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Chapter 1. INTRODUCTION

1. The Linearization Problem

Let G be a reductive complex algebraic group acting algebraically on complex
affine n-space A"=:X. The Linearization Problem asks whether every such action is
algebraically equivalent to a linear action, i.e., whether there is a G-equivariant
isomorphism ¢ :X 5V where V is a G-module. Another way to state this problem is
the following: Is every reductive subgroup of the affine Cremona group Aut(A")
conjugate to a subgroup of GL,? A detailed report on this question can be found in
[Kr1], where we also describe connections with other classical problems such as the
Fixed Point Problem, the Cancellation Problem and the Equivariant Serre Problem.

There are a number of positive results, all of which require some kind of
“smallness”. Linearization always holds in dimension n=2 (see [Ka]), and it holds for
n<4 in case G is semisimple ([KP], [Pa]). However, the question remains open in
dimension »=3 for G finite and for G one-dimensional (cf. [Kr3], [KoR1], [KoR2]).

Another approach is to require that the quotient space X//G (see §4) be of small
dimension. This constraint works well in the analogous situation of a smooth action
of a compact Lie group K on R". If the orbit space R"/K has dimension <2, then the
action is linearizable ([Br, IV.8.5]). In the algebraic case, it is a corollary of Luna’s
slice theorem that linearization holds whenever dim X//G =0, i.e., whenever the only
G-invariant functions on X are constant.

Our present work arose out of the attempt to prove linearizability in the case
that dim X/G=1. In 1981, Luna outlined an attack on this problem which has been
our guide. Surprisingly (to us), our work has led to the discovery of counterexamples
([Sch5]). We also have many criteria for linearizability to hold. See the next section
for a more precise accounting of our results.

We wish to thank D. Luna for generously sharing his ideas and notes on the
linearization problem. We thank J.-P. Serre for crucial help with Galois and group
cohomology. Finally, we thank F. Knop for helpful conversations.

2. Main results

(2.1) We consider the following situation: We have an action of the reductive
complex algebraic group G on a smooth affine variety X, where X is acyclic (i.e., has
the Z-homology of a point). Denote by 7y : X — X//G the quotient map (see §4). We
assume that the quotient X//G has dimension 1. Note that these hypotheses generalize
slightly those in section 1, where we assumed that X=A". In the following, parentheti-
cal references (e.g. (I1.0.1)) indicate the location where a result (e.g. Theorem 1) is
proved.
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Theorem 1 (I11.0.1). — We have X||G~A, the affine line, and exactly one of the
following occurs:

(1) The action is fix-pointed, i.e., every closed orbit is a fixed point.
(2) There is a unique fixed point x,eX.

In the fix-pointed case it is known that we have linearizability (see Corollary
II1.0.3), so we concentrate on the second possibility. If one allows holomorphic
equivalence, then even these actions are always linearizable:

Theorem 2 (V1.2.11(4)). — There is a holomorphic G-equivariant isomorphism of
X onto a G-module V.

M. Jiang (Thesis, Brandeis, 1992) has extended Theorem 2 to the more natural
case where the G-action on X is holomorphic.

(2.2) We assume for now that X®={x,}. Let V denote the G-module given by the
canonical action of G on the tangent space T, X. It is easy to see that dim V/G=1
and that V¢={0}. Let my:V - A be the quotient mapping, where we arrange that
my (0)=0. Of course, my is a homogeneous polynomial function on V, and we denote
its degree by d.

Our idea now is to classify all X which give rise to the same G-module V. Let
M~ , denote the set of isomorphism classes of smooth acyclic affine G-varieties X
with fixed quotient mapping 7y : X - A~X//G such that

(1) X®={x,} is a single fixed point,

(2) T,,X is G-isomorphic with V,

3) mx(x0)=0€A.

(If ¢ is an allowable isomorphism of G-varieties X, X' satisfying our conditions, then
¢ induces the identity on A.) The isomorphism class containing X is denoted {X}.
Let .4 be defined in the same way as .#y_,, except that we do not fix an isomorphism
of X//G with A. Clearly, .#y is the orbit space of .#y_, by an action of C*, and .#
is trivial (i.e. a point) if and only if .#y_, is trivial.

(2.3) Let F be a G-variety and Y a variety with trivial G-action. A G-fiber bundle
(over Y) with fiber F is a G-equivariant morphism B:§ — Y such that every fiber
is G-isomorphic to F and B is locally trivial in the étale topology. This means
that there is an étale surjective map n:Y — Y and a G-equivariant isomorphism
Fei=YxyF3YXF over Y (see IV.1.3-1.5 for a more detailed discussion of this
notion).

If U is an open subset of A, let V; and X, denote ny ! (U) and ny ! (U), respec-
tively. Let A denote A\ {0}, and set V:=V,, X:=X;.

Theorem 3. — Let {X} €My 4.
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(1) AV.0.2) The morphisms X - A and V — A are G-fiber bundles with fiber
F:=ny'(1). The bundles are isomorphic, hence there is a G-isomorphism
¢ : X 3V which induces the identity on A.

(2) (VI.2.11(3)) There is an open set U < A, 0€U such that X and V,, are
G-isomorphic over U.

Thus X is obtained from V and Vy identified by a G-isomorphism ¢y over

U:=U\J{0}.

(3) (V1.2.13) There is a bijection M~ _, = D|T" where I denotes the dth roots of
unity (d=degmy) and D is a T'-module.

We give M~ 4 the structure of affine variety coming from the bijection above.

(4) (VI1.2.12) There is an affine G-variety & and an equivariant smooth sur-
Jjective morphism p:8 — AX My , where G acts trivially on AX My, 5, with
the following property: Let {Y }e My, o and set X:=p ' (Ax{Y}). Then
{Y}={X} and ny=pr;op:X > A.

An intriguing question is the following: Is every element in .#y_, represented by

a variety which is isomorphic to A"? All the examples we give are of this type.

(2.4) To describe the moduli space .#y , we need to determine the I'-module D.
This is done in Chapter VI. For the present, we restrict ourselves to describing criteria
for D to be trivial.

Let A (V) denote set of all the polynomial vector fields on V, and let A, (V) denote
the elements of A (V) annihilating the generator ¢ (=) of the G-invariant polynomials
O (V)® (see VI.1 for this and the following). The degree of an element of A (V) is its
degree as a derivation of the graded algebra ¢ (V). Now A (V)€ is a Lie algebra over
O(A)=0(V)%, and A,(V)© is a subalgebra. Moreover, A(V)® and A, (V)¢ are free
graded O (A)-modules. Set F:=n, (1) and let L denote the (linear algebraic) group
Aut (F)C of G-equivariant automorphisms of F. Then [:=Lie (L) is the restriction of
A, (V)C to F. Let I’ denote the inverse image in [ of the semisimple part of the reductive
Lie algebra Lie(L/Rad, (L)).

Theorem 4 (V1.2.4(2)). — Let I denote the set of restrictions to F of the
homogeneous elements of A, (V)® of degree at most d(=degt). Then D (hence M+ ,) is
trivial if and only if T+1'=1.

We are able to apply Theorem 4 to several classes of representations.

Theorem 5 (V1.3.2). — The moduli space M~ _, is trivial if
(1) V is a semifree G-module,
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(2) G is a torus,

(3) dim V¢°=1,

(4) dim V<3,

(5) G° is a simple group, or

(6) V is self dual as G°-module.

(A G-module V is semifree if the only closed G-orbits in V are fixed points or have
trivial stabilizer).

(2.5) Our examples of non-trivial moduli spaces arise from G-vector bundles (see
VII.1.1 for definitions). Consider G-vector bundles whose base is a G-module P with
one-dimensional quotient. The fiber at 0eP is a G-module, and we let Vecg (P, Q)
denote the collection of G-vector bundles over P whose fiber at 0P is isomorphic to
the G-module Q. Let VEC4(P,Q) denote the set of G-isomorphism classes in
Vecg (P, Q); the class of E € Vecg (P, Q) is denoted by [E]. The trivial class is represented
by the product P x Q, which we denote by @, If G={e} is trivial, then the solution
of the Serre Problem by Quillen and Suslin shows that every element of Vec (A?, CY)
is trivial, so that every element Ee Vecg (P, Q) can be considered as a G-action on
some X=A".

Let Ee Vecg (P, Q). Let C* act via scalar multiplication on the fibers of E. Then
we obtain an action of G:=G x C* on E~A" It is easy to see that E/G~P/G~A.
The following result allows us to relate the linearization problem to moduli of
G-vector bundles.

Proposition 6 (cf. VII.1.2, 1.3). — Let E, E'e Vecg (P, Q) and let G be as above.
Then

(1) (Kr2]) The vector bundle E is non-trivial if and only if the G-action on E~ A"
is not linearizable.

(2) (IBH2)) If E® Ope Vecg (P, Q @ P) is non-trivial, then the G-action on E is
not linearizable.

(3) (IMP)) Suppose that H is a subgroup of G such that (P @® Q)" =P. Then E
and E' are isomorphic as G-varieties if and only if E is isomorphic to a pull-
back ©* E’ for some G-automorphism ¢ of P.

(2.6) It turns out that VECg (P, Q) has a pleasant structure.
Theorem T (VII.3.4). — The moduli space VECg (P, Q) has a natural structure of

vector group. Moreover, there is a G-vector bundle n:% — P X VEC; (P, Q)
such that p~' (P x[E])~E for all EeVecg (P, Q).
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Theorem 8 (VII.4.8). — Let Q, Q, and Q, be G-modules, and let H be a principal
isotropy group of P (see 11.1.2).

(1) The map VECg; (P,Q) —» VEC4 (P, Q @ Q) sending the class [Ele VECg; (P, Q)
into [E @ O] is bijective.

(2) Let [E,], [E;]e VECG (P, Q). Then their sum [E ]+ [E,]=:[E;] in VEC4; (P, Q)
is uniquely determined by the condition: E, @ E,;~E; ® @qe Vecs (P,Q ® Q).

(3) Whitney sum induces an epimorphism of vector groups

WS:VECg (P,Q,) X VECq (P, Q;) —» VEC¢ (P,Q, ® Q).

(4) If Hom (Qy, Q,)"={0}, then WS is bijective.

(2.7) Let V:=P®Q~0, with the G-action of 2.5. We want to compare
VEC; (P,Q) with .#y ,. As before, let I' denote the group of dth roots of unity,
where d is the degree of mp. Let [E]e VECg (P, Q) and let { E} denote E considered as
an element of .#y ,. Note that {E}={y*E}, yeI, where y*E denotes the pull-back
of E by y:P S P. Thus we have a natural map A: VECg (P, Q)/I" > Ay ,.

Theorem 9 (VI1.3.7). — Suppose that My 4 is trivial (i.e., there are no non-
linearizable actions modelled on P). Then

A VECG (P, QT = My 5

is a bijection.

(2.8) Let Fp denote m,'(l1) and let M denote the (linear algebraic) group
Mor (Fp, GL (Q))® (see VII.2.3). The vector group VEC;(P,Q) can be computed
from the Lie and Artin algebra m:=Lie (M)=Mor (Fp, End Q)°. Let m’ be defined
as in the case of [ in 2.4, and let f denote the restriction to Fp of the elements of
Mor (P, End Q)€ which are homogeneous of degree at most d(=degmp).

Theorem 10 (VI1.3.4(1)). — The moduli space VECg (P, Q) is trivial if and only
fif+m'=m.

It is quite easy to come up with examples where VECg (P, Q) is non-trivial. Using
Proposition 6 we then obtain examples of non-linearizable actions of G on A" and of
non-linearizable actions of G X C* on A" with one-dimensional quotient.

Theorem 11 (VI1.5.9, 5.4, 5.7). — (1) Let G be a simple classical group, a spin
group, G,, E¢ or E,. Then G has a non-linearizable faithful action on A" for some n.

(2) There are non-linearizable actions of O, on A*, of SL, on A7 and of SO,
on A'°,
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(2.9) Remarks. — (1) With our methods we obtain explicit families of non-trivial
G-vector bundles which give rise to non-linearizable actions on affine space (VII.5).
But only with the later work of Masuda and Petrie (see Proposition 6(3)) was it
realized that these families of G-vector bundles contain families of non-equivalent
G-actions on affine space (VIL.5.4, 5.7(2)).

(2) Knop [Kn] has shown that for every semisimple G there exist non-trivial
G-vector bundles E with base Lie (G) such that the G-actions on E are not linearizable.
Again, one can show that these vector bundles lead to families of non-equivalent
G-actions, provided that G has a non-trivial center (VII.5.8).

(3) Masuda, Moser-Jauslin and Petrie ((MP], [MMP]) have constructed families
of non-trivial G-vector bundles and families of non-linearizable G-actions. They have
shown that some of our examples of O, x C*-actions on A* remain non-linearizable
when restricted to certain finite subgroups of O, x C*, providing the first examples of
non-linearizable actions of finite groups.

(4) There are no known examples of non-trivial G-vector bundles or non-lineariza-
ble G-actions on affine space for commutative groups G (cf. [Kr3], [KoR1], [KoR2]).

3. Methods
We discuss some of the ideas and methods we use.

(3.1) In Chapter II we establish the topological part of our results, following an
outline of Luna. The fact that X//G~A is quite easy. A careful study of the Leray
spectral sequence of 7y : X — X//G, using properties of Luna’s stratification of X//G
(see I1.1), gives Theorem 1. If X®~A, we have linearizability, so we assume that
XS={x,} where my(x,)=0€A. Then the Luna strata of X/G~A are A and {0}. As
before, let V denote the G-module T, X. Then my:X—>A and my:V—A are
G-fiber bundles (see 2.3) with fiber F=mn, ! (1).

The next task is to establish that the two G-fiber bundles X and V are isomorphic.
We show that the G-automorphisms of F form a linear algebraic group, denoted L,
so that X and V correspond as usual to principal L-bundles Py and Py over A,
respectively (see IV.1.1-1.4). Let us denote by H.(Y,L) the set of isomorphism
classes of principal L-bundles over the variety Y.

Theorem 12 (IV.5.4). — For any linear algebraic group M the canonical map
H; (A,M) 5 H} (A,M/M°)

is a bijection.
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It is not difficult to see that this result implies Theorem 3(1). Note that the
principal L/L°-bundles over A are the same in the topological and algebraic categories.
In fact, they are just the finite covers with Galois group L/L°. It follows from Luna’s
slice theorem that there is a neighborhood U of 0e A (classical topology) such that
Xy and Vy are analytically G-isomorphic over U. Then Py and Py are isomorphic
over U, hence they are topologically isomorphic over A. Thus the principal L/L°-
bundles Py/L° and Py/L° are isomorphic (algebraically!), and so Py~P, by
Theorem 12.

(3.2) To continue our discussion, we need to consider a small menagerie of spaces.
Identify @ (A) with C[¢]. Then ¢ (A)=C|[t,¢"'] and set A :=Spec C[¢]. The schematic

~

intersection A M A is A :=Spec C((¢)). Set
V:=Vx A+ A=Spec (0 M®g@) 0 (A)),

and define X, V and X similarly.

If Y is an A-scheme, let A (Y) denote the group of G-automorphisms of Y x , V
which induce the identity on the quotient Y. Then 2 is a group valued functor, and
we show that it is represented by a group scheme (also denoted ) over A. For now
it is most important to note that 2 (A)= { G-automorphisms of V inducing the identity
on A}, and similarly for 2 (A) and 2 (A). Equivalently, the opposite group to 2 (A)
is the group of G- and ¢ (A)-automorphisms of @ (V), etc.

Let {X}e.#y 4 (see 2.2). The slice theorem gives a G-isomorphism ¢:X 3V
which induces the identity on A (see I1.0.4). By Theorem 3 (1) we have a G-isomor-
phism ¢:X 3V which induces the identity on A. The composition @:=¢@ ' lies in
A (A). Now ¢ is only determined up to composition with an element ae A (A), and
similarly for ¢. Thus the double coset of ¢ in

DA ;= A (AN (A)/2 (A)
is well-defined, and we denote it by [(?p (X)]. In this way, we obtain a map
[0]: My, DA, {X}>[o(X)].

(3.3) We eventually are able to show that [(T)] is an isomorphism (VI.2.13), and to
identify D with a quotient D/T" (VI.2.7). Simultaneously, we obtain that there is
an isomorphism @y, : Xy > Vy; over a neighborhood U30 (VI.2.11), and we can then
construct the moduli space (VI.2.12). Here are some of the main steps.

Let B denote Spec C[s], where r=s. Then we have a canonical morphism B — A,
z 2% which identifies A with B/I", where I’ ={dth roots of unity} acts by scalar
multiplication on B. The group I' also acts on F by scalar multiplication, commuting
with the action of G. ThusI' is a subgroup of the (linear algebraic) group
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L(=Aut(F)®). Let I act on BxF by y(z,v)=(zy !,yv), yeI', zeB, veF. Denote
the corresponding quotient by Bx" F. Then we have a G-equivariant morphism

p:BxTF -V, [z, v] > 20,

over A=B/T, and clearly p induces an isomorphism over A.
Note that L is a I'-group, i.e., it is a linear algebraic group together with

a homomorphism t:I" — Aut(L). Here t(y)/ is just y/y~!, yel, leL. Let L(B)
denote the group of morphisms from B to L. Then I' acts on L(B) by
ToB)=t(Y)oby)=ye(by)y !, vyel', peL(B), beB. We let L (B)' denote the set of
fixed points of the I'-action. One defines groups L (B)', etc. similarly. The morphism p
above induces a bijection p, of L (B)" onto A (A), and its inverse, denoted G, induces
bijections

o, AA)SLBY, o, AR SLB,
and an inclusion (I11.4.6)

o, () o 2(B).
Thus we obtain an isomorphism

(%) DA~LB)'\L B) /o, A(A).

(3.4) We say that the I'-group L has the decomposition property if
LB =L(B) LB,

and we similarly say that U has the decomposition property if
A(A)=A(A)A(A).

Note that U has the decomposition property if and only if the double coset space
D is trivial.

Theorem 13 (V.2.6). — Let M be a I'-group. Then M has the decomposition
property.
Using (*) and the fact that L (B)" N L (B)' =L (B)" we obtain
DA~ L(B)'\L (B) /o, A(A).
Clearly, the key to determining D2 is to understand the image of 2 (A) in L (B)".

(3.5) We now study the double coset spaces above using the “Lie algebras” of the
corresponding groups. Clearly Lie (L (B))=1(B), where [=Lie(L), [(B)=Mor(B,I),
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and the T-action is induced from that on L and B. There is an exponential map, induced
from the exponential map of I. Let [(B),, r>0, denote the algebra of morphisms which
vanish to order r at 0eB (so elements of [(B), send 0B to Oel; see V.0.6 and
V.3.1). Define L (B), similarly. Then exp induces isomorphisms of [(B), with L (B),,
r>1, and of [(B)I with L(B), r>1 (V.3.2).

In the case of the group A(A), the Lie algebra is X (A):=A, (V) ®@(A)(9(A), the
algebra of G-derivations of ¢ (V) which annihilate ¢ (V)®=0(A) (see 2.4). Let m
denote the ideal in @ (V) of functions vanishing at the origin. We give @ (V) the m-
adic filtration and ¥ (A) the induced filtration, so that X (A), consists of the elements
sending m’ to m’*" for all j. We filter 2 (A) similarly. In particular, 2 (A), consists of
automorphisms fixing the origin of V. We show that there is a natural exponential
map X(A), 3 A(A),, r=>1 (VI.1.6).

(3.6) We now study the morphism o : A (A), » L (B)F via the corresponding mor-
phism of Lie algebras o _: X (A), - [(B)] (see VI.1.14):

AR) r— LB

exp 1§ i exp

XA), — (@)
%
Theorem 14. — (1) (VI.1.13(2), VI.1.14(2)) There is an integer ro=1 such that
o, % (A), 3 (B is bijective for r>r,. Thus o, : W(A), S L(B)! is a bijection for r>r,.
(2) (V.3.5) Let M be a I'-group such that Rad (M°)=Rad, (M°). Then

MB)=M B)M B)" for all r>1.

The property in part (2) above we call the approximation property for M. Note
that if L has the approximation property, then 2 has the decomposition property,
since L(B)f < o, A(A), for r>r, and L(B)" = L(B)". In particular, D and .Zy_,
are trivial in this case.

