties.

0. Introduction

Let M be a compact manifold. Assume that we are trying to prove the existence
of a solution of some variational problem on the space of Riemannian structures on M
(or on some subset of this space). Choose some minimizing sequence {|l^}^i. According
to the Gromov-Gheeger compactness theorem if we are able to prove the existence of
uniform upper bounds for the absolute values of the sectional curvature and diameters
as well as a uniform positive lower bound for the volumes of (M, j^-), then we will be
guaranteed that a subsequence of the sequence {|l^} converges to a C15 "-smooth limit,
where a is any positive number less than one. Even if we are able to prove only the
existence of a uniform lower bound for the values of the sectional curvature (as well
as the bounds for diameter and volume) instead of the upper bound for the absolute
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values of the sectional curvature, a compactness theorem proven by Burago, Gromov
and Perelman ([BGP]) guarantees that a subsequence of {(M,^)} converges in the
Gromov-Hausdorff topology to an Alexandrov space. Since the interesting variational
problems on the space of Riemannian structures are usually scale invariant, we can
have an upper bound for the diameter for free just by an appropriate rescaling. To find
a uniform two-sided or even lower bound for the sectional curvature is a non-trivial
(and sometimes very difficult) problem which can be compared with deriving a priori
bounds while trying to prove the existence of solutions of a PDE. However, even if
we have this two-sided bound for the sectional curvature, the sequence {(M, |LI,)} can
still collapse to some metric space of a lower dimension. One of the main conclusions
of our paper is that if one is interested in local extrema then in a wide class of such
situations the trouble caused by the absence of a positive uniform lower bound for the
volume can be avoided: we demonstrate how a search for local minima of a functional
on the space of Riemannian structures on an arbitrary Riemannian manifold M^ can
be often replaced by a search for local minima of the same functional but on spaces of
Riemannian structures on every manifold M" such that H*(]VT)=H*(M^) but such that
vol^W) ^ w(n) for any Riemannian metric |l on M^ satisfying Ric^n ^ ^ —(n— 1), where
w{n) is a positive constant depending only on n. (In fact, one can even demand here
that vol^^M.^ ^ G, where G is an arbitrary positive constant, e.g. C= 1.) Our method
enables one to restrict the class of manifolds which one needs to consider in order to
prove the existence of local extrema for M even further. For example, it is sufficient
to consider only manifolds which do not admit Riemannian metrics of non-negative
scalar curvature (this property can be useful when one is looking for Einstein metrics).
Moreover, when our method works, it yields an infinite set of distinct local minima and
a (usually exponential) lower bound for the distribution function of these local minima.
As a concrete application of our technique we prove that for any compact manifold
M of dimension ^ 5 the diameter has infinitely many local minima on the closure
with respect to the Gromov-Hausdorff topology of the set of all smooth Riemannian
structures on M satisfying |K[ ^ 1 in the space Mef(M) of all isometry classes of metric
spaces homeomorphic to M (see Theorem B below). (Met(M) is assumed to be endowed
with the Gromov-Hausdorff topology. It is known that all elements of this closure are
C15 "-smooth Riemannian structures on M for any a € (0, 1); cf. [F].) Note also that
according to Theorem G at the end of section 1 the method developed in the present
paper can be applied in a similar fashion not only to extremal problems but to a very
wide class of (finite) systems of equations and inequalities for functionals on the space
of Riemannian structures on any compact manifold of dimension ^ 5. Because our
method involves results from several branches of mathematics we will be somewhat
lengthy in our introduction.

