Publications mathématiques de l'I.H.É.S.

Nicolas Ressayre
 Appendix : An example of thick wall

Publications mathématiques de l'I.H.É.S., tome 87 (1998), p. 53-56
http://www.numdam.org/item?id=PMIHES_1998__87__53_0
© Publications mathématiques de l'I.H.É.S., 1998, tous droits réservés.
L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http:// www.hes.fr/IHES/Publications/Publications.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

APPENDIX : AN EXAMPLE OF A THICK WALL

by Nicolas RESSAYRE

Among quotients associated to distinct G-linearized line bundles, those corresponding to chambers have a very good property: the fibers are orbits. Theorem 4.2.7 shows that between two relevant chambers the quotient is changed by a transformation similar to a Mori flip. Moreover, if G is a torus, then two quotients corresponding to chambers are linked by a finite sequence of such transformations. In this appendix, we show by an example that this can fail for arbitrary reductive group G. For this, we produce a linear action of G on a projective space, which admits a proper wall of codimension zero.

Let us fix some notation. We consider the connected reductive group $\mathbf{G}=\mathbf{C}^{*} \times \operatorname{SL}(2, \mathbf{C})$. Let χ_{0} be the character of \mathbf{G} defined by $\chi_{0}(t, g)=t$. Then χ_{0} generates the character group of G. If T_{1} is the maximal torus of $\operatorname{SL}(2, \mathbf{C})$ consisting in diagonal matrices, then $T=\mathbf{C}^{*} \times \mathrm{T}_{1}$ is a maximal torus of G. Its character group is freely generated by χ_{0}, and χ_{1} defined by the following formula:

$$
\chi_{1}\left(t,\left(\begin{array}{cc}
u & 0 \\
0 & u^{-1}
\end{array}\right)\right)=u, \quad t, u \in \mathbf{C}^{*}
$$

Let $\mathrm{W}=\mathbf{C}^{2}, \mathrm{~V}=\mathbf{C}^{8}$. Let us choose an isomorphism $\mathrm{V} \simeq \mathbf{C} \oplus \mathbf{C} \oplus \mathrm{W} \oplus \mathrm{W} \oplus \mathrm{W}$. An element of V is thus represented by a 5 -tuple ($x_{-}, x_{0}, v_{-}, v_{0}, v_{+}$) where $x_{-}, x_{0} \in \mathbf{C}$ and $v_{-}, v_{0}, v_{+} \in \mathrm{W}$. We define an action of G on V by the following formula:

$$
\begin{equation*}
(t, g) \star\left(x_{-}, x_{0}, v_{-}, v_{0}, v_{+}\right)=\left(t^{-2} x_{-}, x_{0}, t^{-8} g \cdot v_{-}, g \cdot v_{0}, t^{2} g \cdot v_{+}\right), \tag{1}
\end{equation*}
$$

where \cdot is the canonical action of $\mathrm{SL}(2, \mathbf{C})$ on W. From now on, we use the notation of Section 1.1.5.

We represent the set of weights of the action of T on V by Figure 1. The coordinates in the basis $\left(\chi_{0}, \chi_{1}\right)$ of these weights are denoted by (a, b) in the figure. In addition, the convex hulls of some parts of $s t(\mathrm{~V})$ are drawn with thick lines.

Fig. 1. - State of V
Formula (1) defines an action of G on $\mathrm{X}=\mathbf{P}(\mathrm{V})$ and a G-linearization on $\mathcal{O}_{\mathrm{X}}(1)$ as well; we denote by \mathscr{L} this G-linearized line bundle. According to Section 1.1.5, for \mathscr{L}, a point $x \in \mathrm{X}$ is:

- semi-stable if and only if for all $g \in \mathrm{G}$, the origin belongs to the set $\operatorname{Conv}\left(\mathrm{st}_{\mathrm{v}}(g \cdot x)\right)$;
- stable if and only if for all $g \in \mathrm{G}$, the origin belongs to the interior of $\operatorname{Conv}^{\left.\left(\operatorname{st}_{\mathrm{v}}(g \cdot x)\right) \text {; } ; \text {; }{ }^{(}\right)}$
- unstable if and only if there exists $g \in G$ such that the origin does not belong to $\operatorname{Conv}\left(\mathrm{st}_{\mathrm{v}}(g \cdot x)\right)$.