(3.7) Write the identity component L° of L as Z-L’ where Z is the central torus in
a Levi factor L of L and L' is generated by the semisimple part of L and the unipotent
radical of L. We may arrange that Z, etc. are I'-stable. Now L’ has the approximation
property by Theorem 14(2), hence D2 is the image of the vector group
D' :=ZB)/Z (ﬁ)fo. It follows that D is isomorphic to D/T", where D is a quotient
vector group of D’ with linear I'-action (VI.2.7).

Let ze Z(B)! and r>0. One can show that, modulo Z (B)', z can be represented

by a rational morphism from B to Z (VI.2.10(1)). It then follows from the results
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above that every double coset [a]e D can be represented by a rational section of 2.
But such a rational section is a G-automorphism ¢, of Vy over U=UN\{0} for some
neighborhood U of 0e A (which gives Theorem 3 (2)). Using ¢, we glue V and Vy, to
obtain a G-variety X such that [&) (X)]=[&]. Thus the map [(?)] c My, o — DU is surjec-
tive. It is easy to show that it is also injective, so we have that

My \~DUA~DT.

4. Conventions and notation

Our base field is the field C of complex numbers. Let G be a reductive algebraic
group acting on an affine variety X. We denote by @ (X) the C-algebra of regular
functions on X and by ¢ (X)° the subalgebra of G-invariants. A celebrated theorem
of Hilbert shows that @ (X)€ is finitely generated (see [Kr,II.3.2]). Let X//G denote
the corresponding affine variety, and let my:X — X//G denote the morphism
corresponding to the inclusion ¢ (X)€ < O (X).

Proposition (see [Kr, 11.3.2]). — Let G, X, etc. be as above. Then

(1) my is surjective.
(2) my separates disjoint closed G-stable subsets of X.

(3) Every orbit contains a unique closed orbit in its closure, and Ty sets up a
bijection between the closed orbits of X and the points of XJ|/G.

If W is a module for the algebraic group M, we will use the notation (W, M) (in
place of just W) when it is necessary to emphasize the group involved. We use p, to
denote { dth roots of unity } « C*=GL, (C).
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Chapter II. EXISTENCE OF FIXED POINTS

0. Résumé

(0.1) Let G be a reductive group acting on a smooth affine variety X. Assume that
X is acyclic, i.e., that X has the Z-homology of a point, and that the quotient X//G is
one-dimensional. The aim of this chapter is to prove the following result:

Theorem. — The quotient X)|G is isomorphic to A, and exactly one of the following
occurs:

(1) XS~A, the quotient map n:=mny:X — A is a G-fiber bundle (see 1.2.3), and
every fiber contains a fixed point.

(2) There is exactly one fixed point x,e€X, and the induced map n:X — A is a
G-fiber bundle, where X :=X\1" ! (1 (x,)) and A :=A\{r(x,) }.

(0.2) Remark. — It is shown in [KPR, Theorem 0.1 B] that for every acyclic
(resp. contractible) G-variety Z, the quotient Z//G is again acyclic (resp. contractible)
(cf. [Sch4, 5.7]). In our case the quotient X//G is normal and one-dimensional, hence
smooth, and so X/G=~A, since A is the only acyclic smooth curve ([KPR,
Lemma 5. 6]).

If X~A", then there is a more direct argument (Luna): In this case X//G is a
unirational curve, hence rational (Liiroth), and it admits no non-constant invertible
functions. It follows that X/G~A.

(0.3) Corollary. — (1) The fixed point set X€ is either a single point or is isomorphic
to A.

(2) If XS~A, then X is G-isomorphic to CxW where W is a G-module and C
the trivial G-module.

Proof. — Part (1) is clear from the theorem. If X°~A then the quotient map
Ty : X = A has the structure of a G-vector bundle (see 3.3 below), and this bundle is
trivial by [Kr2, 2.1 Corollary]. B

Another proof of part (2) will be given in IV.3.9.

(0.4) Let us consider the case of an isolated fixed point x,e€X, and let ny: X - A
be the quotient map, where mx (x,) =0. Denote by V the G-module T, X, the tangent
space at x,. It follows from the slice theorem that V/G is one-dimensional, and
so the quotient map my:V — A is given by a homogeneous polynomial ¢. Define
A:=SpecC][r], and denote by X and V the fiber products X x ,A and Vx ,A,
respectively (see 1.3.2).
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Proposition. — There is an étale neighborhood U — A of 0€ A and a G-equivariant
isomorphism @y:X x , U SV x , U which induces the identity on U. In particular, the
general fibers of my and my are isomorphic, and we get a G-equivariant isomorphism
¢:X 3V over A.

Proof. — It follows from the slice theorem that there exists a G-equivariant
morphism 1 : X — V which induces an isomorphism 1 : X 5V, hence an automorphism
N:AS A of the quotient. Clearly, n is given by multiplication with a unit
eeC[1]* N C[7). There is an fe C[] such that f*=e~ ', where d=degt. It follows
that the isomorphism ¢:=(f°my)-n: X 3V has the required property. In addition,
since f'is algebraic over C[f], we can find an affine étale neighborhood U — A of 0 A
such that fe@®(U)* and such that ny:Xy—Vy is an isomorphism, where
Xy:=Xx,U, etc. It follows that the induced map @y:=(f°ny) Nny:Xy— Vy Is an
isomorphismover U. W

(0.5) In order to establish assertions (1) and (2) of Theorem 0.1 we use the Leray
spectral sequence of the quotient map n:=my:X — X/G (§3). It turns out that the
higher direct images R?n, k, where k is the constant sheaf with fiber a field k, are
locally constant on the strata of the Luna stratification (1.4). The acyclicity of these
sheaves on special open sets (2.1) enables us to calculate their cohomology by using
a Leray covering of the quotient (4.1). It follows that the Leray spectral sequence
of m collapses, and we can then establish the theorem.

1. Stratification and direct images

(1.1) Let Z be a smooth affine G-variety with quotient map n,:7Z — Z//G. If zeZ
is a point whose orbit Gz is closed, then the stabilizer H=G, is a reductive subgroup
of G (Theorem of Matsushima, cf. [Lu, I.2]). It follows that there is an H-stable
complement of the tangent space T,(Gz) in T, (2):

T,(Z)=T,(Gz) ® N,.

N, is the normal space at z, and the representation of the stabilizer H on N, is called
the slice representation at z.

We denote by G x" N, the associated bundle of the principal H-bundle G —» G/H:
It is the quotient of G x N, by the free action of H given by h(g,v):=(gh™ ', hv),
heH, geG, veN,. The image of an element (g,v)e G x N, in G *" N, will be denoted
by [g, v]. Clearly, G *" N_ is the normal bundle of the closed orbit Gz.

As a consequence of the slice theorem ([Lu, III], see [S1]) there exist
neighborhoods U of n,(z)€Z/G and U’ of ny_(0)eN,/H (classical topology) and a
G-equivariant analytic isomorphism
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GH''ng L (U) Syt (V).
Moreover, we have the following:

(1.2) Proposition (Luna). — There is a finite stratification Z|G=\UY, into locally
closed subvarieties Y; with the following properties:

(1) The isotropy groups of points z; of the closed orbits over Y; are all conjugate to
a fixed reductive subgroup H; = G, and the corresponding slice representations
N,, are all equivalent to a fixed representation N; of H,.

(2) The quotient map w;:n;* (Y,) > Y, is a G-fiber bundle (see 1.2.3) with fiber
G*"i M (N)), where M (N)) is the null cone of the representation N; of H,, i.e.,
NN :={veN;|H;»v20}.

(3) If Y;2Y,, then H; is conjugate to a subgroup of H;. (In this case we will
always arrange that H; < H,.)

The stratification above is called the Luna stratification of ZJ/G. If Z)/G is
connected (hence irreducible), then the open stratum is called the principal stratum,
and the corresponding isotropy groups are called principal isotropy groups.

(1.3) Let k be any field and denote by #? the gth direct image of the constant
sheaf k : =k X Z under the quotient map n:Z — Z//G:

H1:=Rin k.
This is a sheaf of k-vector spaces on Zj/G: it is the associated sheaf to the presheaf
U—Hi(n 1 (U),k)

where H? denotes ordinary (singular) cohomology (see [Go, I1.4.17]). We call # the
Leray sheaf of the quotient map n:Z — Z//G. It figures in the Leray spectral sequence

H?(Z |G, #%) = HP*4(Z, k)

of .

Proposition. — Let y,eY, where Y is a stratum of Z||G. Then there is a fundamental
system of neighborhoods { U, } of v, in Z|G such that for every yeY N U, the inclusion
Jjy:0, & n1(U)) induces an isomorphism j¥:H* (1! (U,),k) > H*(0O,, k), where O, is
the closed orbit in the fiber ©~"(y). Moreover, the inverse of j¥ is induced by a G-
retraction p,:n~ "' (U) - O,.
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(1.4) Corollary. — The Leray sheaves #* of m are locally constant on the strata of
Z)|G with stalks #1~H"(0,, k).

In fact, for every U, as above and every stratum Y, the sheaf #|y . is constant.

Proof of Proposition 1.3. — Let z,€0,,, let H:=G, and let N be
the slice representation of H at z,. Denote by W an H-stable complement of
N" in N and consider the G-variety Z:=(G*"W)xY. Its quotient map is
n=n'xid:Z->Z)G=W/HxY, where n:G*"W->W/H is given by
' [g,w]=ny (w). It follows from the slice theorem (see 1.1) that there are
neighborhoods U of y, in ZJG and U of y,:=(n"(0),y,) in Z/G and an analytic
G-isomorphism n~*(U) S 1! (0U). In addition, the stratum in Z/G containing y, is
{n"(0)} x Y. As a consequence, we may reduce to the case Y={my (0)} = W/H.

Using the scalar action of R* on W, it is easy to see that there is a funda-
mental system of neighborhoods {B;} of ny (0)e W//H such that each ny'(B;) =« W
is a starlike H-stable neighborhood of 0. Hence the inclusion
G/H~G*"{0} & G*"ny' (B, induces an isomorphism in cohomology, whose
inverse map is induced by the bundle projection G ¥ ny'(B) > G/H. R

(1.5) Remarks. — (1) Assume that U is a simply connected neighborhood of a point
Yo€ZJ/G such that UN\{y, } is contained in the principal stratum. Then we have a
canonical isomorphism

Oy HU(U) S HY.

(2) Let U and y,eU be as above and choose xe U\{y, }. Denote by O, and
O,, the closed orbits in the fibers of x and y,€ZjG, respectively. It follows from
Proposition 1.3 that the composition

oy ! Jx
b HI(0,, k)= H#3, = #7(U) > #1=H* (0. k)

Yo’

is induced by a G-equivariant map

0,-0,,.

The kernel of p, does not depend on the choice of xe UN{ y, }: If x'e UN\{ y, }, then
there is a path C in UN\{y,} from x to x’. Now n~'(C)— C is a trivial G-fiber
bundle, hence we have a G-equivariant homotopy of the inclusions of n~*(x) and
n~ 1 (x") into ©~ ! (U). Thus Kerp, =Kerp,..
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2. Acyclicity
The following was first proved by C. Berger:

(2.1) Proposition. — Let & be a sheaf of k-vector spaces on A which is locally constant
on A:=AN\{0}. Then F is acyclic, i.e.,

H° (A, #)=F, and HY(A,#)=0  for ¢>0.
Proof. — Define U,:={zeA | |z|<r}. It suffices to show that the canonical
maps p,: HY(A, #) - HY(U,, #) are isomorphisms for all >0 and all ¢q. Then

Fo for ¢=0,

Hq(A,,g?)Sliqu(U,,?):’Hq({O}’g:)z{ 0 for ¢>0
— q ’

r

where the second isomorphism follows from continuity (see [Go, II, Theorem 4.11.1]).
Now define U,:=U,\{0} and choose 0 <¢<t. From Mayer-Vietoris we obtain
the following commutative diagram with exact rows:

...Hi(A, %) - HY(A, #) @ HY (U, #) - H (U, %). ..
lp, lb,.@id ”
...HY(U,,#)->H(U, #)®H! (U, %) ->HI(U,ZF). ..

Hence it suffices to prove that p,:H?(A, %) —» H4(U,, %) is an isomorphism for
all r>0 and all g. Define

V,:={zeA|z#0, n/d<argz<Tn/4} and V,:=-V,.

Since V,, V, and both components of V, MV, are contractible, the open covering
¥ :={V.,V,} is a Leray cover for & |;. Similarly 7",:={V,; N\ U,,V,N\U,} is a
Leray cover for U,. Hence we have a commutative diagram

HY(A, %) S HU(V, F)
| P | o
HY (U, 7)) 3 HI(V,,F)
where p, is induced from the canonical map
0 CV . F)-»C(V . F)

between the corresponding Cech complexes. But clearly p, is an isomorphism. M
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(2.2) Remark. — 1t is easy to describe the sheaves of k-vector spaces on A which
are locally constant on A. They are given by the following data:

The fibers &y, ¥ , a linear map o.: F ,— % , and an automor-
phism B: F S F | which is the identity on o (F ).

The map o comes from the canonical isomorphism &% (A)S #,, and B from the
monodromy.

3. The Leray spectral sequence of quotient maps

(3.1) In the general setting of 1.1 consider the Leray spectral sequence of the quotient
map n:Z - Z//G (1.3):

H?(Z |G, #9) = HP*4(Z, k).
We first assume that there is only one stratum. Then the sheaves #?:=Rin k
are locally constant with fibers H?(G/H, k) (Corollary 1.4), where H is a principal

isotropy group. If Z//G is contractible, then H? (Z//G, #%) =0 for p>0 and the spectral
sequence degenerates:

H(Z, k)~H° (Z |G, #%) = #%(Z |G)~H4 (G/H, k).

If, in addition, Z is acyclic, then

0 if ¢>0,

H?(G/H, k)~H4(Z, k):{ kit g0

By Remark 3.4 below this implies that H=G. Hence we have a fixed point in every
fiber. This proves the following result, which generalizes the first part of Theorem 0. 1.

(3.2) Proposition. — Let Z be a smooth acyclic G-variety with contractible quotient
Z)G. If there is only one stratum in the Luna stratification, then the action is fix-
pointed (i.e., the closed orbits are fixed points).

This proposition applies in particular when Z is contractible (see 0. 2).

(3.3) Corollary ([BH1, 10.3], [Kr3, 6.3, 6.5]; see [Krl, 5.5]). — Under the assump-
tions of the proposition above the variety 7 is a G-vector bundle over ZJG, i.e.,
n:Z — Z|G has the structure of a vector bundle such that G acts linearly on each fiber.

(3.4) The following lemma is well known ([KPR, 2. 3]).
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Lemma. — Let G be a linear algebraic group and H = G a closed subgroup. Let
K < G be a maximal compact subgroup such that K':=K N H is a maximal compact
subgroup of H. Then the inclusion K/K' & G/H is a homotopy equivalence.

(3.5) Remark. — As a consequence of the lemma we see that for reductive groups
H < G we always have

H?(G/H,k)=0 for ¢g>d:=dim G/H,

since dimg K/K'=d. Assume that G (hence K) is connected. Then H*(K/K', Z/2)=Z)/2,
and H*(K/K’, k)=k for all fields k if K/K’ is orientable (Poincaré duality).

4. Proof of Theorem 0.1

(4.1) Let G, X, etc. be as in 0. 1. We first assume that G is connected. The principal

stratum is of the form AN\({y,, .. .,»,} with r>0. The case r=0 has been handled in
3.2, so we assume r>0.

We cover A with open parallel strips S;, i=1,2, . . .,r, with the following proper-
ties:

(1) A= U S; and y;€S,
i=1
(2) S;N S, is a non-empty open strip containing no y;,
(3) S;NS;= for |j—i|>1.
(By a “strip” we mean an open subset of A=RXR which is isometric to
R xI={(x,y)|yel}, where I is an open interval in R.)
For every strip S; the restrictions #? lsi are acyclic by 2.1. This allows us to

calculate the cohomology of #7 as the Cech cohomology with respect to the covering
S ={S;}:

H? (A, #9)=H? (¥, #9).

The (alternating) Cech complex has the following form:

r r—1

(%) 0— @ HO(S, #%) 5 @ HO(S;N Sy, #%) -0

i=1 i=1

This shows that H? (A, #9) =0 for p>2, hence the Leray spectral sequence for the
quotient map m:X — A collapses. As a consequence, we get
k for p=¢g=0,

H? (A, #9) = .
( ) { 0 otherwise,
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which implies that the map ¢, of (*) is an isomorphism for ¢>0.

(4.2) Let H < G be the principal isotropy group and denote by O; the closed orbit
in the fiber x~'(y,), i=1,...,r. By 1.4 and 1.5(1) we can rewrite the sequence (%)
in the form

r r—1

(%%) 0 ® HY(0,k) = @ H*(G/H, k) >0

i=1 i=1

where the components of the maps ¢, are induced by G-equivariant maps G/H — O
(see 1.5(2)).

(4.3) By assumption we have dim G/H >0, else H= G and there is only one stratum.
Lemma. — dim O;<dim G/H for all i.

Proof. — Assume that dim O,=dim G/H for some i. Then, in a neighborhood of
0,~G/H,, the G-variety X has the form G x"iW, where W is a representation of H,
with the following properties: W//H;~A and the principal isotropy group H < H; is
of finite index. It follows that the identity component H? and H° coincide and that
W/H°~A. Now W/H,;=(W/H°)/(H,;/H°) and H,/H° acts on W//H° ~ A with principal
isotropy group H/H°. But the principal isotropy group is the noneffective part for a
finite group action, and any finite group acting effectively on A is cyclic. Thus H is
normal in H; with cyclic quotient, i.e., G/H — O; is a cyclic covering.

Let K< G be a maximal compact subgroup such that K':=KMNH and
K;:=KMNH; are maximal compact subgroups of H, H,, respectively. Then
K/K’ - K/K; is a non-trivial cyclic covering of compact manifolds with covering group
K,;/K'=H,/H, and we obtain an exact sequence of homotopy groups

ny (K/K') - m; (K/K)) = 7y (K;/K)=K;/K' = 1

Now we set k=Z/p where p divides the order of H,/H. Then, using the canonical
isomorphism Hom (r, (=), Z/p)~H" (—, Z/p), we see that the induced map

H' (K/K;, Z/p) > H' (K/K’, Z/p)

has a non-trivial kernel. This implies that the map ¢, in (**) has a non-trivial kernel,
too (3.4 and 1.5(2)), contracting the fact that ¢, is an isomorphism for ¢>0
4.1). m

(4.4) Now we can finish the proof of the theorem in case G is connected. Choosing
g=d(=dim G/H>0) and k=Z/2 in the sequence (*x*) we get H*(O,, Z/2)=0 by the
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lemma above and 3.5. Since ¢, is an isomorphism we must have r= 1. Consequently,
H?(0,,k)=0 for g>0 and all fields &, and

H°(0,,k)~H° (¥, #°)=H°(A,k)=*t.

This implies that O, is a fixed point (3.5), and the claim follows.

(4.5) If G is not connected, we apply the above results to G°. We find that X/G°~A
and that either

(1°) m:X - A is a G°fiber bundle and every fiber contains a fixed point,
or
(2°) G° has an isolated fixed point x,eX and n:X — A is a G°-fiber bundle.

In both case G/G° acts on the quotient X//G°~A via a finite cyclic subgroup G of
Aut (A).

In case (2°), G fixes x, and G acts freely on A, and we are in case (2) of 0.1. In
case (1°), if G is trivial we are clearly in case (1). If not, then G has a unique fixed
point in A (which we can assume to be 0), G acts freely on A, and we are in
case (2). W
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Chapter 11I. AUTOMORPHISM GROUP SCHEMES

0. Résumé

Let V be a representation of G with quotient map ©:V — A given by a homoge-
neous polynomial ¢ of degree d. In this chapter we study the group functor which
associates to every open subset U < A the group of all G-equivariant automorphisms
¢:n ' (U)S n~1(U) which induce the identity on U. We show that this functor is
represented by an affine algebraic group scheme Aut$ over A (2.2).