To state our main theorems let us introduce the following notations: let M
be any compact manifold. Denote by Riem\(M) the space of Riemannian structures on
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M such that the absolute values of sectional curvature do not exceed one. (The basic
properties of the space of Riemannian structures on a compact manifold can be found,
for example, in [Bou] and [Be].) Denote by Met(M) the space of isometry classes of
metric spaces homeomorphic to M endowed by the Gromov-Hausdorff metric, and by
Ri(M) the closure of Riem\(M) in Met(M). Note that for many manifolds M (including
tori of any dimension and spheres of any odd dimension) Ri(M) is not complete
because of the possibility of a collapsing to a lower-dimensional metric space. On
the other hand the Cheeger-Gromov compactness theorem implies that all elements
of Ri(M) are G1 5 "-smooth Riemannian structures on M, for any positive a < 1. We
can consider diameter as a functional on Ri(M) which will be denoted by diam. An
increasing function (() : (0, oo) —> (0, oo) is said to be effectively majori^abk if there
exists a (Turing) computable increasing function a : N —> N such that for any x
^(x) ^ a( [x]). (For example, for any positive real c\^c^ functions c\x62^ exp(^i^2) or
exp(exp(...exp(^1))) ([x^] + 1 exponentiations) are effectively majorizable.

Theorem A (Informal version). — Let M72 be any compact n-dimensional manifold of
dimension n ^ 5. For all sufficiently large x the sublevel set diam~^{(ft, x\) of diameter regarded
as a functional on Ri(M") is not connected. Moreover, it can be represented as a union of disjoint
non-empty subsets ("components") separated by a "gap" (in the Gromov-Hausdorff metric) and such
that any two Riemannian structures from different components cannot be connected by a finite sequence
of sufficiently small "jumps" in Ri(M^) passing through Riemannian structure of diameter ^ x or
even ^ ^(x), where ^ is any increasing effectively majorizable Junction. (But the value of x such
that the last statement becomes true starting from this value depends on the choice (̂  of course.) The
number of these "components" grows at least exponentially with x'1. Finally, (and most important for
applications we have in mind!) for all sufficiently large x for some of these "components" the volume
regarded as a functional on a fixed "component" has a positive lower bound not less than a certain
positive constant depending only on n. The number of "components" with this property also grows at
least exponentially with x^1.

Theorem A (Formal version). — Let Mn be any compact n-dimensional manifold, n ̂  5. Let
^ be any effectively majorizable function such that ^(x) ^ x for any positive x. For any x there exist a
non-negative integer 1, J C {0, ...,1}., and a partition of the sublevel set diam~{{{0, x]) C Ri(M")
into disjoint non-empty subsets R (̂M^ x), i= 1, ...,I with the following properties:

(i) There exists a positive E(n) depending only on n such that the Gromov-Hausdorff
distance between any Riemannian metric from R (̂M^ x) and Ry(M^ x) for i ̂ j is not less than
E(n)exp{—(n — l)x);

(ii) Moreover/or any i , j ^ {1,..., 1}^ i ̂ j and any [i G R ÎVT, x), v € R^M", x) there is
no sequence of "jumps" in Ri(M^) of length not exceeding Ei(n)exp{—{n — 1)(|)(^)) connecting [l and
v and passing only through Riemannian structures on Mn from diam~^[(ft, ^{x)]). (That is, there is
no finite sequence of elements o/^Ri(M^) of diameter not exceeding ^(x) such that the first term of the
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sequence coincides with \JL, the last term of the sequence coincides with v and the Gromov-Hausdorff
distance between two consecutive terms of the sequence does not exceed }L(ri)exp(—(n — V)^(x)));

(iii) There exist a positive constant v(n) depending only on n such that for any positive integer
j ^J and for any [i € R (̂M^ x) the volume of ̂ W, |l) is not less than v(n);

(iv) For a strictly increasing unbounded sequence {^}^ of values of x I ^ 2 and] > 1.
(This implies, in particular, that for any i, diam~^{(f^, Xj\) C Ri(M^) is not connected and that

<6Ri(M^ ̂ (M") ^ W.

(v) Furthermore, J > 1 and 1 ^ 2 for all sufficiently large x (and not only for some infinite
unbounded sequence {^}^i of values of x). Moreover, there exists a constant C(n) > 0 depending
only on n such that for all sufficiently large x I >J ^ exp{C(n)xn).