Now we want to vary the ample G-linearized line bundle on X . We also denote by χ_{0} the trivial line bundle over X where G acts on the fibers by χ_{0}. Since the group NS (X) is isomorphic to \mathbf{Z}, by [KKV] each G-linearized line bundle on \mathbf{X} is isomorphic to $\mathscr{L}^{\otimes n} \otimes m \chi_{0}$ for some $(m, n) \in \mathbf{Z}^{2}$. It follows that the group $\mathrm{NS}^{G}(\mathbf{X})$ is isomorphic to \mathbf{Z}^{2}. From now on, we identify $\mathrm{NS}^{\mathrm{G}}(\mathrm{X})$ with \mathbf{Z}^{2}, and so $\mathrm{NS}^{\mathrm{G}}(\mathrm{X})_{\mathbf{R}}$ with \mathbf{R}^{2}. Note that the line bundle corresponding to $(m, n) \in \mathbf{Z}^{2}$ is ample if and only if n is positive. Since two ample G-linearized line bundles on the same half-line from the origin are GIT-equivalent, we can restrict our study to the points of $\mathrm{NS}^{\mathrm{G}}(\mathrm{X})_{\mathbf{R}}$ of the form $(r, 1)$ with $r \in \mathbf{R}$. We call the set of these points the horizontal line and r the abscissa of the point $(r, 1)$. We use these conventions in Figure 2.

Let $r \in \mathbf{Q}$. There exists a power, say $\mathscr{L}^{\otimes n} \otimes m \chi_{0}$ (with $m=n r \in \mathbf{Z}$), of $\mathscr{L} \otimes r \chi_{0}$ which is the restriction (as a G-line bundle) of $\mathcal{O}(1)$ for an embedding of X into a G -module. The sets $\mathrm{st}(x)$ corresponding to this embedding are obtained from $\mathrm{st}_{\mathrm{v}}(x)$ by applying a dilation of factor n followed by a translation of vector ($m, 0$). So to study the stability for $\mathscr{L} \otimes r \chi_{0}$, we can move the origin along the horizontal line in Figure 1 by $-r$ and keep the weights of the action of V. Finally the stability for $\mathscr{L} \otimes r \chi_{0}$ of a point $x \in \mathrm{X}$ depends on the relative position of the point $(-r, 0)$ and the convex hulls in $\mathscr{X}(\mathrm{T}) \otimes \mathbf{R}$ of the sets $\mathrm{st}_{\mathrm{v}}(g . x)$ with $g \in \mathrm{G}$.

From now on, we denote by $\left(e_{1}, e_{2}\right)$ the canonical basis of W . Let $x \in \mathrm{X}$ and let $\tilde{x}=\left(x_{-}, x_{0}, v_{-}, v_{0}, v_{+}\right)$be a representative of x in V. There exists $g \in \operatorname{SL}(2, \mathbf{C})$ such that $g \cdot v_{-}$is proportional to e_{1}. But now, if $r>4$ the point $(-r, 0)$ does not belong to the convex hull of $\operatorname{st}(g \cdot x)$ and x is not semi-stable for $\mathscr{L} \otimes r \chi_{0}$. So if $r>4, \mathrm{X}^{\text {ss }}\left(\mathscr{L} \otimes r \chi_{0}\right)$ is empty. Analogously, we prove that if $r<-1$ then $\mathscr{L} \otimes r \chi_{0}$ is not effective.

Moreover, the " origins" of the form ($-r, 0$) in Figure 1 which correspond to the intersection of the horizontal line and a wall belong to the boundary of a set $\operatorname{conv}(\operatorname{st}(x))$ for some $x \in \mathrm{X}$. So the abscissa of the intersection of a wall and the horizontal line is $r=4, r=3, r=2, r=0, r=-1$ or the segment $0 \leqslant r \leqslant 2$.