The general fiber of AutY is the group L:=Aut (F)¢ of G-equivariant automor-
phisms of the fiber F:=n"!(1) which is a linear algebraic group (2.5). In section 3
we analyze the structure of L. In section 4 we show that Wut$ is isotrivial over A.
This means that ut§ |4 pulls back to the trivial group scheme A x L under a covering
A - A, z2%(4.2). We introduce a group scheme £% over A (which depends only
upon d and L) which is “simpler” than Aut$ and agrees with it over A. The interplay
between £f and Auty is a fundamental theme in our work.

1. Affine group schemes

(1.1) Let Y be a variety. In this paragraph we recall the definition of a group scheme
over Y and of the corresponding group functor. A standard reference is [DG]. We
are mainly interested in the case where the base Y is the affine line A.

Definition. — An (affine algebraic) group scheme over Y is a variety ® together
with an affine morphism mg:® — Y and the structure of an algebraic group on each
fiber G,:=mng 1(y). The group structure depends algebraically on yeY, i.e., the two
maps

p:6xy6 -6, (gh—gh™', and &Y->06,y—e,

are algebraic morphisms, where ¢, is the neutral element in the group n~ ' (y).

The definition of a group homomorphism p:9H — ® between two group schemes
over Y is clear: It is a morphism which induces the identity on Y such that for every
y€eY the map p,: 9, - ®, is a homomorphism of algebraic groups.

Since every affine algebraic group scheme over Speck, where k is a field of
characteristic zero, is reduced (Theorem of Cartier, cf. [DG, II, §6.1.1]), it follows
that all fibers of © are reduced and smooth. So the fibers are linear algebraic groups.
In particular, if ® is connected and Y a smooth curve, then 7 is a smooth morphism.

Clearly, for every morphism Z — Y the fiber product Z x , ® is a group scheme
over Z. We denote it by 6.
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(1.2) Examples. — (a) The easiest examples are trivial group schemes G&=Y X G,
where G is an (affine) algebraic group and n: Y X G - Y the projection.

(b) A modification of the first example gives the following twisted group schemes:
Let I be a finite group which acts freely on the affine variety Y on the right, and
denote by Y/I" the quotient. Assume in addition that I" acts on G by group automor-
phisms. Then T acts on Y X G on the right by (y,2)— (yy,7 'g), yeTl, yeY, geG.
The quotient Y *' G is a group scheme over Y/I" whose fiver over every point is
isomorphic to G. This group scheme is said to be isotrivial, since it becomes trivial
under the étale cover Y — Y/I'.

(c) Let (¢, x) be coordinates on C?, and let ®, be the open subvariety of C? where
1+ x#0, n>1. Let n: ®, > A be the projection of (¢, x) to ¢, and define a group
scheme structure on &, by setting

(¢, 8).(t, x)=(t, x+x"+ 1" xx").

Over A, the map sending (2, x) to (z,1+"x) gives an isomorphism of &, |s onto the
trivial group scheme A x C*. In particular, the fibers m ™! (¢) for t#0 are isomorphic
to C*. On the other hand, the fiber over 0 A is just the additive group C*.

(1.3) Let ® be a group scheme over Y. For any open set U = Y the sections
G(U):={c: U->6|n(c(y)=yforall yeU}

form a group in an obvious way: (o-A)(y): =0 (y)A(y). More generally, we obtain a
group functor, also denoted by ®, which associates to every morphism ¢:Z — Y the

group
62):={c:Z->6|n.c=0¢}.

Clearly, ® (Z) is just the set of sections of the group scheme &, over Z. It is well
known that the functor Z+— & (Z) completely determines the group scheme &. It is
even sufficient to restrict to Z affine.

(1.4) Examples. — For the examples in 1.2 above we have the following descriptions
of the corresponding group functors:
(a) If G is the trivial group scheme Y X G and ¢:Z — Y any morphism, then

®(Z)=G(Z):=Mor (Z,G).

(b) Let ® be the twisted group scheme Y *'G of 1.2(b). For any morphism
¢:Z - Y|T" we denote by Z the fiber product Zx y, Y. Then T acts (freely, on the
right) on Z with quotient Z. This induces a left action of I' on G(Z;) by group
homomorphisms, defined by (yo)(z):=v (o (z7)). Then
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Y+ G)(2)=G(Zp)".

(¢c) Consider the group schemes ®, over A defined in 1.2 (c), and let
Spec R - A=Spec C[¢] be a morphism, i.e., let R be a C[f]-algebra. Denote by reR
the image of te C[7]. Then &, (R):=,(SpecR) is the group of C[f]-homomorphisms
from O (6,)=C|t,x]; y,n, to R. Any such homomorphism sends x to some s€ R such
that 1+7"s lies in the group of units R* of R (since 1+ ¢"x is a unit in O (®,)). Thus
there is an isomorphism of ®, (R) with

{seR|1+r"seR*} c R,

where the group structure is given by s.s'=s+s +r"ss’. If r=0, then &, (R)~(R, +).
If re R*, then there is an isomorphism t: ®,(R) —» R* sending s into 1+7"s._

_As an example we calculate ©, (A) and 6, (A) as subgroups of ®, (A), where
A :=Spec C ((1)). Applying the isomorphism 1 (with R = (A)) we find that

1(6,(A)=0A)*=C[t,1"*={ct'|ceC*iecZ}.
(6, (A)={1+mh|heC[t]},
1(6,(A)=0(A)*=C((1)*.

(1.5) We now describe another important example of a group scheme, the automor-
phism group scheme of a G-vector bundle #° over Y (with trivial G-action on Y).
Here G-vector bundle means that #  is a vector bundle over Y together with a
G-action which is linear on each fiber, i.e., every g€ G induces an automorphism of
the vector bundle #~ (cf. [Kr2,§1]). Assume that # =% ® W where ¥ is a vector
bundle (with trivial G-action) and W a G-module. We consider the group functor
which associates to a morphism ¢: Z —» Y the group GL (¢* #)€ of G-equivariant
automorphisms of the G-vector bundle ¢* #". (As usual, @* #~ denotes the pull back
of #7; it inherits a natural G-vector bundle structure.) We claim that this functor
represents a group scheme over Y.

Let 2 be the principal GL,-bundle associated to ¥", n:=rk¥", and let
L:=GL(C"® W)C be the group of G-linear automorphisms of the fiber of # . There
is a canonical injective homomorphism p: GL, —» L. We define a group scheme £,
over Y as the associated bundle

Q=P %CnL
where GL, acts on L by conjugation via the homomorphism p.

(1.6) Lemma. — For any morphism ¢:Z — Y we have

2, (Z)=GL (o* #)C.
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This is obvious for a trivial vector bundle ¥~, and the general case follows easily. We
leave it as an exercise (cf. [DG, II, § 1.2.4]).

2. The automorphism group scheme of a quotient

(2.1) Let G be a reductive group and X an affine G-variety. Assume that the
quotient map n: X — X//G is flat. Given a morphism Z — X//G we denote by X, the
fiber product Z X y,;X. Then G acts on X, and the projection n,:X, —»Z is the
quotient map. Define the group

Aut(X,/2)%:={¢:X,; > X, | ¢ is G-equivariant, n,.p=m, }.
Clearly, this group depends functorially on Z.
(2.2) Proposition. — The group functor Z+— Aut (X,/Z)® is represented by an affine
algebraic group scheme MWt over X||G.

Proof. — Let A:=0(X)®. The coordinate ring ¢ (X) is a direct sum of isotypic
components () (X), which are all finitely generated A-modules. Hence, by flatness,
0 (X) and all the ¢ (X), are projective over A. Moreover, there is a finitely generated
A-submodule P = 0 (X) which generates ¢ (X) as an algebra and is a (finite) direct
sum of isotypic components @; ¢ (X),,. There is an exact sequence

0-a->S,P)-0X)—-0

of A-modules, where S, (P) is the symmetric algebra of P and all maps are
G-equivariant. Since ¢ (X) is projective over A, for every A-algebra R, we obtain an
exact sequence

0> R®,a—Sg(Pr) = 0 Kgpeer) = 0
where
Pr:=R®,P < R®A(9(X)=(9(XSP“R)'

Every G-automorphism of Sg,. g over Spec R induces an R-linear and G-equivariant
automorphism of P =®; R ® O (X),,, and is clearly determined by this automorphism.
Hence we get, in a functorial way, an inclusion

gt Aut (Xgpec /Spec R)S & GLg (PR)®= n GLy R ®, 0 (X),)°.

By [Kr2, 2.1 Proposition 1], every ¢ (X),, determines a vector bundle of the form
¥" ® W,;, where W, is an irreductible G-module of type ®;. Thus Lemma 1.6 implies
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that R+ GLg (PR)° is represented by an affine group scheme €, over Spec A=X//G.
The image of the homomorphism 1, is exactly the set of those R-G-automorphisms
of P which stabilize the ideal R ®, a in the symmetric algebra Sg (Pg). This clearly
defines a closed subgroup scheme

Aut§ < L,

over X/G. H

(2.3) We describe in more detail the case of a representation V with a one-dimensio-
nal quotient V/G~A. Here A= 0 (V)®=C][f], where te 0 (V) is homogeneous. Since
O (V) is a free graded A-module (see [Sch2]) we can find a G-stable homogeneous
subspace S < (¢ (V) such that multiplication induces an isomorphism

(%) A®cSSO).
Let V,, V,,...,V, be the non-equivalent irreducible subrepresentations of V. Denote
by S, the sum of all subspaces of S which are isomorphic to V¥, i=1,2,...,r. Then

each S, is finite dimensional and
A®cS; S AS, = 0(V)

where AS,; is the isotypic component of O (V) of type V¥. Let S? be the linear part of
S;: S?=S, N\ V*. Then S°:=@ S?=V*. We choose a homogeneous G-stable comple-
ment S of S? in S;.

Let R be an A-algebra and let ace Autg_,;, (R ®, O (V))C, the group of G-equiva-
riant R-algebra automorphisms of R ®, O (V). Note that Autg ., (R ®, O (V))C is the
opposite group to Aut (Vg,..r/Spec R)¢. Since R®,0(V)~R ®:S by (%), the
automorphism a preserves every R ®S;. If we choose an isomorphism S;~n; V¥, then
°€|R®s,- corresponds to a matrix o;(a)e GL,,(R). Now V* generates the R-algebra
R ®, 0 (V) and so the homomorphism o o (o) : =] ] o, (o) is injective.

(2.4) Clearly, the R-matrices o; (o) are not arbitrary: First of all, they are invertible.
From the decomposition S;=S? @ S; we obtain a block decomposition

(A G
Gi(@)‘<Bi Di>.

Since the elements of @; S; are polynomials in V*=@,S?, the matrices C; and D; are
polynomials in the entries of the matrices A;, Bj, j=1,...,r, with coefficients in A
(and are independent of o).
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Finally, o is the identity map on R=R® | « R®, O (V). In particular, it pre-
serves the element ¢:=the image of 7 in R. Now ¢ is a polynomial function on V with
coefficients in C, and so o.(7) is a polynomial in the coordinates of V and the entries
of the matrices o;(a), i=1, .. .,r. This polynomial has to equal .

A G

In sum, the matrices o; (a)=< ) have to satisfy the following three condi-

tions:
(1) The o; () are invertible R-matrices.
(i1) There are polynomials with coefficients in A, independent of o, which express
the matrices C; and D; in terms of the matrices A; and B, j=1, .. .,r.
(iii) There is a polynomial, independent of &, in the coordinates of V and the
entries of the matrices A;, B;, C; and D, which is equal to 1.

Conversely, it is not hard to see that every element

[IBe][GL, R),  Bi= <Ai Ci>

B, D;

which satisfies the three conditions (i), (ii) and (iii) above, comes from

Autg i, (R ®, 0(V))C. In fact, the matrices <g‘> determine a G-equivariant C-linear

map V¥ > @, R®, S; = R®, O(V), hence a G-equivariant C-algebra homomorphism
B':O(V) > R®,0(V).

Condition (ii) makes sure that f'|s:S;,>R®,S; i=1,...,r, is given by the
matrix B;. Condition (iii) implies that B’ is A-linear, hence it induces a G-equivariant
R-algebra homomorphism

B:R®,0(V)>R®,0(V).

This is an automorphism because of condition (i).
Geometrically, we see that

Auty = Ax[[GL,
is the closed subvariety defined by the conditions (ii) and (iii).

(2.5) A special case of Proposition 2.2 is the following. We say that an affine
G-variety Z is without invariants if 0 (Z)°=C.
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Corollary. — Let Z be an affine G-variety without invariants. Then the group
Aut(Z)C of G-equivariant automorphisms of Z is a linear algebraic group. In particular,
in the situation of 2.2 we have (Nutg), = Aut (F)® where yeX)/G and F:=nx"' (y).

(2.6) Remark. — Let V be as in 2.3 and let ye A~V/G. Then the isomor-
phism (%) of 2.3 shows that the restriction O (V) — O (x~'(y)) induces a G-equi-
variant isomorphism S5 O (n ™! (y)).

If the fiber n~'(y) is an orbit ~G/H, then we obtain, by Frobenius reciprocity,
that

mult,, S = dim (M*)H

for every simple G-module M. In general, the fiber 1~ (y) for y#0 is of the form
G *x"'W where W is an H-module without invariants (see I1.1.1), and we get

multy, S = dim (€ (W) @ M*)H

(cf. [Schl, Proposition 4. 6]).

(2.7) Example. — Let V=C? and G be the subgroup of SL, generated by
{(i; x(zl)ﬂeC*} and <(1) _01> Let {x,y} be the standard dual basis of V=C?,
and let s:=xye@ (V). Then A= (V)¢ is generated by t=s°. Now V is a simple
G-module, and there are 2 (=dimV) copies of V* in S (see Remark 2.6). One is
V*=span{x,y} and the other is span {sx, sy} = S*®(V*). There is a G-isomorphism
between these two, which sends x to sx and y to —sy.

Let ae Autg 4, (R ®, 0 (V))°. Then

o()= <Z 2) eGL, (R)

where

(1) a(x)=ax+bsx, a(y)=ay— bsy;

(2) a(sx)=cx+dsx, a(—sy)=cy—dsy.
Since sx=x2y and —sy= —xy?, we can use (1) to compute the coefficients occuring
in (2), and we obtain

(3) c=(a*—b*1)bt, d=(a*>—b*1)a.
The condition 2.4 (ii) of the general case reduces to (3) in this example, 2.4 (iii)
reduces to

@) (@-b*1)’t=1,
and 2.4() to
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(5) det <Z 2>=(a2 — b2 1) eR*.

Hence we get the following description of the group scheme Aut$.
Muty={(1, a, b) | (@*—b*1)*t=1,a*~b*1#0} c A®
with multiplication
(t,a, b).(t,ad, b)=(t, aa’ + (a* —b* 1) bb' t, ba' + (a* — b* f) ab’)

and unit €: t+—(¢,1,0). The fibers over A#0 are all isomorphic to G: By (3) and (4),

(QIut\G,)szlF{(a Bbx>]a2—xb2=:5=i1}.
b da

Choose p such that p2=2, and set S:=<i H ) Then SG,S™'=G.
—p
It is not true that Aut§|; is a trivial group scheme. It becomes trivial after the
base change A — A, z+>z2, hence it is a “twisted form” of AxG (see Example
1.2(b)).
The fiber over 0 is isomorphic to C* x C:

(mut3)0={(a,b)|a¢0}3{<;’ f3>eGL2(C)},

where the isomorphism is given in the obvious way. In particular, this fiber is of
dimension 2.
The variety Aut$ has three irreducible components:

6°:={(t a b)|a®—b*t=1},

G :={(, a, b)|a*—b*t=—1},

G, : = (Auty),.
The component 6° is a subgroup scheme whose general fiber is C* and whose zero-
fiber is C*. The union 6° U 6G'=6° U c 6 is also a subgroup scheme, where G is

the section o (£)=(z,i,0). It has two connected components. The general fiber is G
and the zero fiber is a semidirect product Z/2 x C™.

(2.8) Example. — We identify O, with C* x Z/2. Let V,; denote the irreducible two-
dimensional O,-module with weights j and —; relative to the action of C*, j>1. The
generator of Z/2 interchanges the two weight spaces. Let G=0,x C* and define
W;:=V,® C,, where C, is the representation of C* with weight 1. Consider the
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representation V=V, @ W, of G and denote by {u, v, X, y} the dual basis of V
corresponding to the weights 1, — 1, n, —n of C* < O,.

The invariant ring A is generated by ¢=wuv. The multiplicity of V¥ in S is one,
that of Wi is 2 (see 2.6), and the copies of these representations in S are given by
span {u,v}, span{x,y} and span{u*"y,v*"x}, respectively. If R is an A-algebra and
o€ Autg 4, (R ®, 0 (V))%, then o (o) is the pair

<(r), <a C)) r,a, b, c, deR,
b d

where

L
/N
N
AR
\-/
\—/

Il

2n
()5
¥ van
2n 2n
(G0
v2nx y _Uan

Now condition (iii) of 2.4 imposes r’>f=t, and condition (ii) forces c=72"b and
d=r*"a. From condition (i) we obtain reR* and r?"a*—1?"b*c R*. Hence we get
the following description of Aut$:

Wut§={(t, r, a, b)|r#0, r*t=t, r*"a*—*"b*#0} = A*
with multiplication
tr,a, b).(t,r,a,b)=(, rr,ad +1>"bb', a’ b+r*"ab")

and unit €:1—(1,1,1,0). It follows that Aut§ |4 is a trivial group scheme with fiber
Z/2 x (C*)? and that the zero fiber is isomorphic to a semidirect product of C* with
C*x C*. We leave it as an exercise to work out the details.

3. Structure of Aut (F)¢

3.1) LetV, t=n:V—-A, Fand L=Aut(F)® be as in section 0. Note that L is a
linear algebraic group, and L=(Aut$),, the fiber of our group scheme at 1
(Corollary 2.5). Let I'":=p,, the group of d-th roots of unity, acting as scalars on V.
Then I' preserves F, so there is a canonical inclusion I = L.

Choose vyeF such that Go, is closed, and set H:=G, . Let N be the slice
representation of H (I1. 1.1), i.e., let N be an H-stable complement in V to the tangent
space T, (Gv,). Then N has an H-stable decomposition N=C @& W, where W is an
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H-representation without invariants. We have an isomorphism G *"W 5 F defined
by [g,w]—>g(W+vy). In other words, the choice of N (hence W) determines a
G-vector bundle structure on F.

Let L, <L denote the subgroup of G-vector bundle automorphisms of
F=Gx*"W. Any reL preserves the closed orbit Guv,, which is the zero section
Z < G*"'W, and its differential dr induces a G-automorphism of the normal bundle
N (Z) of Z in F. But A4 (Z) is canonically G-isomorphic to F, so there is a homomor-
phism €: L — L, which we can assume to be the identity on L.

Let L denote Aut(Gv,)°~Aut(G/H)°~Ng (H)/H. Since L preserves the closed
orbit G v, there is a natural homomorphism B:L — L.

(3.2) Now consider the following commutative diagram:

1 1
! !
U, -U_.

*) Aut(W)li > L SLo1
ok

B _
1-GLWH->L,—>L-1

! l
1 1

Here 3 is defined similarly to €, using differentials. We put U; : =Kere and U, : =Ker .
The other homomorphisms in (%) are clear from what we said above, given our

identification F =G *" W. The vertical sequences are exact by construction, and clearly
GL (W)"=Kerp'.

(3.3) Proposition. — (1) The groups L., and GL(W)! are reductive, and GL (W)" is
a product of GL,’s.

(2) U,=Rad,(Aut(W)"), U =Rad, (L), and Aut (W)" is connected.

(3) The lower horizontal sequence in the diagram (%) is exact. In particular, B and
B’ are both surjective.
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B _
(4) The homomorphisms T" & L and L — L induce isomorphisms
rrsSL/L°SLL
where T :=Ker (I' - L/L°).

Proof. — 1t follows from Schur’s lemma that GL (W) is a product of GL,’s. We
now show that B (L%)=L°. Since L° and GL (W) are reductive, this implies that LY
and L, are reductive.

Let heCent;(H). Then & acts on F (from the right) by [g, wlh=[gh,w],
where geG and weW. Thus Centg(H) maps to L., and its image in L is
Centg (H)H/H = L°. Thus B’ (L%)=L°, and (1) is proved.

