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APPENDIX : AN EXAMPLE OF A THICK WALL
by NICSOLAS RESSAYRE

Among quotients associated to distinct G-linearized line bundles, those corres-
ponding to chambers have a very good property: the fibers are orbits. Theorem 4.2.7
shows that between two relevant chambers the quotient is changed by a transformation
similar to a Mori flip. Moreover, if G is a torus, then two quotients corresponding to
chambers are linked by a finite sequence of such transformations. In this appendix,
we show by an example that this can fail for arbitrary reductive group G. For this, we
produce a linear action of G on a projective space, which admits a proper wall of
codimension zero.

Let us fix some notation. We consider the connected reductive group
G = C* x SL(2, C). Let /o be the character of G defined by Xo(^<?) == ^ Then ^
generates the character group of G. If Ti is the maximal torus of SL(2, C) consisting
in diagonal matrices, then T == C* X T^ is a maximal torus of G. Its character group
is freely generated by /o, and %i defined by the following formula:

/ lu 0 \ \
Xi ^ . J ==^ f,ueC\
\ \0 u-^f

Let W == C2, V == C8. Let us choose an isomorphism V ^ C ® C ® W ® W ® W .
An element of V is thus represented by a 5-tuple (x_, XQ, y_, Vy, 24) where x_, XQ e C
and y_, z/o, y+ e W. We define an action of G on V by the following formula:

(1) M* (X_,XQ,V_,VO,V^.) == { t ~ 2 X _ , X Q , r s g ' U _ , g ' V o , t 2 g ' V ^ ,

where • is the canonical action of SL(2, C) on W. From now on, we use the notation
of Section 1.1.5.

We represent the set of weights of the action ofTonV by Figure 1. The coordinates
in the basis (%o, ̂ ) of these weights are denoted by (a, b) in the figure. In addition,
the convex hulls of some parts of st(V) are drawn with thick lines.
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FIG. 1. — State of V

Formula (1) defines an action of G on X = P(V) and a G-linearizadon on ^x(l)
as well; we denote by S this G-linearized line bundle. According to Section 1.1.5,
for oSf, a point x e X is:
• semi-stable if and only if for all g e G, the origin belongs to the set Gonv(stv(,g-;c))$
• stable if and only if for all g e G, the origin belongs to the interior of Gonv(sty(^-A:));
• unstable if and only if there exists g e G such that the origin does not belong to

Gonv(stv(,?-^)).

Now we want to vary the ample G-linearized line bundle on X. We also denote
by ^o the trivial line bundle over X where G acts on the fibers by ^o. Since the group NS(X)
is isomorphic to Z, by [KKV] each G-linearized line bundle on X is isomorphic to
JSf0"®^ tor some (w, n) eZ2. It follows that the group NS^X) is isomorphic to Z2.
From now on, we identify NS°(X) with Z2, and so NS^X)^ with R2. Note that the
line bundle corresponding to {m, n) e Z2 is ample if and only if n is positive. Since two
ample G-linearized line bundles on the same half-line from the origin are GIT-equivalent,
we can restrict our study to the points of NS^X)^ of the form (r, 1) with r eR. We
call the set of these points the horizontal line and r the abscissa of the point (r, 1). We use
these conventions in Figure 2.

Let r e Q^. There exists a power, say oSf0^ ® w%o (with m == nr e Z), of S? ® r^o
which is the restriction (as a G-line bundle) of Q(\) for an embedding of X into a
G-module. The sets st(A:) corresponding to this embedding are obtained from sty{x)
by applying a dilation of factor n followed by a translation of vector (w, 0). So to study
the stability for JS?®r^o, we can move the origin along the horizontal line in Figure 1
by — r and keep the weights of the action of V. Finally the stability for JSf ® r^o of a
point x e X depends on the relative position of the point (— r, 0) and the convex hulls
in ^(T) ® R of the sets sty{g.x) with g e G.

From now on, we denote by (^i, e^) the canonical basis of W. Let x e X and let
y:=={x_,XQ,v_,Vo,v^) be a representative of x in V. There exists g e SL(2, C) such
that g ' v _ is proportional to e^. But now, if r> 4 the point (—• r, 0) does not belong to
the convex hull o{st(g-x) and x is not semi-stable for oS? ® r^o. So if r > 4, X^JS? 0 r/o)
is empty. Analogously, we prove that if r < — 1 then 3? 00 r^o is not effective.
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Moreover, the <c origins 9? of the form (— r, 0) in Figure 1 which correspond to
the intersection of the horizontal line and a wall belong to the boundary of a set conv(st(;c))
for some x e X. So the abscissa of the intersection of a wall and the horizontal line is
r = 4, r == 3, r = 2, r = 0, r = — 1 or the segment 0 ̂  r ̂  2.

Let A: = [0 : 0 : e^: e^: 0]. There are seven distinct sets of the form stQ^): two
segments, four triangles and one rectangle. The point (— 4, 0) is either on the boundary
or in the interior of these convex sets. So, r == 4 is the abscissa of the wall H{x). In the
same way, we show that r == 3 is the wall H([0 : 0 : e^: 0: ̂ ]) and r = — 1 is the wall
H([0:0:0:^:^]) .

Obviously, the walls H([l : 0 : 0 : 0 : 0]) and H([0 : 1 : 0 : 0 : 0]) have r = 2 and
r == O as their abscissa. Moreover, the intersection of the horizontal line and the wall
H([l : 1 : 0 : 0 : 0]) is the interval 0 ̂  r ̂  2.

So we obtain six walls, three chambers and six cells in the G-ample cone (see
Figure 2). The cone ^(X) is partitioned into nine GIT-classes.

FIG. 2. The G-ample cone

Theorem 4.2.7 compares quotients corresponding to two chambers G4' and G~
relevant to a cell F. The starting point is that the set X^F) contains both X^C4') and
X^G"), and so defines two morphisms:

X^C4-)/^ -^ X^F^/G ^— X^G-^/G.

In the G-ample cone, the property X^F) 3 X^G) means that F intersects the
closure of G. Moreover, if we want to have X^F) == X^G^") n X^C") it is natural
to assume that G4' and G~ are relevant to F. This explains why Theorem 4.2.7 concerns
two relevant chambers to a face.

On the other hand, if there is no codimension zero wall, then any two chambers
can be joined by a chain of relevant chambers. So quotients corresponding to two
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arbitrary chambers are related by a sequence ofbirational transformations corresponding
to relevant chambers.

Back to the example, if we want to relate the quotients associated to G1 and C2,
we must look at the sequence of transformations

X^C^/O X^ ® ̂ )//G X^HG\ / \ /
XWHG X88(JSf002xo)//G

and so, we obtain XS8(oSf®^)//G as a natural intervening quotient between X^C1)/^
and X8S(C2)//G.
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