Let $x=\left[0: 0: e_{1}: e_{2}: 0\right]$. There are seven distinct sets of the form $\operatorname{st}(g \cdot x):$ two segments, four triangles and one rectangle. The point ($-4,0$) is either on the boundary or in the interior of these convex sets. So, $r=4$ is the abscissa of the wall $\mathrm{H}(x)$. In the same way, we show that $r=3$ is the wall $\mathrm{H}\left(\left[0: 0: e_{1}: 0: e_{2}\right]\right)$ and $r=-1$ is the wall $\mathrm{H}\left(\left[0: 0: 0: e_{1}: e_{2}\right]\right)$.

Obviously, the walls $\mathrm{H}([1: 0: 0: 0: 0])$ and $\mathrm{H}([0: 1: 0: 0: 0])$ have $r=2$ and $r=0$ as their abscissa. Moreover, the intersection of the horizontal line and the wall $\mathrm{H}([1: 1: 0: 0: 0])$ is the interval $0 \leqslant r \leqslant 2$.

So we obtain six walls, three chambers and six cells in the G-ample cone (see Figure 2). The cone $\mathscr{C}^{a}(\mathrm{X})$ is partitioned into nine GIT-classes.

Fig. 2. - The G-ample cone

Theorem 4.2.7 compares quotients corresponding to two chambers C^{+}and C^{-} relevant to a cell F . The starting point is that the set $\mathrm{X}^{\mathrm{ss}}(\mathrm{F})$ contains both $\mathrm{X}^{\mathrm{s}}\left(\mathrm{C}^{+}\right)$and $\mathrm{X}^{\mathrm{s}}\left(\mathrm{C}^{-}\right)$, and so defines two morphisms:

$$
\mathrm{X}^{\mathrm{ss}}\left(\mathrm{C}^{+}\right) / / \mathrm{G} \xrightarrow{f_{+}} \mathrm{X}^{\mathrm{ss}}(\mathbf{F}) / / \mathrm{G} \stackrel{f_{-}}{\rightleftarrows} \mathrm{X}^{\mathrm{ss}}\left(\mathrm{C}^{-}\right) / / \mathrm{G} .
$$

In the G-ample cone, the property $X^{\text {ss }}(F) \supset X^{\text {ss }}(\mathbf{C})$ means that F intersects the closure of \mathbf{C}. Moreover, if we want to have $X^{s}(F)=X^{s}\left(\mathbf{C}^{+}\right) \cap X^{s}\left(C^{-}\right)$it is natural to assume that C^{+}and C^{-}are relevant to F . This explains why Theorem 4.2.7 concerns two relevant chambers to a face.

On the other hand, if there is no codimension zero wall, then any two chambers can be joined by a chain of relevant chambers. So quotients corresponding to two
arbitrary chambers are related by a sequence of birational transformations corresponding to relevant chambers.

Back to the example, if we want to relate the quotients associated to $\mathbf{C l}^{1}$ and \mathbf{C}^{2}, we must look at the sequence of transformations

and so, we obtain $\mathrm{X}^{\mathrm{sg}}\left(\mathscr{L} \otimes \chi_{0}\right) / / \mathrm{G}$ as a natural intervening quotient between $\mathrm{X}^{\mathrm{ss}}\left(\mathrm{C}^{1}\right) / / \mathrm{G}$ and $\mathrm{X}^{\text {s8 }}\left(\mathrm{C}^{2}\right) / / \mathrm{G}$.

```
N. R.,
Université de Grenoble I,
Institut Fourier,
UMR 5582 CNRS-UJF
UFR de Mathématiques,
BP 74,
38402 Saint-Martin-d'Hères Cedex (France)
e-mail:ressayre@ujf.ujf-grenoble.fr.
```

Manuscrit reçu le 21 janvier 1998.