Let M be a Levi factor of Aut(W)Y, ie., a reductive subgroup such that
Aut (W)¥=M.Rad, (Aut(W)"), and let K denote M N Kerd. Then K is a reductive
group, K fixes 06 W and acts trivially on the tangent space T,(W). This implies
by Luna’s slice theorem that K acts trivially on W. Thus M N\ Keré={e}. Since
& is surjective and GL(W)" reductive, Kerd = Rad,(Aut(W)"). Hence
Ker §=Rad, (Aut (W)"). The proof that Kere=Rad, (L) is similar. Finally, Aut(W)"
is connected, since U, and GL (W)" are, and the proof of (2) is complete.

By the Luna-Richardson theorme [LR], the inclusion V¥ ¢, V induces an isomor-
phism O(V)°S 0 (VM. Since dim V¥/L=1, we get dim VY/L°=1 and
O (VML =C|t,] for some homogeneous #, of degree d,. By construction, the generic
L-orbit in V? is closed and isomorphic to L. It follows that L/L, acts faithfully on
C[to] and is therefore cyclic. Thus d=degr=d,.|L/L°|. Now T acts on V by scalar
multiplication and clearly 7, (y vy)=7%t, (v,) for yeT. Thus C[to]"=C [1,]*°, hence
B(I.L°=L. It follows that B and B’ are surjective, which proves (3). Since
L/L°~L, /L% ~L/L° we obtain (4). W

(3.4) Remarks. — (1) (Vust) In general, Rad,(Aut(W)") is not trivial. For
example, consider the representation (W,H)=(A2C°>@® (C%)*, SL;). Then
SZ(A2C%) 2 A*C3=(C%)*, and the mapping

AC D (C)*s(w, &) (0,E+ 0 A ©)

is in Aut(W)", but not in GL (W)".
(2) In general, U #£U,, ie, Aut(W)"#Kerp. Consider (V,G)=(A*>C*®2CS,SLy).
Then (W,H)=(2C*® 2C3, SL, xSL,), and

Aut(W)# =GL (W)"~GL, x GL,.

Moreover, L°=C* and one can compute that dim L=13 (see VI.3.14 Table Ia).
Thus U, ={e}, while dim U, =4.
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(3.5) We can say a bit more about the structure of L. Let G':=G %I acting on V
in the obvious way. Then O (V)®=0 (V)¢ =C[s]. Thus F~G"*" W, where H' : =G,
and W is H'-stable and chosen as in 3.1. (From now on we always assume W to be
H'-stable.) Note that [H':H]=d, and H' is generated by H and elements (a,,y™ "),
yeI', where a,eNg(H) and a,v,=y7v,. We may assume that a,-1=a,'. Now H is
obviously normal in H'. It follows that ' < L,. In fact, the isomorphism
©:G*"W 3 F sends [g, w] to g(v,+ w), hence

vigwl=o ' (yolg, wD=0""1 (vg(vo+ W)
= '(ga,votga,a; 't yw)
=[ga'y)a'y_lyw]
where wi—a_ 'yw is the action of (a, ',y)eH’ on weW. Thus I' acts via G-vector

bundle automorphisms. This proves part (1) of the following proposition; part (2) is
obvious from 3.3.

Proposition. — (1) ' < L.
(2) L=L,, X Uy is a semidirect product of I'-groups.

(3) L,,=L x GLy(W) is a semidirect product of T-groups, where L <L, is
generated by L° and T, and B’ induces an isomorphism L. L.

Proof of (3). — From the proof of 3.3 we know that the elements of L° act on
G*"W~F by [g,w]a,=[gae,w]. Then vy~ 'a,y sends [g,w] to [ga,aya, ', w] where
a,aya, 'eL° Thus I' normalizes the image L° = L,, of LY and (3) follows easily.
Note that yeI acts on GL (W)" via conjugation by (a, ',y)eH'. W

(3.6) Remark (Luna). — The connected component L° of L is a special group
(Iv.2.6).

4. The group scheme £}

We now define a group scheme f associated to L which coincides with ut$
over A, but which is much easier to deal with. In chapter V we will establish the
decomposition property (see 1.3.4) for 2§. The sticky point will then be to compare
the points over A, i.e., Aut$ (A)=Aut(V/A)® and £k (A). We will see in 4.6 that
Aut(V/A)® < 2L (A).

(4.1) Let B denote Spec C[s], and represent A as Spec C[f] where t=s%. Then we
have a canonical morphism B — A, z—z% which identifies A with B/I", where
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I':=p,(I.4) acts by scalar multiplication on B. As before, we denote by F the fiber
n~'(1). Let T act on B x F (on the right) by (z,7)y=(z7y, 7 ! v). There is a canonical
I'-G-equivariant isomorphism

(*) p:BXxF3Bx,V, (z,v) |z, zv]
over B, which induces a G-isomorphism
p:BxTF3V, [z,v] zv

over A=B/T" (cf. 1.3.3).

(4.2) Proposition. — The morphism p induces a T-equivariant isomorphism of group
schemes
(1) Auig, v SBXL

over B, and p induces an isomorphism
) Auty =AutS [, SB*'L
over A.

Proof. — The isomorphism (1) is clear from (*). By definition of the group
scheme Aut$ we have in a canonical way

B x 4 Auty = Autg, ; y.
Hence, by the isomorphism (1),

Wty = Autg, v/ SB*'L
(cf. Example 1.2(b)). MW

(4.3) Remark. — The I'-action on the sections @:B — L has the following descrip-
tion:
1

O "0 =y (Qoy) Y
(see 1.4(b)).

(4.4) Define a group functor Lf over A by
LL(Y):=L(Bx,Y)" for a morphism Y — A.
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Then Ly:=25|; equals B*"L (see 1.4(b)). One can show that £f is represented by
an affine group scheme over A. In fact, £f is the set of I'-fixed points of the so-called
Weil restriction, denoted by HB/ A(BXL). (See [DG, I,§1.6.6].)

Proposition 4.2(2) can now be rephrased in the following way:

(4.5) Corollary. — There is a canonical isomorphism
o Auty > g

of group  schemes  over A. In particular, we have an induced isomorphism
c,:Aut(V/A)® 5 L(B)" where o, (Aut(V/A)°)=L (B)".

Later on it will be important to compare the points over A. The next proposition
is a first step in this direction. Let U denote the closure of Aut§ in ut$. This is a
(closed) subgroup scheme of Aut$ such that A | =Aut§ and A (A)= Aut (V/A)C.

(4.6) Proposition. — The isomorphism &:AutS > Qg of 4.5 extends to a homomor-
phism of group schemes

c: A L.

In particular, &, induces an injection Aut(V/A)° ¢, L (B)'.

Proof. — Clearly, o: % — g is given as a rational map defined on A ;. If o
were not regular then it would have poles on a non-empty open subset of the zero
fiber Ay For every point ae, there is a section Ye W (A)=Aut(V/A)® such that
V (0) =a. Hence, it suffices to prove that the isomorphism Aut (V/A)® 5 L (B)' induces
an inclusion Aut (V/A)® o, L (B)'.

For this consider the diagram

Ve——B*x'F«—BxF
! ! 1P
A A — B

Every scheme in this diagram has a natural C*-action coming from the scalar multi-
plication on V, in such a way that all morphisms are C*-equivariant (the action on
B x F is trivial on F and by scalar multiplication on B). As a consequence, we obtain
C*-actions on the automorphism groups Aut(V/A), L (B), L (B):

Yorpi=A"leyod,  AeC*  YeAut(V/A), etc.
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Similarly, we have C*-actions on Aut({//f&), L(ﬁ), L(]%)r. For a given

VeAut(V/A)°=L(B)" we say that lim " exists if the corresponding morphism
A—>0

C*xV -V, (A, v) M (v), extends to a morphism C x V - V. It is easy to see that
L(B)={yeL(B)]| lim M exists }.
A0
(In fact, considering yeL (ﬁ) as a morphism V{: B> L we have M=\ °A, which
implies the claim.) Therefore, we have to show that lim M exists for every
VeAut (V/A)C. roo
Consider the automorphism (M)* of the coordinate ring ¢ (V). We have

CU)* o) =A*¥Y* (A1 x) =A* (A1 (xy)
=271 (W x) (A x;, A Xy, .. A X,).

Since J* (x;) belongs to the maximal ideal m of 0V and since all weights of C* on m

are > 1, we see that ({)* (x,) is a polynomial in A. Hence lim "y exists. MW
A—>0

(4.7) Remarks. — (1) A less direct proof of 4.6 can be obtained from our results in
Chapter VI (see VI.1.17).

(2) Suppose that Z % A is a flat A-scheme (for example, Z is irreducible and p is
dominant). Then Z:=p~ ! (A) is dense in Z and any element of Aut (Z) is determined
by its restriction to Z. Hence 2Aut$ (Z)=A(Z).
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Chapter IV. FIBER BUNDLES AND COHOMOLOGY

0. Résumé

(0.1) Let X be a smooth affine acyclic G-variety with fixed point set X®={x,} and
quotient map my : X - A where 7y (x,)=0. Denote by V the G-module T, X and fix
a homogeneous quotient map my:V — A. Let X:=X\ 5 !(0) and V:=V\ my * (0) be
the complements of the zero fiber, and let F:=mny ' (1) be the general fiber.

(0.2) Theorem. — There exists a G-equivariant isomorphism ¢:X 5V over A:

e
|-
<

X

- —_—

AP—
3
<

>
b

Proof (cf. discussion following Theorem 12 of 1.3.1). — We will reduce the proof
to a statement about cohomology sets. The two quotients X - A and V- A are
G-fiber bundles with fiber F (I1.0.1 and II.0.4). They correspond to principal
L-bundles over A where L is the G-automorphism group Aut(F)® of F (see 1.4
and 1.5(d)). We have to show that the two classes [X] and [V] in HL(A,L), the
set of isomorphism classes of principal L-bundles over A, are equal. Since X
and V are isomorphic over A (II.0.4) the bundles become isomorphic over
A:=A N A=SpecC((1)). Consider the following diagram:

Hét (A, L)—— Hét (A, L/LO)

! l
HY (A, L)—H} (A, L/L°)

The right vertical map is bijective, because L/L° is finite and A and A have the same
(algebraic) fundamental group (i.e., they have corresponding étale coverings; see 4.4).
So the proof is reduced to showing that the canonical map H} (A, L) —» HL (A, L/L°)
is injective. In 5.4 we show that the map is, in fact, bijective. H

(0.3) There is a more general approach to the results of this chapter using locally
constant group schemes over A, i.e., group schemes over A which become trivial under
an étale base change Y — A. For example, the automorphism group scheme
9 =Wut§ |4 is locally constant, and even isotrivial (II1.4.2). This is a general fact:

Proposition. — Every locally constant group scheme over A is isotrivial.
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(0.4) For any locally constant group scheme & over A one has the notion of a
principal ®-bundle generalizing Definition 1.1 below (cf. [DG], III, §4]; we denote by
H. (A, ®) the set of isomorphism classes of these bundles.

In this setting the two quotients X - A and V - A correspond to principal
9l-bundles, and the second represents the trivial element of HY, (A, 90). Define 9° = U
to be the connected component containing the unit section. It is a locally constant
normal subgroup scheme with connected fiber, and the quotient 9/9[° exists and is a
finite isotrivial group scheme over A. One can prove the following result which
immediately implies Theorem 0. 2.

Theorem. — Let ® be a locally constant group scheme over A. Then the canonical
map HL, (A, ) - HL (A, 6/6°) is bijective.

1. Fiber bundles
Let M be an algebraic group and Y a variety.

(1.1) Definition. — A principal M-bundle over Y is a variety 8 with a (right)
M-action together with a morphism my: ¥ — Y such that there is a surjective étale
map 1n:Y - Y and an M-equivariant isomorphism ¥ x P 3 Y xM over Y, where
M acts on the second factor by right multiplication. The bundle B is called trivial if
it is isomorphic to Y X M, and isotrivial if it can be trivialized by a finite covering
n:Y > Y (i.e. by a finite étale surjective morphism).

We denote by HZ (Y, M) the set of isomorphism classes of principal M-bundles,
and by H. (Y,M) the subset represented by the isotrivial bundles. They are pointed
sets where the distinguished element * is the isomorphism class of the trivial
M-bundle.

(1.2) The sets HL(Y,M) have a number of well-known functorial properties
(cf. [DG,III, §4]). For any morphism «o:Z —Y there is a canonical map
a*:HL (Y, M) —» H (Z, M) given by the pull-back Broa* (P):=ZxP. f N= M is
a closed subgroup we get an exact sequence (of pointed sets)

1 - N(Y)->M(Y)—> (M/N)(Y) - HL(Y,N) 5 H. (Y,M)

where the image of i, is given by those principal M-bundles B for which the quotient
PB/N has a section. If N is a normal subgroup then the exact sequence can be extended
by one term:

1 - N(Y) - M(Y) = (M/N)(Y)
~ H (Y, N) > H (Y, M) - Hg (Y, M/N)
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(1.3) Let E be a variety. A fiber bundle over Y with fiber E is a morphism B: § > Y
such that there is an étale surjective map n:Y —Y and an isomorphism
Foi=Yx,FS3YXEover Y.

If the automorphism group of E is an algebraic group M then there is a well-
known equivalence between the fiber bundles over Y with fiber E and the principal
M-bundles over Y: If P is a principal M-bundle then P *ME:=(P x E)/M is a fiber
bundle over Y with fiber E. Conversely, if § is a fiber bundle over Y with fiber E,
then the functor Jso (Y x E, &) which associates to each morphism U — Y the set of
isomorphisms U x E S &, over U, is represented by a principal M-bundle over Y. In

particular, HZ (Y, M) describes the isomorphism classes of fiber bundles over Y with
fiber E.

(1.4) In most applications, the variety E has some additional structure, e.g., E is a
group or a vector space, or there is a group G acting on E. One then wants to study
the fiber bundles § with this additional structure, e.g., locally trivial group schemes,
vector bundles, or G-fiber bundles (cf. 1.2.3). The same approach as above gives an
equivalence with the principal M-bundles over Y, where now M is the group of those
automorphisms of E which preserve the additional structure.

(1.5) Examples. — (a) Usually, vector bundles are defined to be locally trivial in
the Zariski-topology. But every principal GL,-bundle is automatically locally trivial
in the Zariski-topology (see 2.3). Hence the set of isomorphism classes of vector
bundles of rank n over Y is given by H. (Y, GL,).

(b) If T is a torus, T~ (C*), then H. (Y, T)~Pic(Y)", where .Pic(Y) denotes the
group of isomorphism classes of line bundles on Y.

(d) Let X, V, F, etc. be as in 0.1. Then X - A and V — A are G-fiber bundles
with fiber F (I1.0.1 and I1.0.4), and the automorphism group L : = Aut (F)° is a linear
algebraic group (III.2.5). Hence, the two G-fiber bundles correspond to principal L-
bundles over A and determine elements [X],[V]eH. (A,L). We have
[X]=[V] if and only if X and V are G-isomorphic over A.

2. Special groups

In this section we collect results about special groups. The references are [Se3]
and some unpublished notes of Luna. Let us first recall the definition from which the
importance of this notion for our work is clear.

(2.1) Definition. — A linear algebraic group M is called special if every principal
M-bundle is locally trivial in the Zariski-topology.
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Clearly, special groups are connected. The main result of this section is
Corollary 2.6, stating that L° is special where L is as in 1.5(d). The only part of
this section needed later on is Proposition 2. 3.

(2.2) Remark. — Consider an exact sequence

l-M->M->M"-1

of algebraic groups. If M’ and M” are special, then so is M. (This is an easy
consequence of the second exact sequence in 1.2.)

The following result can be found in ([Se3]). It can also be deduced from
Lemma 2.4 below.

(2.3) Proposition. — (1) The groups GL,, SL, and Sp, are special.
(2) Every connected solvable group is special.

Remark. — Grothendieck [Gr] has shown that SL, and Sp, are the only simple
groups which are special.

The following result is due to Luna (unpublished).

(2.4) Lemma. — Let M be a reductive group and W an M-module. Assume that W
contains a closed orbit M v, with trivial stabilizer, and that there is an M-equivariant
retraction p:U — M v, where U is an open M-stable neighborhood of M v,. Then M is
special.

Proof. — Let n: P — Y be a principal M-bundle and consider a fiber P:=n"1(3,).
We may assume that Y and P are affine. Choose an M-equivariant isomorphism
o:P S Mu,. Then o extends to an M-equivariant morphism o: f - W because W is
a vector space and M is reductive. It follows that U:=a"!(U) is an M-stable open
neighborhood of P and that p:=a"'epoa:U - P is an M-equivariant retraction. If
S is a fiber of p, then the map M xS — U, (m, s)> ms, is an M-equivariant isomor-
phism. Hence the bundle 9 is trivial over the neighborhood n(U) of y,. M

In the rest of this section V denotes any G-module with one-dimensional quotient.
Let F and L be defined as in 0.1 and 0.2.

(2.5) Proposition (Luna). — Assume that G is connected and acts semi-freely on V.
Then G is special.

(Recall that “semifree” means that every closed orbit different from {0} has a trivial
stabilizer.)
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Proof. — The quotient map n:V — A is homogeneous of degree d. Choose v,€F.
Clearly, {Ae C*|AF=F } =p,, the group of d-th roots of unity. Since g gv, is an
isomorphism G5 F, there is a unique homomorphism p:p, —» G such that
Y-vo=p(Y)v, for all yep, Since G is connected, p extends to a homomorphism
p:C* 5> G. It follows that the map (g,7) (g p(f) ' v,) induces a G-equivariant
isomorphism G x (C*/p,) 5 V. Hence there is a G-equivariant retraction V- F~G,
and the claim follows from 2.4. W

(2.6) Corollary (Luna). — L° is special.

Proof. — Let H be the principal isotropy group of V. Using 2.2, 2.3 and I11.3.3
we reduce to proving that (Ng(H)/H)? is special. But this follows from 2.5, since
(Ng (H)/H)? acts semifreely on V¥ with a one-dimensional quotient (cf. [LR]). W

3. Bundles over curves

Let M denote a linear algebraic group. First we recall some well-known facts
about fiber bundles over curves, and then we establish that HL (A, M)=H._ (A, M),
the main result of this section. In addition, we show that HZ (A, M) is trivial for
every M.

(3.0) LetY be a variety. We denote by H.. (Y, M) the subset of H (Y, M) consisting
of those principal M-bundles which are locally trivial in the Zariski-topology.

(3.1) Theorem. — Let C be a smooth curve. Assume that M is connected, and let B
be a Borel subgroup of M. Then

(1) HL (C,B) » HL (C, M) is surjective.
(2) If C is affine and rational then HL, (C, M) is trivial.

The proof will be given in 3.7. We first draw some consequences.

(3.2) Corollary. — Let C and M be as above. Then
(1) He (C,M)=Hg,, (C,M).

(2) If C is affine and rational and M is a closed subgroup of the linear algebraic
group N, then N (C) - (N/M) (C) is surjective.

Proof. — Since B is special (2.3), H.,(C,B)=H.,,(C,B) and so 3.1(1) implies
the first claim. Part (2) follows from 3.1(2) and the exact sequence of H,
(see 1.2). N
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(3.3) Theorem. — Every element of H. (A,M) becomes trivial on an |M/M° |-fold
cover of A. In particular, HY (A, M)=H__ (A, M).

Proof. — Every element of H. (A, M/M?) is represented by a (not necessarily
connected) Galois covering of A with group M/MP°. All such covers become trivial
when lifted to the n-fold cover of A, where n:=|M/M°|. Given [P]e H. (A, M), consi-
der its n-fold lift P. Then the class [P] has trivial image in HL, (A, M/M°). Hence [P]
comes from an element of H., (A, M°), and HZ (A, M?) is trivial by 3.1(2). M

Our proof of Theorem 3.1 will use the following results:

(3.4) Proposition. — Let Z be an affine variety, U a unipotent algebraic group, and
T a torus of rank r. Then

(1) HL(Z, U)={*}.

(2) HL(Z, T)~Pic(Z).