Remark 1. — It is clear that Theorem A without (iv) or (v) is vacuous. Of
course, (v) is stronger than (iv), and the second statement in (v) is stronger than the
first statement. The reason why we decided to state (iv) separately is that its proof
is conceptually and technically simpler, and already has quite interesting applications
(see Remark 3 after the text of Theorem B below). Moreover, combining the proof of
parts (i)-(iv) of Theorem A given below with Lemma 6 in [N3] in a fashion similar to
its application in [N3] one immediately obtains the first statement of (v) (that is, the
statement that 1 ^ 2 and J ^ 1 for all sufficiently large x.) The proof of the exponential
growth of I and J given below uses the notion of time-bounded Kolmogorov complexity
and heavily relies on the constructions and results of [N2]. Also, observe that (i) is a
particular case of (ii), where (^{x) = x. Here the purpose of formulating first a weaker
property (i) was to state a result which a reader not willing to deal with the terminology
from recursion theory can use. (However, we do not know a proof of the existence of
the partition satisfying (i), (iii), (iv) essentially simpler than the proof of the existence of
a partition satisfying (i)-(iv) given below.)

Important remark 2. — Theorem A can be strengthened in the following two ways:

1) In (iii) one can replace the statement that the infimum of volume on R^M", x)
for anyj G {1 , ..., J} is not less than the positive constant v{n) depending only on n
by the statement that the infimum of volume on R^M", x) is not less than exp(q(n)x),
where q(n) is a positive constant depending only on n. As a corollary, we can also
replace v(n) in the text of Theorem A by any positive constant of our choice, e.g. by
1. (As before, part (v) of Theorem A contains the statement that the number ofj with
this property is at least exp(C(7z)x") for all sufficiently large x.)

2) In Theorem A, part (iii) one can replace the condition that for any
|LI C Rj(Mn,x),j C {!, . . . , J}, the volume of (M", n) is not less than v(n) by the
condition that the volume of the subset of (1VT, |l) which consists of all points where
the injectivity radius is greater than some positive constant e{n) depending only on n is
not less than v{n). Furthermore, combining both parts of this remark together we can
replace v(n) here by exp{q(n)x), where q(n) is the same as above.
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This remark will be proven at the end of section 4 after the text of the proof of
Theorem A.

For any continuous functional the local minima of its restriction to its sublevel
sets will automatically be its local minima on the whole space. Therefore local minima
of diameter on its sublevel sets will be automatically its local minima on Ri(M"). The
Gromov-Gheeger compactness theorem implies the existence of the global minimum of
diameter on Ry(M^, x) for any j ̂  J. These global minima are, of course, local minima
of diam on diamT^^^ x]). Moreover, these local minima are G1 5 "-smooth Riemannian
structures on M" for any a C (0, 1). Thus, applying Theorem A we immediately obtain
the following result:

Theorem B. — For any compact manifold M" of dimension n > 5 the set of local minima of
diameter regarded as a functional on Ri(M^) is infinite, and the set of values of diameter at its local
minima is unbounded. Furthermore, let (|) be any effectively majori^abk function such that ^(x) ^ x
(e.g. ^(x)=x). Then for any sufficiently large x there exists at least [exp(C(n)^1)] local minima of
diam on Ri(M") such that the value of diameter at any of these local minima does not exceed x, the
volume is not less than v(n) > 0, and which are "deep" in the following sense: let [l be one of these
local minima. There is no finite sequence of "jumps" of length ^ 'E(n)exp(—(n — l)^(diam(yi))) in
Ri(M") connecting [l with either a Riemannian structure on M" of a smaller diameter or with another
of these local minima and passing only through Riemannian structures of diameter ^ ^(diam(y)) on
M72. (The constants C{n) and JL{n) here are the same as in Theorem A.)