Proof. — Since U is unipotent there is a surjective homomorphism to the
additive group C*. Using the exact sequence of H, and induction on dimU we
reduce to proving that HL(Z,C*)={*}. But C* is special (2.3), hence
H.(Z,C*)=H},, (Z,C*)=H'(Z,0,)=0. This establishes (1), and (2) follows from
the isomorphisms

H;, (Z, T)~H., (Z, (C*))~Hgz, (Z,(C*))~Hz,, (Z, C*) = (Pic Z)
(seel.5(b)). W

The exact sequence of H;,(Z, —) now gives:

(3.5) Corollary. — Suppose that PicZ=0 and that B is a connected solvable group.
Then HY (Z,B) is trivial.

(3.6) Corollary. — Suppose that U is a normal unipotent subgroup of M. Then
M - M/U is a trivial U-bundle, hence it has a section.

(3.7) Proof of 3.1). — We may assume that C is irreductible. Let [P]e H, (C, M).
The field o of rational functions on C is a (C,)-field and so H., (Spec #", M) is trivial
([Sel, II.3.3 and III.2.2]). In other words, P has a rational section, i.e., there is a
section o :C’ — P where C’ is the complement of a finite set in C.

Now o induces a section 1:C’ — P/B which extends to a global section on C,
because the projection p:P/B — C is proper and C is smooth. (In fact, consider the

closure D of the image of t in P/B. Then p induces an isomorphism D 5 C.) Thus
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[P] lies in the image of the map H (C,B) —» HL (C,M). Hence we obtain (1), and (2)
follows from (1) and 3.5. W

(3.8) Remark. — Since H, (A, M/M°) is trivial we have H (A, M)={ x } for any M.
As a consequence, we obtain the following version of Corollary I1.0.3(2).

(3.9) Proposition. — Consider an action of G on a smooth affine variety X. Assume
that X//G~A and that the fixed point set is one-dimensional. Then X is G-isomorphic
to Cx W where W is a G-module and C denotes the trivial G-module.

Proof. — The slice theorem implies that the quotient ©: X — A is a G-fiber bundle
whose fiber F has the structure of a G-module W (see II.1.2). These bundles are
classified by the set H (A, Aut (F)°) which is trivial by the remark above. W

The following decomposition result will be useful in sections 5-6.

(3.10) Proposition. — Let X=SpecC (¢) or let X < A be a non-empty open subset. If
B = M is a Borel subgroup, then M (X)=M (A)- B (X).

Proof. — Let ceM(X). Since M/B is complete, the composition
p°ec :X—>M - M/B extends to a morphism 1:A —> M/B. By 3.2(2), t lifts to a
morphism 6 : A —» M. Clearly, 6 !-ceB(X), hence 5eM(A)-B(X). H

4. Non-abelian cohomology

We first identify HZ (A, M) with certain (non-abelian) cohomology sets arising
from actions of cyclic groups. Then we use Galois cohomology and group cohomology
to establish that HZ (A, M) = HY, (A, M/MP°). As we have already seen, this will finish
our proof of Theorem 0.2.

(4.1) Let Y be an irreducible affine variety, and let I" be a finite group acting freely
on Y on the right. We denote by H!(I', Y,M) the subset of those elements of
HZ (Y/T, M) which become trivial when lifted to Y.

Let [Ple H! (I', Y,M). Then P, being trivial on Y, is isomorphic to the quotient
(Y xM)/T’, where yeI acts by

r,m) Y=,k (»)" ' m)
for a suitable 4, e M (Y). One easily verifies that

(*) hyy’:hy (’Y hy')’ ) Y,er’



44 REDUCTIVE GROUP ACTIONS WITH ONE-DIMENSIONAL QUOTIENT

where I' acts on M(Y) by (v/)(»):=f(»7y), yel, feM(Y), yeY. The condition (*)
defines the set Z' (I', M (Y)) of 1-cocycles of T with values in M (Y).

(4.2) Let { A} be a 1-cocycle arising from [P']e H! (I', Y, M). Then one easily shows:

(%) [P]=[P’] if and only if there is an fe M (Y) such that
W,=f""h, (yf) for all yeT,

ie., if and only if {h,} and {A,} give the same element of the cohomology set
H'(I,M(Y)) (cf. [Sel,I.5)]. Moreover, given {h, }eZ'(I,M(Y)) one easily
constructs a principal M-bundle P over Y/I" whose associated cohomology class [P]
is the one defined by {4, }. Thus we have the following result:

(4.3) Proposition. — The association P { h,} of 4.1 gives a bijection

H' ([, Y,M) S H (I', M (Y)).
(4.4) Remark. — Suppose that M is finitee. Then M (Y)=M and
H'(I',M(Y))=H!(I',M). Clearly Z'(I', M) consists of group homomorphisms
o:I' > M, and [c]=[c’] in H' (I, M) if and only if 6’'=fcf ! for some fe M. Now
let [ =p, act on Y =B by multiplication with quotient A as in III.4.1. If | M| divides
n, then H! (I', M) is isomorphic to M modulo conjugation. By 3.3 and 4.3 we get

HL (A, M)=HL (A,M)=H! (T, B,M)~H! (T, M (B))

1s0

=H'(I', M)~ { conjugacy classes in M }.

By Galois theory, we also have Hgt(fs, M)~ {conjugacy classes in M}, and so
H{, (A, M)~H{, (A, M).

5. The twist construction

(5.1) We use the notation of 4.1. Suppose that {4, } is in Z(I',M(Y)). Then one
can define a new action of I' on M (Y) as follows:

N :=h,MAHOhG),  feM(Y),yeY.

One easily verifies that " f="("/f). Let ,M (Y) denote M (Y) with the new action of I,
so we have a new cohomology set H! (I', , M (Y)). A straightforward verification gives
the following:

(5.2) Proposition. — Let h={h,}, M(Y), etc. be as above. Let {h}}eZ(I',M(Y))

and define h,:=h,h,*. Then
1) {EY}EHI(F,,,M(Y)).
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() {h,} is the wivial element in H'(I',,M(Y)) if and only if {h,}={h,} in
HY(',M(Y)).

(5.3) Consider the exact sequence
H;t (A’ MO) - H:,t (Aa M) - Hét (A’ M/MO)

of pointed sets. As advertised, we will prove the following result:

(5.4) Theorem. — HL(A,M)S HL (A, M/M°).

Note that we have already shown in 3.1(2) that HY, (A, M©) is trivial, but this is
not sufficient to establish 5.4. We need to use the twist construction applied to the

following situation (see 4.4):I'=p, acts on Y =B by multiplication with quotient A
(cf. IIT.4.1).

(5.5) Proof of (5.4). — Let ze HY (A, M/MP°). Choose n such that | M/M°| divides n.
Then z=[c], where 6:I' > M/M° is a homomorphism (see 4.4). Choosing n big
enough one can always find a homomorphism o:I' - M lifting . (In fact, one easily
sees that every connected component of an algebraic group contains elements of
finite order). Clearly, ¢ defines an element {c(y)}eH" (I', M (B)) whose image in
H! (T',M/M°) is [c]. In particular, H., (A, M) —» HJ, (A, M/M?) is surjective.

Let [Ple H. (A, M) have image [c] in HY (A, M/M°), and let { h,} be the cocycle
in Z(I', M (B)) corresponding to [P] (see 3.3). We need to show that {h }={oc(y)}
in H' (I, M (B)). Clearly, the cocycle &, (y):=h, (y) o (y)~* has values in M. Therefore,
by 5.2, it suffices to prove the following result:

(5.6) Proposition. — H* (T', M°(B))={*}.

Proof. — By [Sel, III.2.2] we obtain this result if we replace ;,M°(B) by
+M° (Spec C (5)). Thus there is a rational function f:B — M with h,=f(f)"", yeT.
From [St2, Theorem 7.5] we obtain a I'-stable Borel subgroup B of M° and a
I'-stable torus T = B (see V.2.5). By 3.10 we can find fe M°(B) = M° (B) such that
F~!ftakes values in B. Hence

=7 NHCT M

takes values in B, and we can reduce to proving 5.6 with M replaced by B.
Let U denote the unipotent radical of B. Then U is I'-stable, hence so is its center
Z(U). We claim that H* (T, ;U (B))={ * }. By 3.6 we have an exact sequence

1-ZU)B)-U®B) - (U/Z(U)B) -1
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which gives rise to a corresponding exact sequence for H*(I", ,—) (see [Sel, I.5.5]).
By induction on dimension, we reduce to the case that U is abelian. Then U (B) is a
direct sum of copies of ¢ (B), and multiplication with |"| is invertible in O (B). Hence
H' (I, ,U(B))={ *} ([Se2, p. 138]). Applying H' (I, ,—) to

1-UB)-BB)-T®B)-1

we see that 5.6 follows from the next proposition. W
(5.7) Proposition. — H* (I, ;T(B))={*}.

Proof (Serre). — Let r=rankT, so that T~C* and Aut(T)~GL,(Z). Let
7:T > Aut(T) be the mapping sending y into conjugation by o (y). Let E denote
C*(B) with the usual I'-action (coming from the action on B), and let E_ denote
E ®,Z" where I' acts on Z" viat. Then E,~ _T(B) as I'-module.

For the I'-modules E and E, we have the ordinary (reduced) cohomology groups
H!(I",E) and H!(T',E,), ie Z, where H' (I, E)=H! (T, E,) ([Se2, p. 131]). A T-module
M is called cohomology trivial if H! (A, M)=0 for all i and all subgroups A of I". Now
any subgroup A of I' is cyclic, and one can compute by hand ([Se2, p.141]) that
H°(A,E)=H! (A, E)=0. The H!(A,E) only depend upon the parity of i, hence E is
cohomologically trivial. Since Z'" is torsion free this implies that E.=E®,Z" is
cohomologically trivial, too ([Se2, p. 152]). Thus H* (I, T(B))={*}. M

(5.8) Remark. — In 5.6 the action of I on M°(B) is induced by a homomorphism
o:I' > M (and the natural action of I'=p, on B). It is easy to see that 5.6 holds for
a general I'-group structure on M, rather than only for those induced (via conjugation)
by homomorphisms o :I" —» M.

6. Group cohomology over the line

We carry out some cohomology calculations over B similar to those in section 5.
They will be used in the proof of the decomposition property for linear algebraic
groups (see Theorem V.2.6).

(6.1) Consider an action of I'=p, on M given by a group homomorphism
o:I' > AutM. Then I" acts on M (B)=Mor (B, M) by group automorphisms:

me—"m:=c(y)°emey, vell, meM(B).

As before the corresponding I'-groups will be denoted by ;M and ;M (B), respectively.
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We want to calculate the group cohomology H! (I, .M (B)) of .M (B). The
evaluation map e: m+— m(0) induces a split exact sequence of I'-groups

1 - M(B); > ,M(B) > M~ 1

where ;M (B), =Kere, and the section s: M - M (B) of e sends % to the constant
map B - M with image A.

(6.2) Lemma. — The following are equivalent:
(1) HY (T, M (B),) is trivial for every .
(2) The canonical map H' (', M (B)) » H! (I', ;M) is bijective for allG.

Proof. — We have the usual exact sequence of pointed sets (see [Sel, I.5.5],
cf. 12):

. = M(@B) > M" - H! (T, M (B),) >

S H'(T, M (B)) > H' (T, \M).

The existence of a I'-equivariant section s: .M — M (B) (6.1) implies that « is surjec-
tive. If B is bijective, then H! (I, ;M (B),) is trivial and so (2) implies (1).

For the other implication we use the twist construction. Let {4, }, {4} be two
cocycles in Z'(I', ) M(B)). Then {h,(0)}eZ!'(I',,M). Define t(y)eAutM by
T(Y)(m):=h,(0)c (v) (m)h, (0)"!. One easily checks that t:I" > AutM is a group
homomorphism. Put A, (z):=h,(z)h,(0)~" and i, (z):=h,(z) h,(0)"'. Then we have
(h}, {R}eZ(T, M(B)).

Assume now that the images of {4, } and {4} in Z' (T, ;M) are equivalent. Then
the images of {%,} and {%,} in Z'(I', M) are equivalent, where, by construction,
{h,} defines the trivial element in H' (T, M). Since H'(I', M (B),) is trivial the
cocycles {h,} and {A,} are equivalent in Z'(I', M(B)). By 5.2 this implies that
(h}={h)in H' ([, M(B)). W

(6.3) Proposition. — Let M be a T'-group. Then
(1) H' (T, M (B),) is trivial.
(2) The canonical map H* (I', M (B)) - H! (', ;M) is bijective.

Proof. — (a) We first consider the case where M is connected and solvable. Let
T = M be a maximal torus. Then the evaluation map T (B) » T is an isomorphism.
Hence M (B), =U (B), where U is the unipotent radical of M. If U is commutative
then U(B) and U (B), both have the structure of a vector space over C and so
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H' (T, ,U(B),)=0. The long exact sequence for H'(I', ,—) then gives (1), and (2)
follows by 6.2.

(b) Using 6.2 we can assume that M is connected (since M (B), =M°(B),). Let
B =M be a I'-stable Borel subgroup ([St2, Theorem 7.5]). We have the following
commutative diagram

H! (I, ;M (B))—— H* (T, M)

H! (T, ,B (B))«— H! (T, B)

where sg is bijective by (a) and sy is injective (since it has a left inverse). It suffices to
show that j is surjective, since this clearly implies that sy, is surjective also.

Let {h,}eZ' (I, M (B)). We know that {h } is a coboundary in Z' (I', )M (B))
since H' (I', ;M (B)) is trivial (5.6). It follows that there is a morphism f: B — M such
that h, (z2)=f(z)"'-"f (z) for zeB. As in the proof of 5.6, Proposition 3.10 implies
that A, (z) is equivalent to a cocycle with values in B. Hence j is surjective. M

(6.4) Remark. — Recall that B=Spec C [s] and B=Spec C ((s)). Using the techniques
above we can show the following:

(1) Let M be a linear algebraic group and B a Borel subgroup of M. Then
M (B)=M (B)- B (B).

(2) For every o:T - AutM, the cohomology H'(I', M (B),) is trivial, and the
map H' (T, M (B)) » H' (', \M) is bijective.

Part (1) is a variant of 3.10. For (2) one needs the following two facts: (a) C((s))
is a (C,)-field, hence H! (", ,M°(B)) is trivial and H! (T, ;B (B)) -» H' (I', M° (B)) is
surjective. (b) For a torus T=(C*)" the group T(B),~(1+sC[s]) is divisible and
torsion free, and so H' (I', ;T (B),) is trivial.
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Chapter V. DECOMPOSITION AND APPROXIMATION

0. Résumé

(0.1) We begin with some general remarks on the contents of Chapters V and VI:
Let V be a G-module such that V/G~A and V°=(0). Let A:=Aut$ be the automor-
phism group scheme of V (III.2.2-4), and let .# , denote the set of isomorphism
classes of smooth acyclic affine G-varieties X “modelled” on V (see I.2.2). The
isomorphism class containing X is denoted { X }. Our main goal is to compute ./Zy _,.

(0.2) Let {X}e.#y , Then there are G-isomorphisms ¢:X->Vand ¢:X -V
over A and A respectively (IV.0. 2 and I1.0.4). As we saw in I.3.2, the double coset

of (p (p(p Lin DU: QI(A)\QI (A)/QI (A) is well-defined, and we denote it by [(p X)].
Thus we obtain a map

[0]: My o,—DA,  {X}[pX).

(0.3) _In section 1 we show that [o] is injective. Define K:fSpecC[t]O (localization
at0), A:=SpecC(¢f) and DA : =W (A)\A (A)/A(A). Since A (A) N\ A(A)=A(A), there
is a natural inclusion D = D . Moreover, it is easy to establish that every class in
D A arises from an element of ./ v, A (see Theorem VI.2.12 and its proof). In VI.2.11

we show that DA =D A, hence [(?p] is a bijection:
My ,SDA=DA.

(0.4) Since [(?p] is injective, .4y, is trivial if every element (T)GQ[(R) can be written
as a product @=@¢ where e (A), peA(A). We formalize this property in the
following;:

Definition. — Let € be a group scheme over A. We say that € has the decompo-
sition property if the double coset space DE:=C€ (A)\C (A)/€ (A) is trivial, or equi-
valently, if € (A)=C (A)-C (A).

(0.5) LetT, B, B,etc. beasin III.4.1, and consider the group scheme £% constructed
from the I'-group L= Aut (F)® (II1.4.4). In section 2 we show that £f always has the
decomposition property. In fact, in 2.6 we show that for any I'-group M we have:

(%) M (B)" =M (B)"-M (B)".

We call (%) the decomposition property for the I'-group M. The decomposition property
for €f is, of course, just the case M=L. We already have an isomorphism o, of

A (A) with L(B)" (III.4.5) which induces an isomorphism 2 (A)~L(B)' and an
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inclusion c*:QI(A) & L(B)" (II1.4.6). We need to know about the cokernel of the
inclusion.

(0.6) Notation. — Let M be a I'-group, and by abuse of notation, let I denote
the constant map to the identity I of M. Let r>0 and define
M@B),:={peM(B)|p=1+0(s") }. Equivalently,

M (B),=Ker { M (B)=M (C[s]) > M (C[s]/m) },

where n denotes the maximal ideal of C[s]. Note that M (B),=M (B). We set
M B)f =M (B)' N\ M (B),, and similarly for M (B),, M (B), M (B),, etc.

(0.7) Clearly M' = M(B)' = M(B)", and M(B)'=M"-M (B){. Thus M has the
decomposition property if and only if

(%) M (B =M (B)"- M (B)..

(0.8) Leto,: A(A) o L(B)' be as above. In Chapter VI we show that there is an
ro=1 such that L(]?),r0 co, (U (A)). If r,=1, then the decomposition property for L
and 0.7 give that

LB =L®B) o, (A (A)).

Applying (c,)”" we see that U has the decomposition property, i.e., D is trivial.
Suppose that ro> 1. Our argument shows that one still has DA ={ * } if one can
replace L (B)] by L (B);, in (**) (with L in place of M).

(0.9) Definition. — Let M be a I'-group. We say that M has the approximation
property if

M®B)=M@®B),-M@B)" forall r>1.

Since M (B)] = M (B)', the approximation property for M implies that we can replace
M (B)] with M (B)f in (xx) for any r>1. In particular, the approximation property
for L implies the decomposition property for .

In section2 of this chapter we prove the approximation property for unipotent
I'-groups, and in section3 we establish the approximation property for semisimple
I'-groups. Thus, the possible failure of the approximation property and decomposition
property is due to the toral part of the radical of L.
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1. Injectivity of [(?)]

(1.1) We consider 0 (A), ¢(A) and O (A) as subalgebras of (9(17&) in the canonical
way, and this gives rise to inclusions ¢ (X) < ¢ (X), etc. Since @ (A)=0(A)N O (A),
we have an exact sequence of ¢ (A)-modules

(k% %) 0 0(A) - O0R)®OA) - 0A).

(1.2) Lemma. — We have 0 (X)=0X) N 0 X).

Proof. — Since m: X — A is flat, we obtain the desired result by tensoring (**x)
with O (X) over O (A). A

(1.3) Theorem. — The map [(B] c My p— D A=A A\A (f&)/%[ (A) is injective.

Proof. — Let ¢=¢¢ '€ A(A) correspond to X as in 0.2, and let 0 =¢' (@)1
similarly correspond to X'. Suppose that ¢ =a¢’ o, where a.e A (A) and ae A (A). Let
Vi=(@) o le:X > X and y:=(¢") 'a@:X - X'. Then { and { restrict to the
same isomorphism of X and X'. It follows from 1.2 (applied to both X and X’) that
V and { induce a G-isomorphism of X and X'. W

(1.4) Example. — Let V, G, a, o (), etc. be as in Example II1.2.7. We show that
the automorphism group scheme 2 has the decomposition property: Let oe 0 (A)
with

c(&)=<z 2>eGL2 (C (D).

Then II1.2.7 (4) implies that a>—b%t= + 1 since ¢ (A) is a field. If a contains negative
powers of ¢, then so must a*—5b?¢, and similarly for b. Hence a, be0 (A), and c,
deO(A) by II1.2.7(3). Thus A(A)=A(A), and the decomposition property holds.
Similar reasoning shows that 2 (A)=I"= the group of 4 th roots of unity.

(1.5) Examples — Consider the _group schemes ®, of III.1. 2(c) and III.1.4(c).

Every element o of C((1)*=1 (6 (A)) has a unique decomposition o= o (1 + ¢ p) where
aeClt, 1 1*=1(®,(A)) and pe @ (A). Since 1(6,(A))=1+"C[1], we see that

DG, ~(1+:C[]/A+CL])~C" 1.
Thus &, has the decomposition property if and only if n=1.

We now present some comments on the structure of D.
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(1.6) Notation. — Let € be a group scheme over A which is isotrivial over A
(IV.1.1). We denote by €° the closure in € of the connected component of the
identity of €|4. The identity element of the fiber of € at 0 lies in €°, and since €° — A
must be flat, €° is a group scheme all of whose fibers have the same dimension.

(1.7) Remark. — In Example II1.2.7, the fibers of A do not all have the same
dimension. The fibers over A are all isomorphic to the original one-dimensional
group G, while the fiber at 0 is a semidirect product C* x C.

(1.8) Lemma. — Let € be isotrivial over A. Consider the exact sequence of group
schemes over A

156 5C;>D o1,
where D is the cokernel of i. Then € (A) maps onto D (A), and D (A)= D(f&).

Proof. — Since € is isotrivial, we have C€~B*'M, C°~Bx'M° and
D~B*x"M/M°, where M is an algebraic group and I'=p, acts as usual on B and on
M via a homomorphism t: T — AutM. Then €(A)~ M (B)', where I' acts by
h—*h:=1(y)°h°y for yeI', he M(B), and similarly for €°(A) and D(A) (see
II.1.2(b) and 1.4(b); cf. IV.6.1). By IV.3.1(2), HL,(B,M°%={*}, so we get an
exact sequence of I'-groups

1 - M°(B) > M (B) - (M/M°) (B) > 1.

Since H* (I', M°(B))={ *} (see IV.5.6 and 5.8), the sequence remains exact when
we take the fixed points of I'. Thus € (A) maps onto D (A). Clearly D (A)= TD(A) [ ]

(1.9) Theorem. — (1) Suppose that € is isotrivial over A. Then the inclusion €° = €
induces a surjection DE° — DG.

(2) The action of T on V gives a homomorphism I — W (A) such that
T A°(A)=A(A). Hence I A° (A)=A(A) and T A° (A)=A(A). Consequently,

DA=DA/T,

where I' acts on DU via conjugation on QI(?\). In particular, W has the decomposition
property if A° does.

Proof. — Let € be as in (1). Then € (A)€°(A)=E (A) by 1.8, so DE® - DG is
surjective.

When € =19, the group scheme D of 1.8 becomes B *" L/L° since A | ~B *"L.
Let I'" denote Ker (I' » L/L°). By I11.3.3, Bx"L/L°~Bx"I'/T" ~A x I'/T"” since I is
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abelian. Clearly the composition I' - A (A) - D (f&) ~D(A)~T/I" is surjective. Hence
- A°(A)=A(A), and (2) follows. H

(1.10) Corollary. — Suppose that L is finite. Then N ~Ax {e}, and N has the
decomposition property.

2. The decomposition property

We will show that any I'-group M has the decomposition property, and that
unipotent I'-groups have the approximation property.

(2.1) Remarks. — (1) M°(B),; ~M (B), and M° B)' =M (B)F, r>1.

(2) M° is a I'-group, and it is obvious that the approximation property for M is
equivalent to that for M°.

(3)_The decomposition property is obvious for finite I'-groups, since sections over
A and A coincide (cf. 1.8).

The following lemma shows that the decomposition property for M° implies the
decomposition property for M.

(2.2) Lemma. — Let

1 5P5QH5R-1

be an exact sequence of T'-groups. Assume that there is a I'-equivariant section :R — Q
of j, considered only as a morphism of wvarieties, or that P=Q°. If P and R have the
decomposition property (resp. approximation property), then so does Q.

Proof — Assume that the section o exists. Let ozeQ(B)r Then & gives rise to
j(oc)eR(B)r and we may write ](cx) BB where BER(B)r and BER(B)r Replacing &
by o (B) " 'ac (B) ! we may reduce to the case that ](oc) I. But then &eImi, and P
has the decomposition property, hence so does Q. The proof in the case of the
approximation property is analogous. If P=Q°, then j(a)=j(a) for some a by
Lemma 1.8, and we can continue as above. W

(2.3) Proposition. — Let M be a unipotent I'-group. Then M has the approximation
property and decomposition property.

Proof. — Identify I' X M with an algebraic subgroup of some GL, such that M
is a subgroup of the upper triangular matrices. Let m denote the Lie algebra of M, a
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subalgebra of gl,. The exponential map gives an isomorphism exp: m~M of varieties
with I'-action, where I" acts linearly on m. The exact sequence

0-[mm]->m->m/[mm]-0

has a I'-equivariant splitting which, via the exponential map, gives rise to a I'-splitting
for the exact sequence

1 - [M,M] > M - M/[M, M] - .

Using Lemma 2.2 and induction on dim M, we can reduce to the case where M is
abelian. Then M~ (C4, +) for some ¢, and I" acts linearly on C% Now

C((s))=Cls,s™']+sC[s],
hence there is a surjection
(Cls,s 1 ®cCY+(sC[s] ®c CH) - C((5)) ®c CY,

where C[s, s '] ® C1~M (B), etc. Since M (B), etc. are direct sums of finite dimension-
al T-representations, M (B)+M (B), =M (B) implies that M (B)" +M (B)l =M (B)'.
Hence M has the decomposition property. The approximation property similarly
follows from the fact that

C[s]=C[s]+5 C[s]

forallr>1. W

(2.4) Proposition. — Let M be a T'-group with M° a torus. Then M has the decomposi-
tion property; in fact, the multiplication mapping

M (B)" x M (B)} - M (B)
is a bijection.

Proof. — Since M (B)/M°(B)=M (B)/M° (B), we may reduce to the case that
M is connected. Now every element of C((s))* can be written uniquely in the
form &o where oeCls,s ']* and ael+sC[s]. Thus the multiplication map
M (B) x M (B), - M (B) is a bijection, and the proposition follows. M

We now need the following structure result.

(2.5) Proposition [St2]. — Let M be a connected T'-group, and let R denote the
unipotent radical of M. Then M=M,y X R where M,, is a connected reductive
I'-subgroup of M. There is a T'-invariant Borel subgroup B=T x U of M,4, where U
is the unipotent radical of B and T is a I'-stable maximal torus.
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(2.6) Theorem. — Any I'-group M has the decomposition property, i.e.,
M B) =M (B)" - M (B)".

Proof. — By 2.2, we may assume that M is connected. First we assume
that T={1}. Let B,=B x R (see 2.5). Then B, is a Borel subgroup of M, and
M(B)-B,(B)=M (B) by IV.6.4(1). By 2.2, 2.3 and 2.4, B, has the decomposition
property, hence so does M. ~ .

We now consider the case where I' is non-trivial. Let ae M (B)". Then a=oaa
where ae M (B) and ae M (B),. Note that for any yel', y—a ! ("0)=(a) 'a is a
l-cocycle with values in M (B) \M (B), =M (B),. By Proposition IV.6.3(1), this
cocycle is trivial, hence we can modify & and o by an element of M (B), so that they
become I'-invariant. Thus M has the decomposition property. W

(2.7) Example. — Let (V,G)=@®C" SL,). Then (V,G) is semifree. Here the
group scheme A° (see 1.6) is easy to describe: Consider the representation
(W,M)=(C"® C",SL, x SL,) where (C",SL,) is another copy of (C",SL,). Then W~V
as a representation of SL,. The action of SL, commutes with that of SL,, and we
have an inclusion A x SL, < 2, where A x SL,~% |; and A x SL, is closed in 2. Thus
A°~A xSL,. From 2.6, with I'={ 1}, we see that A° has the decomposition property.
Hence, by 1.9, so does U, and #y ,={*}. In fact, A(A)=A°(A) so that
DA=DA°={ * }.

(2.8) Remark. — We will need to use the analogues of the decomposition pro-
perty and approximation property for I'-groups with the triple {B, ﬁ,B} replaced by
{B,B,B}, where B=Spec C[s], (localization at 0) and B=SpecC (s) (see 0.3). For
example, for any T'-group M we have M (B)' =M (B)' - M (B)!.

The proofs follow exactly the same lines. We need only observe the following:

(1) C(s)=C[s,s ']+ 5C]Js,.

(2) C[s]lo=C][s]+s" C]Js], for all r>1.

(3) C(s)*=C][s,s '] (1+sC][s],), where the decomposition on the right hand side
is unique.

3. The approximation property

(3.1) We need some easy results concerning the exponential map: Let M be a linear
algebraic group and m its Lie algebra. Let M =Spec (@M, ¢)» Where Oy , is the local
ring of M at the identity e and (ﬁM,e its completion, and similarly define m. The
exponential map from m to M is a local analytic isomorphism, and thus it induces an
isomorphism of affine schemes exp:m = M.
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Define m(B),, m(B),, M (B), and M (B), as in 0.6. It is easy to see that the
canonical morphlsm m — m induces an 1somorphlsm m(B), ~m(B) for r>1, and
similarly M (B),~M (B), for r>1. If pem(B),, then exp-¢:B— M lies in MB),. It
is obvious that we have the following result:

(3.2) Proposition. — Let M be as above, r>= 1.

(1) exp:m(B), > M (B), is a bijection.

2) If M is a TI'-group, then the exponential map is T'-equivariant, and
exp:m(B) 3 M B).

(3.3) Let M be a I'-group. We show that M has the approximation property if
Rad (M%) =Rad,(M°), e.g., if M is semisimple.

Recall that L° is special (IV.2.6), so we really only need to consider the
approximation property for special groups. However, the general case is no harder.

(3.4) Lemma. — Let r=1 and let K be a finite central I'-subgroup of the T'-group M.
(1) The canonical map M — M/K induces isomorphisms M (B)f ~(M/K)(B)!,
M (B)] ~(M/K) (B); and M (B)] ~(M/K) (B);.

(2) M has the approximation property if and only if M/K does.

Proof. — Applying H;, (B, —) to the exact sequence
- K->-M->-M/K-1
we obtain the exact sequence
1-K~K®B)->M@B)-> M/K)B) -1

since HY, (B,K) is trivial. It follows that M (B),~(M/K)(B),, and similarly for B
replaced by B and B. (The B case also follows from 3.2). We have proved (1),
and (2) is immediate from (1). W

(3.5) Theorem. — Let M be a T'-group such that Rad (M°)=Rad,(M°). Then M has
the approximation property.

Proof. — By 2.1(2), 2.2, 2.3 and 2.5 we may reduce to the case that M is
connected and semisimple. Let B=T x U be a Borel subgroup of M, where T is a
maximal torus and U a maximal unipotent subgroup of B, all being I'-subgroups of
M (see 2.5). It suffices to show:

(%) Given g(s)eM@B), r>0, there is a g(s)eM@®B" such that
g ' g(x)eMB), .
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Choose an embedding M < GL,, for some n. Then we may consider m as a
subalgebra of gl,. Let g(s)e M (B) with g(s)=1+s"A+O(s"*1). Then, for ze C small,
z+—1+zA is a curve in GL, which is tangent to M at I, hence Aem. Clearly s"A is
I'-invariant. Hence (*) follows from

(**) Let Aem such that s A is T-invariant. Then there is a g(s)e M (B)' with
g@®)=1+sA+0(s*).

Note that, by Lemma 3.4, properties (*) and (**) are really properties of m
alone and do not depend upon the various possible M’s.

Let y denote a generator of I'. We consider the action of I' on m: Clearly we
may reduce to the case where m=m,; @...® m,, each m; is simple and isomorphic
to my, and ym;=m,,...,ym,_,=m, ym,=m,. Thus 1:=7" preserves each m;.
Choose t-stable subalgebras b,, t; and u, in m, where b, =t, @ u, is a Borel subalge-
bra, t, a maximal toral subalgebra, etc. Set b;=y' "' b,, etc. Then the b,, t; and u, are
t-stable, b=@b,, t=P t; and u= @ u, are I'-stable, and b, etc. is a Borel subalgebra,
etc. of m.

Given A as in (**), we may write A=Ay +A, +A_ where Ayet, A, eu and
A _ eu_ (the opposite nilpotent subalgebra). Then s" A, and s" A_ are I'-invariant, so
g(s):=exp(s"A,) exp(SA_)eMB)', and g(s)=1+s (A, +A_)+O(s"*"). Hence we
may reduce to the case where A et.

Let af,...,o! be the simple roots of m; and let xJ,yi, h/ be corresponding
sl,-triples, j=1,...,.. Then we may arrange that yx/=xi,,, yyi=yl, .\, Yhi=hi,,
for i<n.

(3.6) Lemma. — Let a=a’, be a simple root of m,, and let m' be the subalgebra of
m, generated by {t*x,%y,7h|k=0} (t=v"), where x=x%, etc. Then wm|=~sl,,
sl, @ sl,, sl, ® sl, @ sl, or sl;.

Proof. — From 1 we get an automorphism t of the Dynkin diagram of m,. The
possibilities are:

(1) m; -G,, F,, E,, Eg, B, or C,: Then 7 is trivial, i.e., ta=0, and we get a
copy of sl,.

(2) m, <> D,: Then Ta=aq, or Ta=f and tp=a, or Ta=P, Tp=7, Ty=a where a,
B and y are distinct. So we get one, two or three copies of sl,. (The simple roots
involved are all non-adjacent).

(3) my<D,, n=5o0r A,,_; or Eg: Then tTa=a, or 1 a=a where ta#a and o,
ta are not adjacent. So we get one or two copies of sl,.

(4) m,=A,,: If ta#0a, then in the case of the middle two simple roots we have
adjacency. Thus we can have m| =sl;, sl, or sl, ®sl,. MW
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Let m{=v'"'m/. Then m’:= @ m;] is [-stable. If we can prove (*x) for m’, then
we can prove it for m, since the toral subalgebras of the various m’ span a toral
subalgebra of m. Thus we may assume that m,=sl, or m,=sl;, i.e.,, that M is a
product of SL,’s or SL;’s. We may also easily reduce to the case that I" acts faithfully
on M, i.e., d is the order of ye Aut(M). Let £ denote the standard primitive d-th root
of unity, and set m=d/n.

Case A. — Suppose that m; =sl,. Let { x;, ;, #;} denote the sl,-triple of m;, where
YX;=X;41, YVi=Vi+1 and yh;=h;,, for i<n. Since Te Aut(m,) preserves t; and b,

thy=h, and yh,=h,, while yx, is a multiple of x,. Let A}, ..., h,; x1,...,x,;
Yis - - ., V, be a basis of eigenvectors for the action of y on span {4}, etc. One easily
shows:

(A.1) Each A; is a sum ch h; where no c; is zero, and similarly for the x; and
vi. The eigenvalues of the 4; are the n-th roots of unity.

(A.2) No two x; have the same eigenvalue (else a linear combination violates
A.1), and similarly for the y;.

(A.3) For all i and j, 1<i, j<n, the brackets [;, x]], [A;, y]] and [x{,y]] are non-
zero, and span { [x, y]] } =span { & }.

(A.4) We may choose the 4;, etc. so that
(a) The eigenvalue of A; is E™¢~ 1.

() 2x;=[n,xi],i=1,...,n.

(o) =2yi=[h,y1], i=1,...,n

Let m, denote the y-eigenspace of m with eigenvalue £ ~*. Since vy acts on O (B)
sending the generator s to s°vy, the elements of s*m, are I'-invariant.

(3.7) Lemma. — Let 1<k<n. Then hem, where 0<r<d. There are elements
x;emy,, and y;e my, such that hy=[x;,yj], where 0<a<r, 0<b<d and a+b=r.

Proof. — Note that r is a multiple of m. It follows from A.1, A.2 and A.3 that
h,=[x{,y]] for some i and j. By A.4, keeping i+; constant modn, we can arrange
that x;em, 0<a<r. Then y;em,, where b is as required. W

Proof of (x%) in Case A. — Let h, x and y (without primes) be as in 3.7, i.e.,
[s*x, s® y]=s"h where s h, s°x and s” y are [-invariant, r>0. By construction, a>0. If
b>0, then

exp (s° x)exp (s* y)exp (—s*x)exp (—sPy)=1+5h+O(s" 1),
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and (%*) is established. (Recall that we are inside a product of SL,’s, so that
exp (s*x)=I+s*x!) If b=0, then we can replace a by a—m and b by b+m, as long as
a>m=d/n. Hence the only problem is the case a=r=m, b=0. But then we have:

exp (s x)exp (p)exp(—s x)exp(—y)=1+s"h+s5 (yxy)+O(s"H1),

where yxy is strictly lower triangular and in m, Multiplying by exp(—s"yxy) we
obtain the required element of M (B)'. W

Case B. — Suppose that m, =sl;. First consider the case n=1, so that m=sl,
and t=1 has even order d=2m. Let a, B and o+ B be the positive roots. Then To=,
B=a and t(a+P)=a+p. If x,, y,, h, and x;, y,, g are the usual sl,-triples in slj,
then th,=hy, tx, is a multiple of x;, etc. There are linear combinations 4%, x', x2,
y!, y* of the elements above which are eigenvectors of t such that we have:

(B.1) h* e(m=sly),), h~ em,,,. The h*, x' and )’ are linear combinations of the
h,, hg, etc. with non-zero coefficients (e.g. x' =ax,+ bx; where ab#0).

(B.2) x! and x? correspond to distinct eigenvalues of 1, and similarly for y' and
2

Y.
(B.3) [A%,x], [h*,y], [x,)] are non-zero for all i, j, and we have
span { [x', /] } =span { h* }.

(B.4) 2x!=[h*,x'], 2x2=[h", x'], etc.

We now prove (*x*) in this case (m=sl;). Note that 4™ presents no problem, as
h* = [Xy4ps Vaspl (UP to a co_nstant), and we can use our argument for SL,. As
in 3.7, we can find x'em,, }’emy, such that A~ =[x',y’] and k+/=m.

Let x denote x', y denote )’. Consider

g(s):=exp (s* x) exp (s'y) exp (—s* x) exp (—s'y).

If k, I>0, then g(s)=I+s"h~+ 0O (s"*1). Suppose that k=0 (the case /=0 is similar).
Then we find that g(s)=1+s"h"+s"A+O(s"*!), where A is a sum of products
xP yx?and p+¢q=2. All such matrices are strictly upper triangular, so we may “correct”
g(s) as in the SL, case. This completes our argument in case n=1.

If n>1, we proceed as in the case of a product of SL,’s: Let x}, x%, yi, y3, hi
be the eigenvectors for T in m,. Let x! =7'"1xl, etc. be the corresponding elements
of m;. There are linear combinations x{*), x{¥, y{V, {» h(*) of the x}, etc. which are
eigenvectors for y and satisfy analogues of the properties B. 1-B.4 above. One proceeds
exactly as before. This completes our proof of Theorem 3.5. W
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Chapter VI. THE MODULI SPACE

0. Résumé

In section 1 we use a type of exponential map to determine the cokernel
of o,: A(A) o LB) (see IIT.4.6). In section 2 we are then able to show that
[@]: My, o —DA=A(A)\A(A)/A(A) is a bijection (2.13) and that, holomorphically,
A has the decomposition property (2. 11). In other words, for every { X } € .#y ,, there
is a G-equivariant complex analytic isomorphism of X with V. Moreover, we show
that DA ~C?/T", where I' — GL,, is a representation (2.7), and we construct a universal
family over Ay ,~DU (2.12). In section 3 we find several sufficient conditions for
DA to be trivial, and we give examples. Except in section 3, we assume that V€= (0).

1. Exponential maps

(1.1) Let ¢ denote a homogeneous generator of O (V)°=0(A), d-=degt. Let
A(V) denote the Lie algebra of polynomial vector fields on V. Then
A(V)~Mor (V,V)~Der(0(V)), the algebra of C-linear derivations of @ (V). Let
A, (V) denote the set of all elements of A(V) annihilating . Then A, (V) consists of
the elements of A(V) which are tangent to the fibers of z. We will always identify
A (V) with Derc(0(V)) and A, (V) with Derg 4, (0(V)) without explicit mention.
Define A (V):=Der.(0(V)), and define A,(V), A(\?/), etc. in the obvious way.
Note that A(V)~A(V) ®@(V)(9(V), etc. and that the G-invariant vector fields
A (V)¢ ~Mor (V, V)€ form a free graded ¢ (A)-module.