Remark 1. — This theorem can be regarded as a solution in dimension greater
than or equal to five of the following problem which appears as Problem 1 in
the S.T. Yau list of problems in differential geometry [Y]: Find a general way to
construct canonical Riemannian metrics on a given compact manifold. (See also [Br], [Sr].)
The considered variational problem is quite natural (see Remark 4 below) and has
"not very large35 set of solutions for every compact yz-dimensional manifold {n ^ 5).
Of course, it would be desirable to obtain a better smoothness of the canonical
Riemannian metrics than just G1'01 for any a < 1. On the other hand, the non-
uniqueness apparently cannot be completely avoided: according to Theorem 3 of [Nl]
if one insists that a canonical Riemannian metric must exist on any smooth compact
manifold of the considered dimension n ^ 5, and if there is an algorithm recognizing
a Riemannian metric sufficiently close to a canonical as having this property, then the
set of canonical Riemannian structures of volume one on any compact manifold of
the considered dimension is infinite. (The condition of the existence of the algorithm
recognizing Riemannian metrics sufficiently close to canonical is quite natural here:
without this condition one can just choose one Riemannian metric on any compact
manifold using the axiom of choice.) To explain the non-uniqueness of canonical
Riemannian structures recall first the classical Markov theorem asserting the non-
existence of an algorithm deciding whether or not two compact differentiable manifolds
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are diffeomorphic. Were a canonical Riemannian structure on any compact manifold
unique there would have existed an algorithm solving the difFeomorphism problem.
Indeed, one would seek a sufficiently close approximation to canonical metrics on given
manifolds and apply the easily seen fact that suitably interpreted isometry between
compact Riemannian manifold is a decidable problem. A slightly more complicated
argument based on the same idea can be used to prove that the set of canonical
Riemannian structures of volume one must be infinite.

Remark 2. — Note that for many manifolds the global minimum of diameter on
Ri(M) does not exist. For example, the infimum of diameter on Ri(T") is equal to
zero. (Here T" denotes the ^-dimensional torus.)

Remark 3. — The proof of the exponential lower bound for I, J in part (v) of
Theorem A heavily relies on the material of sections 2, 3 of [N2]. For the reader not
interested in these exponential lower bounds note that parts (i)-(iv) of Theorem A imply
the following weaker version of Theorem B: Let Mn be as before a compact connected manifold
of dimension n ^ 5. Let ^ be an effectively majori^able function such that ^(x) ^ x. There exists an
infinite sequence {p^}^ of local minima of diam on Ri(M^) such that the corresponding sequence
of values of diameter {diam{[ii) }<^=^ is unbounded; and for any i there is no sequence of "jumps5) of
length ^ E{n)exp{—{n— l)(j)(<fezm(|l,))) in diam~~\{0, ^{diam^i)) ]) C Ri(M") connecting |̂  with
a Riemannian metric on M^ of diameter strictly less than diam{[ii). Indeed, for an unbounded
sequence {^}^ i of values of x J ^ 1 and 1 ^ 2 . We can proceed as follows. Start
from Xi=A:i . Define |Lli as the global minimum of diam on Ri^^Xi). For any
i ^ 2 choose X, € {^}^i to be sufficiently large to ensure that diam~\(0, X;_i + 1])
belongs to R^(M^, X^) for some k(i). (The existence of such X; follows from the
precompactness of diam~\(0^ X^_i + 1]).) If M" admits Riemannian metrics such that
sup [K| ^ 1 and vol < v{n), then we can choose X^ to be sufficiently large to ensure that
inf ^ ^n ^vol^fM'1) < v(n). (Here v{n) is the same as in Theorem A, (iii).) Let /== 1 in
this case. If inf ^ ̂  zW^(M72) ^ v(n), thenj=l > 2. Choose (any) / € { 1 , 2 } such that
l-^-k^i). In both cases there exists the global minimum u,^ of diam on R/^^X^), and
the value of the diameter at this global minimum is greater than X^_ i + 1. It is easy
to see that the sequence {|lJ has the required properties.

Remark 4. — If M" does not admit a flat metric then the local minima of diam on
Ri(M'2) are the same as local minima of sup |K| on the space of Riemannian structures
of diameter one on M71, where sup |K| is understood in the sense ofAlexandrov spaces
with curvature bounded from both sides (cf. [BN]). In this setting the variational
problem considered in Theorem B looks very natural.

Remark 5. — The supplements to Theorem A stated as Remark 2 after its
statement imply that in the statement of Theorem B we can also demand that for any