(1.2) Lemma. — As O(A)-module, A(V)°=A,(V)° ® O (A) Ay, where Ay= x,;0/0x;
is the Euler vector field on V. Hence A,(V)C is a free graded O (A)-module.

Proof. — Let AeA(V)®. Since V9=(0), A vanishes at 0 and A (£)=h(?)¢ for
some polynomial 4 in one variablee Then A=A"+(1/d)h(f)A, where
A :=A—(1/dh()A,eA,(V)°. N

(1.3) From A, (V)€ we construct the Lie algebra scheme of A° < A < A (see I11.4. 5-
4.6 and V.1.6). Let A, ..., A, be a basis of A,(V)®. Then [A,A]=) c;; A, for
some ¢;; €0 (A). Define X to be Ax A™ with projection pry:=pr; to A. Then X is a
scheme over A, and we give the fibers of pry the Lie algebra structure:

[(@yes e sVm)s (B2 ooz )= We, oy Wy),
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where w, =) ¢;; (D y;z; f Z L Ais flat, then we have (see I11.4.7(2))

Derg (0 (Z) ®¢ a0 (V) =0 (Z) ®¢ 4y A (V)° =X (2),

i.e., X(Z) is the set of G-invariant vector fields on V,:=Zx ,V which preserve
(i.e., are tangent to) the fibers of the quotient map ©:V, — Z. In particular, we have

A, (V)9 =Derg 4, (0 (V)°=X(A)=0(A) @, X(A),
A, (V)G = Der, @A) o (V))G =X (A) =0 (A) Rg(a) X (A).

(1.4) We give 0(V) the m-adic filtration {0 (V);:=m’};5,, where m denotes the
ideal of 0 V. We give 0 (A) the induced filtration { € (A);=(m’)° },5,.

Let X(A),:={AeX(A)|A O V), < O(V),,, for all s}, r>0, and similarly define
X(A),. Let x,,...,x, be coordinates on V and let Ae X(A). Then AeX(A), if and
only if A (x,)e O (V),, , for all i. Define X (A),, (the elements of X (A) homogeneous of
degree r) to be {AeX(A)|A(x;) is homogeneous of degree r+1 for all i}. Then
XA, =XA) XAt )

We will confuse elements of A (A) with the automorphisms of @ (V) that they
induce. Let x,, . . ., x, be as above, and define W (A),:={ae W(A) |a(x)ex;+ 0O V),,,
for all i}, r>0. Let GL,(V)C denote the group of all elements of GL(V)® which
preserve t. Then GL, (V) < A(A). Since V6=(0), all elements of A(A) preserve
m < 0(V), and there is a canonical (surjective) morphism A (A) - GL, (T, (V)=V)C.
We have the following:

(1.5) Remarks. — (1) A(A)=A(A), and X (A)=X(A),.
) AA),={oeA(A)]0/dx;(@(x)(0)=5;}.
(3) There is a split exact sequence

1 - AA), »AQA) > GL, (V)¢ > 1.

If AcX(A), then we define exp(A):0(V)—O(V) to be the usual series
I+A+(A°A)2+ ..., where ° denotes composition of derivations. Similarly, we define
the logarithm of an endomorphism of ¢ (V). Recall that F denotes the fiber 1~ ! (1)
and L=Aut (F)€ the group of G-automorphisms of F (III.0).

(1.6) Proposition. — (1) The exponential A exp (A) induces a bijection (with inverse
log) from % (A), onto A(A), for r>1.

(2) If AeX(A), then exp(A) is an entire complex analytic section of W, and
exp (A) [p=exp (A |p) e L.
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Proof. — Let AecX¥(A),, r>1. Consider an isotypic component
(O(V)(m)=(9 (A) ®¢ Sy of O (V) (see 111.2.3). Here S~k W, where W, is irreduc-
ible. Let g denote the maximal degree of the elements of S, = ¢ (V). Now A preserves
0 (V)(m)z(ﬁ (A) ®ckW,, hence the action of A on 0 V% )w) 1S given by a matrix
(@)eM, (0 (A)). The action of A? corresponds to the p-th power (alP) of (a;;), where
the a{?’ lie in O (A)pay o, pr—q+1,- Since r>1, the series exp((a;;)) converges in the
m-adic topology, i.e., exp (A) gives an automorphism of ¢ (\7)(,,,). It follows easily that
exp (A) (h) exists for all he®(V), and that the corresponding automorphism of ¢ (V)
is an element of A (A),.

Conversely, let ae (A),, r=1. On 0 (\7)(0,), o corresponds to a matrix
(a;;)€ GL, (0 (A)), and arguments as above show that the series log((a;;)) converges to
an element of M, (¢ (A)) which sends O (V),, N O (V), to O (V) N O (V). It follows
that A :=log () is a derivation of @ (V), and clearly A € X (A),. We have (1).

Let A be as in (2). Then Ae X (A), (see 1.5), and by arguments as above, exp (A)
gives an entire analytic G-automorphism of V preserving . Moreover, exp (AA) [peL
for all e C, hence exp(A) |[r=exp(A|p)el’. M

(1.7) There is a natural I'-action on ¥ (A) given by (YA)(v):=7A(y ') for yeT,
Ae€X(A), veV. Thus y acts via multiplication by y™" on X (A),,. The action extends
in the obvious way to X(A)=X(A) ®¢ ) (A).

Let I denote Lie (L). We give [ the I'-action induced from the one on L.

(1.8) Proposition. — (1) [=X(A) |, and the T-actions coincide.

(2) If T is a T-stable subspace of 1, then ¥ has a basis {A},...,A,} where
Aj=A,|r and A;e X (A) is homogeneous, i=1, . . .,p. Similarly, there are homogeneous
A; whose restrictions to F project to a basis of 1/t.

Proof. — 1t is clear that A A|g is a ['-equivariant Lie algebra homomorphism
X(A) -1 Let A’el = Derc (0 (F)). Then A’ is the restriction to F of some element
BeA(V). By averaging over G we may arrange that BeA(V)®. Then
B=C®hA,eX(A)® O(A)A, (see 1.2). By 1.6, i(A)|F < I, hence we may assume
that A’=h A, |g. Since A, (1)=degt-1 and A’ (1) is zero, we have /|=0. Hence A'=0,
and (1) holds.

If fis as in (2), then T has a basis A}, ..., A, where the A} are eigenvectors for
the I'-action. Thus A;=B,|;, where the I'-eigenvectors B,e X(A) have the form
B,=BP+BI "9+ ... +B**% and B € X (A);). Set

A, =BO+ A B 4+ L Btk

The argument for [/f is similar. W
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(1.9) Recall the branched cover B of A, where ¢ (B)=C[s], O (A)=C][{] and s*=1.
The canonical map p:B*"F -V, [z, 0]+ zv (see 1.3.3) gives rise to an isomorphism
po: LB SA(A) with inverse o, (II1.4.5). From II1.4.6 we know that
o, (AA) = L(B). . A

_Now p also gives an isomorphism p, of Der,j, (¢ (B*"F))¢(~I(B)") with
X(A), where

(*) (P, B)(Wep=B(hep), heO(V), BeDery OB+ F)C.

We denote (p #)"l by o ,. Note that p, and c, are 0 (f\)-module homomorphisms.

(1.10) Let A,,...,A, be minimal homogeneous generators of X(A), where
A;e X (A)y,. Write d;=k; d+a; where 0<a;<d.

(1.11) Lemma. — (1) The A; are an O (A)-module basis of X(A), the A]:=A|r are
a basis of 1, and the s“ A} are an (O (A)= O (B)")-module basis of 1(B)".

() o, A=sitTaA]=1(s%A]), hence 5, : X (A) - 1(B)" is homogeneous of degree
0 and is an injection of free O (A)-modules.

(3) o,:X (A) > LB is an injection of free O (A)-modules.

Proof. — The only non-obvious part is the formula in (2). Let veF, zeB and
let he© (V) be homogeneous of degree r. Then A;(h)(p[z,v))=2"1%A,(h)(v), ie.,
A;(h)op=s""%A](h|f). On the other hand, since (h°p) [z, v]=2"h(v), we obtain that
(5% A)) (hop)lz, v]=2""% A;(h)(v), ie., (s%A}) (hop)=s""% Aj(h|p). Thus (see (*)
above), p, s Aj=s5s""4A;=¢"% A, proving (2). W

(1.12) Definition. — Let f be a I'-invariant subspace of I. Choose a basis B;=B,
of I/f where B;eX (A),, i=1,...,¢q and e:=max{e;} is minimal. Define
ro (I/f) :=max {0,e—d} + 1. Define r, (f) similarly, where the B; are now required to
be a basis of . If M is a I'-subgroup of L with Lie algebra m = [, then we define
ro (L/M):=ry(I/m) and ro (M) :=r, (m).

(1.13) Proposition. — Let T be a I'-stable subspace of 1, and let r>1.
(1) roUB)=1if and only if e;<d, i=1, .. .,q.
(2) IB) <= o, X(A), if and only if r>r, (F).
(3) I(B) ctB)+ c, X(A), if and only if r=r, (I/f).
(4) ro()=max {rq (), r,(1/f)}.

Proof. — Let By, ...,B, be as in 1.12, so that the B; project to a basis of I/.
Let [(B){,, = [(B)" denote the elements homogeneous of degree r, and similarly for I
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replaced by I/f. Let Cel(B),. Modulo f(B){,, C=Zcis’ B; where the coefficients ¢;e C

are zero unless r=e¢; modd. If r=r,(I/f)>¢;,—d, then r=e¢; (mod d) forces r=e;. Thus
C=Y ¢, 0o, B, hence [(B)f < t(B)] +o, X(A),. Conversely, if r<r, (I/f), then for

some i, s ‘o . B; projects to an element of (I/f) (B)f,, which does not come from an
element of o, X (A),. We have proved (3), (2) is proved similarly, and (1) is obvious.

It is clear that r,(I) <max {ry (f),ro (/f) }. But if e=max {d;}, where the d; are as
in 1.10, then max {0,e—d}+1=r,(I) is an upper bound for r, (f) and r, (I/f). H

(1.14) Theorem. — Let M be a I'-subgroup of L with Lie algebra m < 1.
(1) For all r=1 the following diagram commutes:

M (B)f — L (B «—— A (A),

Ox

exp} expl ‘ exp

m(B)f —— [(B)f «—— X (A),
S#
(2) MB)! < 6, (A(A),) if and only if r=r,(M).
3) LB =M (ﬁ)f-c* A(A), if and only if r=ry (L/M).
(4) If M has the approximation property (see V.0.9) and in addition r =ry,(L/M),
then
LB cM®B)-6,A(A), = o, (AA)-AA),).

Proof. — Parts (1) and (2) follow from 1.6 and 1.13, and (4) follows from (2)
and (3). Suppose that r>ry (L/M). Let a.e L (B)F. Then a.=exp (A), where, by 1.13(3),
A=B+C, Bem(B)!, Cec, X(A),. Then

exp(—B)aexp(—C)=exp(—B)exp(B+C)exp(—C)eLB)L, ,.
By induction,
L(B)y = M(B)-L(B); -0, A(A),

for all g>r. As soon as g=>max {r,(L),r} we have that L(B)} = o, 2(A),. Thus the
“if”” direction of (3) holds.

Conversely, suppose that L (B)f = M (B)'- G*QI(A),. Let p denote the projection
L (B); - L (B);/L (B)}, ) Then

(G1:=pMB))(G,:=p(c,A(A),)=(G;:=LB);/L(B), 1)-
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The G; have natural structures as (unipotent) complex algebraic groups.
Since G;G,=G,;, we have that Lie(G,)+Lie(G,)=Lie(G,). But
Lie (Gy)=(mB)f +1(B);, .,)/I(B)}, o) etc., and (3) follows. M

(1.15) Let [,:=Lie(Rad, (L)), and let I' denote the inverse image in [ of the semi-
simple part of [/l,. By V.3.5 the corresponding subgroup L’ < L has the approxi-
mation property. Let T denote span { A]:degA;<d}.

(1.16) Corollary. (See Theorem 2.4). — (1) If ro (I/l')=1, then DU is trivial. Equiv-
alently, W has the decomposition property (see V.0.4) if t+1U'=1 In particular, if M
is a I'-subgroup of L such that ro(M)=1 and m+1'=1, then W has the decomposition
property.

(2) Let L, be a I'-invariant Levi factor of L (see 111.3.1 and 3.5), and let Z
denote the center of LY. If ro(Z)=1, then A has the decomposition property. In
particular, if ro(L,,) =1, then W has the decomposition property.

(1.17) Remarks. — (1) One can use 1.5(3), 1.11(3) and the exponential map (see
1.14(1)) to establish that G*QI(A) c L(B)' (cf. I11.4.6).

(2) There is a quick proof that there is a number r, (L) as in 1.14(2): One uses
the fact that (9(7&) is a topological field, where the @ (A),, r>0, are a fundamental
system of neighborhoods of 0. The groups L(]T3)r and QI(X) inherit topologies with
the obvious fundamental systems of neighborhoods of the identity, and
Py L(]¢3)r 5% (f&) is continuous (see 1.9). It follows that p, (L (B)f) = 2 (A) for some
r=0.

(1.18) Examples. — (1) In Example II1.2.7 we have d=4, L°=C* and A(V)® is
generated by elements of degrees 0 and 2. Thus U has the decomposition property.

(2) In Example II1.2.8 one has d=2, L°=(C*)? and A(V)® is generated by
elements of degrees 0 and 2 n. It follows from 2.4 below that 2 has the decomposition
property if and only if n<1.

2. Moduli
We combine the tools at hand to compute A4y _,.

(2.1) Proposition. — Let A° = A be as in V.1.6, so that DA=DA°/T (V.1.9).
Then

)] DUA~L(B)"\L (B)'/c, A(A),
@) DA ~L° (B)"\LO (B)' /o, A° (A).
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Proof. — Via o, we have that

DA~c, AA)\c, A(A)/c, AR)=LB)'\L B) /o, A(A).
Now L(B)f =L (B)' L(B)", hence

L(B)"\L B) ~(L B NLBH\LB) ~L B LB,
proving (1). The proof of (2) is similar. M

(2.2) Let L’ denote the connected subgroup of L corresponding to I' < [. Then L°/L’
is a torus, and we may choose a I'-stable torus Z in L such that the canonical map
1:L > L/L' induces an isomorphism of 3:=Lie(Z) with [/I'. Then K:=Kerr|Z is
finite. From V.3.4 we see that Z(B)I — (L/L')(B) and Z(B)' - (L/L)(B)F are
bijective, r>1. Of course, Z (B)] ={e}. We have:

(2.3) Lemma. — Let 1, etc. be as above and r=1. There are split exact sequences
1> L' B) > LB ——L/L)B) - 1,
0 I (B)f - [(B)f —— () B)F -0,
where T induces t, and t,. Moreover, L(B)f =Z (B)' L' B)] and L(B)f =L’ (B)\.
(2.4) Theorem. — (1) There is a canonical bijection
DA°~(L/L) (B)i/1, 0, A(A),.

(2) DU is trivial if and only if ro (/)= 1. Equivalently, W has the decomposition
property if and only if t+1' =1 where T is defined as in 1.15.

Proof. — From 1.14(3), 2.1 and 2.3 we see that (1) gives (2). To establish (1),
we simultaneously show that the canonical map

V:D:=LB) \L(B) /o, A(A), —» L (B)"\L°(B)' /o, A° (A)~DA°

is a bijection. It is surjective, since L (B)' = (L°)" L° (B)! and (L°)" < L°(B)'. Suppose
that B, p'eL(B)Y and that p'=apo,a where aeL®(B)’ and aeA°(A). Then
®(0)=(o, ) 1 (0)eJ:=GL, (V)¢ N (L°)". Thus

B'= 0 (0)™ o (0) Bt (0) "' o, (2 (0) ' ),

where oo (0)"'eL(B)] and a(0) 'aeA(A),. Since J normalizes L(B)}, L(B)| and
A (A),, it acts by conjugation on D, and D/J~D°.
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Now D=A\B/C where A=L(B)}, etc. Let E,:=L(®B)f, r>r,(L). Then E, = C,
E, is normal in B and AE,2 H:=L'(B) 2 A. By 2.3, B/H=(L/L)B).~Z B)! is
abelian, and AE, is normal in B. Thus
D=A\B/E,C=AE,\B/C=B/AE,C=B/AC
~(B/H)/(AC/H)=(L/L’) (B)/1, 6, A(A),.

Since L°/L’ is a torus, the action of L° on (L/L")(B)! by conjugation is trivial, hence
so is that of J = L°. Thus D~DUA°. MW

(2.5) Let

m,: (L/L) (B)] —» Q,:=(L/L") B)I/(L/L") (B);,
(m), - () B)] — q,: = UT) B)T/(1) (B);

be the canonical maps, r=>r,(L). The exponential map of L induces the exponential
maps of L/L’ and Q,. We consider g, as a vector group under +, and since [/ is
abelian, exp:q, > Q, is an isomorphism of groups. We give Q, the induced vector
group structure.

Since (m,), 1,0 #L{(A)l is a linear subspace of q,, m, T, C)',,:QI(A)1 is a vector
subgroup of Q,, and we have an induced structure of vector group on the quotient

Q,/n,1, 0, A(A), ~(L/L) (B)j/t, 0, AA),,
independent of r=r, (L).
(2.6) Let B,f=B,‘|F project to a basis of I/I', where B,eX(A),,, i=1,...,q9. For
each i, choose 0<b;<d such that b,=e¢; modd. Note that b,=d and q;=0

(see 1.10) if e;=0 modd, else b;=a;, The s’ B; project to an @ (A)-basis for
(/') (B)] (note the subscript 1!). We may choose integers m,;>0 such that

{Ciji=0"1 (" B)

i=1,...,q,j=1, ...,m} (B
projects to a C-basis of (I/') (B)l;/‘t# c, X (A),. (Note that if ¢;<d, then m,=0.)
(2.7) Corollary. — The double coset space DU° has a canonical vector group structure
as a quotient of the vector group
Q,=(L/L)B)/L/L) By ~Z(B)/ZB);,  r=ro(L).

The group structure is induced by that of the “middle term” A° (1§)=L0 (ﬁ)r of the
double coset space. More specifically, let Cj, etc. be as above.
(1) The C;; and the exponential map induce an “explicit” bijection
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(€, ) S A1) B) /1, 0, XA), _Lip_»m;q

where p=> m,.

(2) Denote the coordinates on CP by x,;;, i=1, ...,q,j=1,...,m, Define an action
of T on C? by

Yoo X )= Yy X L)

(see 1.7). Then DA~DA°/T'~CP/T.

(2.8) Remark. —  Suppose that e¢,>d  Then m;<(e;—b;)/d since
o, (By)=1r""V(s%B}). Suppose further that L° is a torus, so that I'=0. Choose the
B; in 2.6 to be an (0 (A)-basis of X (A). Then we have m;=(e;— b;)/d.

(2.9) If M is a I'-group, let M (B®)I' denote the subgroup of M (B)I consisting of
entire analytic elements (i.e. power series with infinite radii of convergence). Recall
that M (B)f = M (B)I' denotes the subgroup of rational sections.

(2.10) Lemma. — (1) For all r>1, L(B){ =L (B)T-L(B).
(2) Let zeZ(B)Y and r=0. Then there is a z" € Z(B™)} such that zz" e Z (B)T.

Proof. — Since L’ has the approximation property, we may use 2.3 to reduce (1)
to the case L=Z. Let ze Z(B)L. There is an isomorphism Z~(C*)* for some e, and I"
acts on (C*)° through a homomorphism to GL,(Z). Our section z is a I'-invariant
e-tuple of series (z,, . . .,z,) where
r—1
z;=1+ ) a;5+0(s"), a;€C, i=1,.. e
j=1

J

Clearly,
r—1
z:=1+ Y a;s
ji=1
lies in Z(B)} and zz~'eZ(B)L, proving (1).
Now

r—1 r—1
log<l+ Y a,-jsj>= Y, b8 +0(s")
i=1 i=1

J J
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for some b;;. Set

r—1
Z®.= <exp(— Y bijs">>.
j=1

Then zW e Z(B®)! and zzWeZ(B). W
Recall that DU :=A (A) A(A)/A(A) (see V.0.3), and similarly define DA°.

(2.11) Corollary. — (1) The canonical inclusions DU° g DA and DA DA are
bijections.

(2) Holomorphically, W has the decomposition property.
Let X be a G-variety with { X }e M+ .

(3) There is a neighborhood U of 0€ A such that Xy :=nx ' (U) and V:=ny* (U)
are G-isomorphic over U.

(4) There is a holomorphic G-isomorphism X~V.

Proof. — Since L has the decomposition property and L’ has the approximation
property, we may reduce (1) and (2) to the case that L=2Z, i.e., to 2.10. Parts (3)
and (4) are reinterpretation of (1) and (2). W

(2.12) Theorem. — (1) There is an affine (G X I')-variety § and an equivariant
surjective morphism m: § - Ax DU® where G acts trivially on A x DU° and T acts on
DA° as in V.1.9 (cf. 2.7(2)), with the following property: Let a.e °(A) and set
X=n"'"(Ax[a]). Then {X }e My , with [(?)(X)]=[oc], and ny=pr;°n:X - A.

(2) The composition

E:=FT > AxDUT~AX My - My 4

is a universal family (cf. 1.2.3 Theorem 3 (4)).

Proof. — Let Cy,...,C,e3(B)} project to a basis of [(B)[/I'(B)]+o, X(A),.
Let r>r,(L), and let exp, denote the truncated exponential series sending x
into 1+x+x%/2+ ... +x""1(r—1).. Identify Z with (C*)° as in the proof of 2.10,
so that 3~C° For each c¢=(c,...,c,)eC? define C,:=) ¢;C,. Clearly,
z=(z;, . . ., z,):=exp,(C)eC*B)!, and zeZ (B! for the I-invariant subset B, of
points of B where det(z)=]]z;#0. Let A,.=B,/I" = A. Then 0€ A, for all ce C?.

Let o/:=AxC?, let &/:=AxC’, let ' :={(,c)es/:1€A,} and sect
A= NA'. Let B denote VxCP, and set B:=(myxid) !'(«) and
B':=(myxid)" ' («’). Then (1,¢)— (p,exp,(C,)(1),¢) is a TI-invariant section of
A x CP defined over .o’, ie., it defines a (G xI')-invariant automorphism &’ of
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B :=BNB over &/'. We may glue B and B’ together over B’ using the identific-
ation o. The resulting scheme § is an affine (G X I')-variety over .o/ with 0 (&)~ 0 (<¢)
(see [Ha, p. 81 Ex.2.17 and p.91 Ex.3.3]). Clearly, the canonical map
n: & — o/ ~A x DU has the properties in (1), and (2) follows easily. W

(2.13) Corollary. — We have My o=~ DA=DA~C?T. Moreover, M ~CP/C*
where C* acts on CP with the weights given in 2.7(Q2). In par-
ticular,  MyN{* }=(My N\{*})/C* is a weighted projective space, and
(F\pry°n " (¥)/C* > (DUAN{ * D/C* ~ M y\{ *} is a universal family.

3. Rigid Representations

We find conditions on V which guarantee that .4, ,=DA={x*}. It will be
convenient to drop our longstanding assumption that dim V€=0. If dim V=1, then
V~C® W as G-module where G acts trivially on C (cf. I1.0.3 or IV.3.9).

We will denote a principal isotropy group of V by H.

(3.1) Definitions. — (1) We say that V is G-rigid (or just rigid) if ro(I/l')=1, and
strongly G-rigid (or just strongly rigid) if ry (I/1)=1.

(2) V is stable if the generic G-orbit in V is closed.

(3) V is semifree if it is stable and the principal isotropy groups are trivial.

(4) We say that V is unreduced if G=G' X G"” and V=V’ @ V" where V' (resp. V")
is a G'-module (resp. G"”-module) and (V’,G') has a one-dimensional quotient, else
we say that V is reduced.

Of course, strongly rigid G-modules are rigid. Note that V is rigid if and only if
A has the decomposition property. The case dim V6 =1 is a special type of unreduced
representation, where (V',G")=(C, {e}).

(3.2) Theorem. — Let V be a G-module with one-dimensional quotient. Then V is
rigid if

(1) V is semifree, or

(2) The principal isotropy group of 'V is central in G (e.g., G is a torus),
and strongly rigid if

(3) V is a stable torus action, or

(4) dimVe°=1, or

(5) dimV<3, or

(6) G° is a simple group, or

(7 (V,G°) is self dual.
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The rest of this section is devoted to the proof of 3.2. Along the way we develop
more criteria for (strong) rigidity which are not so neat to state as 3.2.

(3.3) Remark. — Let X be a G-variety as in Ch. II, with T, X=V. By the Luna-
Richardson theorem [LR], V/G~V")N, where N=Ng (H)/H acts semifreely on V¥,
and similarly for X. It follows from 3.2 (1) that X" is N-isomorphic to V¥. It remains
to extend this isomorphism to a G-isomorphism of X and V.

(3.4) Corollary. — Suppose that the restriction map res : A (V)¢ - A (VPN is an isomor-
phism. Then V is rigid.

Proof. — The group scheme A of V is determined by the associative ¢ (A)-algebra
Mor (V, V)€ (see II1.2.3-4). Since res is an isomorphism, the group schemes associated
to V and (VH,N) are the same. By 3.2(1), V¥ has the decomposition property, hence
sodoes V. W

(3.5) Proposition. — Suppose that (V,G)=(V' @ V"',G' X G") is unreduced. Then
(V,G) is (strongly) rigid if and only if (V',G’) is (strongly) rigid. In particular, (V,G)
is strongly rigid if dimVCé=1,

Proof. — We have F=F'x V" and
L=Aut(F)®=Aut(F)% x Aut (V)¢ =M x Aut (V"")S",

where F' and M are defined analogously to F and L, respectively. Then
[/l,=m/m,® End (V")¢". Now End (V")¢" consists of degree 0 elements of A(V')¢",
and the proposition follows. W

(3.6) Proposition. — Let V be semifree, where G is connected. Then V is rigid. If, in
addition, G is a torus, then V is strongly rigid.

Proof. — Let vyeF. Then F=Gv, and L=G acts on F by: /(gv,) =g/ ' v,, 2€G,
leL. Let Z; denote the center of G. Then Z; = GL,(V)® < A (A). There is a natural
homomorphism p:Zg — L, where p(z)gv,=2z""gv, =gz ' v,. Clearly, p gives an iso-
morphism from Zg to Z:=Cent(L) and from 35 to 3. Thus 3 is generated by the
restriction of elements of X (A), and r,(3)=1. Now apply 1.16(2). W

(3.7) Theorem. — Let V be rigid, and let G be a finite normal extension of G which
acts linearly on V such that GG acts faithfully on the quotient A=V//G. Then (V,G)
is rigid. If (V, G) is strongly rigid, then so is (V,G).
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Let L, F, T, ¢, etc. have their usual meaning relative to (V,G), and let L, F,
T, 7, etc. correspond to (V, G), where 7=* (so k=[G : G]).

(3.8) Lemma. — Let L"":={TeL|T preserves F}. Then the canonical restriction map
res:L" — L is an isomorphism. In particular, res:L° — L° is an isomorphism.

Proof. — Since GF=F, any element of L" is determined by its restriction to F,
so res is injective. Now let /e L. For every k-th root of unity ®;, choose g;e G such
that g;F=¢"!(»,). Then F= ]_[ g:F. Define /;: g;F — g;F by l,(g;v) : =g, (v), and define
Te Aut(F) to be [, on g, F. Then Tel: Let geG and given i, choose j such that

g; '88:€G. Then I(gg;v)=1(g;g; ' g8:;v)=g;!(¢; ' gg;v) (by definition)=g;¢; * g2, /(v)
(by G-invariance of /)=gg;l(v)=gl(g;v) (by definition). M

(3.9) Corollary. — (1) The restriction map from Der (0 (F))® to Der (0 (F))® gives an
isomorphism res: 15 1.

(2) Let AeA,(V)=X(A) be homogeneous, and let A'= A |. Then there is an m,
0<m<k, such that " AeA; (V) and such that res(A")=A’, where A" =1" A |z.

Proof. — Part (1) is immediate from 3.8. Let AeA (V)¢ be homogeneous. Then,
under the action of G, A transforms by a character of G/G~Z/k Z, so that (" A is
G-invariant for some m, 0<Sm<k. If AeA, (V)®, then A (1)=0 implies that A (1)=0,
hence ™ A e Ax(V), and (2) follows. W

Proof of 3.7. — Since (V, G) is rigid, there are homogeneous elements A€ A, (V)°
of degree <d whose restrictions to F project to a basis of [/I'. By 3.9, there are
integers m;, 0<m;<k, such that B;:=¢" A,e A;(V)° and such that the B,|7 generate
T1'. But degB,=m;d+ deg A,;<kd, so r,((/T)=1 and (V, G) is rigid. Similarly, if (V, G)
is strongly rigid, then so is (V,G). M

(3.10) Example. — In II1.2.7, consider the action of G°=C*. Then A,0(V)¢’ is

generated by xﬁ - yi while A, (V)€ is generated by xy <xi - y2 >
ox 0Oy ox ~ dy

(3.11) Corollary. — Let V be strongly rigid, and let G be an extension of G which
acts linearly on V with one-dimensional quotient. Then (V, G) is strongly rigid.

Proof. — By 3.7 we may reduce to the case where (O(V)6=@(V)G, F=F, etc.
Let L, % etc. correspond to G. Averaging over G gives a linear projection
A, (V)¢ - A, (V)°=X(A) which induces a homogeneous projection Av:X(A) — X(A)
and a projection Av, :[-T.
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Let O = O denote the closed orbits of G and G in F, respectively, and let S
denote either O or O. Then F is homotopic to S, hence H!(F,Z/2)=0 if ¢>dimS
and H?(F,Z/2)#0 for g=dimS (see 1I.3.5). Thus dimO=dimO. It follows that
O0=0 and that there is a G-vector bundle structure on F which restricts to a
G-vector bundle structure. Consequently, Av, (I,,) =T,., and we have a commutative
diagram (see III.3.2-3)

0 I

u [—1, 0

jAV* JAV*
0—>T

u YT ﬁTvb O

Thus Av, (I,)=T,.
By hypothesis,

(*) [=span{A;]: A;eX(A), degA;<d}+I,.

Since Av is degree preserving and Av, (,)=1,, we obtain the analogue of (%) for T
andX. W

(3.12) Proposition. — Suppose that every H-isotypic component in V is G-stable
(e.g., H is central in G). Then H is normal in G and V is rigid.

(Recall that H denotes the principal isotropy group of V.)

Proof. — Write V=V" @ V' as H-module. By hypothesis, G stabilizes V¥ and V'.
The action of G on V¥ must be stable with principal isotropy group H, where H < G,
for all ve V. Hence G normalizes H, and G/H acts semifreely on V.

Now F~G/H x V', and there is a split exact sequence of I'-groups

) 1>GL(V)" 5L, —»G/H- 1.

p

Write V'= @ n;V; where the V; are irreducible and pairwise non-isomorphic
i=1

H-modules. Then GL (V)" ~[[ GL,.. As G-module, each n; V; becomes a sum @ m; W,

1

so that the center of GL,, lies in the center of ]—]GL,,,J_. In other words, the center of
j

GL (V')H lies in the center of GL (V')¢, hence the center 3' of End (V)" is spanned by
degree 0 elements of A(V)S=A,(V')C.

The proofs of 3.6 and 3.9 show that r,(3"")=1 where 3" is the center of the Lie
algebra of the group “L” of (VH,G/H). Using the split exact sequence (**) above,
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we consider 3’ as a subalgebra of 3=Cent(l,). Then 3 +3" contains 3, so we have
ro3=1. 1

(3.13) Proof of 3.2 (1)-(2). — These follow from 3.6, 3.7 and 3.12. H

Proof of 3.2 (3). — Apply 3.6 to the G/H-module V, where H is the ineffective
part of the G-action. H

Proof of 3.2(4). — By 3.5, (V,G°) is strongly rigid. Hence, by 3.11, so is
V,G). nm

Proof of 3.2(5). — Suppose that dim V=3 and that G is connected. Assume that
the semisimple part G of G is non-trivial. Then the only possible (effective) examples
of (V,G,,) are easily seen to be (C*@® C,SL,) and (C>,SO;). In the first case
dim VCs=1, and in the second the group “L” of (V,G,,) is finite. Thus V is strongly
G,,-rigid, hence strongly G-rigid by 3.11.

We may now suppose that G is a torus. By 3.2(3) we need only consider the
case that V is not stable. Let H denote the principal isotropy group of V. If dim V=1,
then dim VH//(G/H)=1 which implies that G/H is finite. Thus G=H, dim V=1 and
we have strong rigidity by 3. 5.

If dimV¥=2, then V=V*® W and L=Aut(G *x"W)® where dim W=1. Thus
GL (W)"=C*. Since dim V*/(G/H)=1, we have that G/H~C*. Thus L , ~(C*)? and
so dim I/I,=2. Now there are linear actions of C* on V! and on W commuting with
the G-action and preserving ¢. Thus I/l is spanned by degree 0 elements of X (A), and
V is strongly rigid. We leave the cases when dim V=1 and dim V=2 to the reader. W

(3.14) We now consider the case where G is simple. In Tables Ia and Ib below we
list the relevant modules V for the simple groups G (modulo outer automorphisms).
(See [Schl] for the notation we use. For example, (¢;,A,_;) denotes the standard
SL,-module structure on A/(C").) In each case we list L=Aut(F), the group of
G-automorphisms of the fiber F=n""1 (1) (III.0), the degree d=deg ¢ of the generator ¢
of the invariant ring ¢ (A)=0(V)®, and the degrees of the minimal homogeneous
generators of A (V)€ (as graded O (A)-module). By 1.2, minimal homogeneous genera-
tors of X (A) together with the Euler vector field A, (which has degree 0) form a set
of minimal homogeneous generators of A (V)°.

In the column listing L, the symbol N denotes the normalizer of tIE maximal

torus of SL,. A symbol U; denotes a unipotent group of dimension j, and SL, denotes
the elements of GL, of determinant =+ 1.

One can use the tables and results of [Schl] to obtain the list of relevant V and
to compute d. The versions of Frobenius reciprocity discussed in Remark III1.2.6
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II1.3. In most cases, L =N (H)/H.
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TasLe Ia

G 0} d Degrees L
1" An—l’ l’l>2 n (pl n 0 An—l
2.. n=2 | o,+o% 2 0 C*
3. n=2 0©? n 0 Z/n
4.. Ay, | m=2 0, m 0 Z|m
5-- m=2 | o,+0o, m 0 Z[mx C*
6-- m=2 | @,+of m 0 Z[mx C*
7-- A, m=2 | ¢o,+o, | m+1 0 C*
8-- m=2 | ¢,+20¢F 3 0,3, m—1 (GL, xC*) x U,
9.. A, 03 4 0,2 N
10" A5 (p3 4 0, 2 N
1. o:s0; | 4 | 0.2 N x (C*)?
12 (p3+2(p1 4 0729496 (N K (GLZ)Z) X U4
13" AG (p3 7 0 Z/7
14 -. A, O 16 0 Z/16

TasLe Ib
[0} d Degrees L

| P D,, n=>4 0} 2 0 Z/2
20 o B,, n>=2 0, 2 0 Z/[2
3 """ Cn, I’l>2 2 (Pl 2 0 Al
R B, 0,10, 2 0,1,2 (Z)2 x (C*)?) x U,
L, B, ?s o) 0 72
6 - B4 04 2 0 Z/2
T B, ?s 4 0,2 N
8. ... .. C3 (O 4 0, 2 N
9. ... D, 2 @s 4 0 SL,
10- - -.--. Dy 06 4 0,2 N
m-----.. D, ©, 8 0 Z/8
12‘ """ E6 (‘pl 3 0 Z/3
13- -+ E, 0, 4 0,2 N
].4 """" G2 (pl 2 O Z/2
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Proof of 3.2(6). — It follows from 1.16 and Tables Ia and Ib that there are
only two cases to worry about, namely (¢, +2 0¥, A, ,), m>4, and (¢;+2¢,,As). In
the latter case, d=4, and it is easy to see that the elements of X (A) of degrees 0 and
2 restrict to generators of a Levi factor of I. In the former case, d=3, and the elements
of degrees 0 and 3 generate a Levi factor. W

TaBLE I1

G [0} d | Degrees L
Looennn C,xC,, n>1 0, ® Q) 2 0 Z[2
D n=2 | 0, ®@0,+0, | 2| 0,2,4 | (Z2x(C*? x U,
3 ;01 +09; | 2 0,2 (Z[2x C*) x U,
4. ... C,xS0,;, n>2 0, ®C? 4 1 0,2, 4 N x C*
Seinn SO, xCy, n>3 C"® ¢} 4 0,2 N
Geoe v v B, xC;} 0; ® 9 4 0,2 N
T G,xC, 0, ® Q) 4 0,2 N
8. vv.. GL,, n> C"@ C* 2 0 C*
9. ... C,xS0,, n>1 0, ® C? 2 0 Cc*

We now consider the case of self dual representations. By 3.5, we need only
consider reduced representations.

(3.15) Proposition. — Let V be a reduced self dual G-module with one-dimensional
quotient, where G is connected. Then either G is simple (and V appears in Table 1a or
1b), or V appears in Table 1.

(3.16) Remarks. — Table II uses the same notation and conventions as Tables I a
and Ib. The modules in Tables Ia, Ib and II are strongly rigid. (For entry 2 of
Table II we have GL (V)¢ ~(C*)? which is the Levi part of L°.) Thus 3.11 and 3.15
finish the proof of Theorem 3.2.

(3.17) Lemma. — Let (W,H)=(W,; ® W,,H, XH,) be irreducible where the H; are
connected semisimple and ny=dim W, >n, =dim W, >2. Then

(1) If W is orthogonal and dim W//H=1, then W ~ (¢, ® ¢7,C, % C)).

(2) If W is symplectic, then dmW/H>1, and dim W/H=1 implies that W is
isomorphic to entry 4, 5, 6 or 7 of Table II.

(3) The dimension of (W @ W*)//H is at least 2.
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Proof. — Suppose that W is orthogonal. If each (W, H,) is orthogonal, then
dim W/H>dim (C" ® C"?)/(O,, x0,,). By taking O, -invariants and then
O,,-invariants, we see that dim W/H>n,>2. Suppose that (W,,H,) and (W,,H,)
are both symplectic. If H, or H, is not simple, then we may rearrange the factorization
of H so that the (W;, H;), i=1, 2 are again orthogonal. Thus we may assume that H,
and H, are simple. A computation as in the orthogonal case forces n,=2 and H, =Sp,.
A case by case check of the possibilities for (W,,H,) gives (1). The proof of (2) is
similar. In (3), one computes invariants for the case H;=SL, to derive  the
inequality. W

(3.18) Proof of 3.15. — Let (V',G’) be an irreducible subrepresentation of (V,G)
where G’ denotes the image of G in GL (V’). Then (V',G’) is orthogonal (and we
have dim V'/G'=1), or (V',G’) is symplectic (and dim V'/G'=1 if G’ is not simple)
or (V,G) contains (V'@ V'* G’) (and dim (V' @ V'*)/G'=1).

Suppose that (V’, G’) is orthogonal. Then 3.17 shows that G is simple or that
V., G)=(p; ® 01,C, % C}). To reconstruct V one adds irreducible symplectic repre-
sentations of simple groups with zero-dimensional quotient. Since V is reduced, we
can only add copies of (¢,,C,,) where C,, is a factor of G'. Thus G is simple (and V
is in Table Ia or Ib), or G~C,x C]| and V is entry 1, 2 or 3 of Table IL

Suppose that (V', G) is symplectic. If dim V'//G’ =1, then using techniques similar
to the orthogonal case, one can prove that G is simple or that V is isomorphic to
entry 4, 5, 6 or 7 or Table II. If every possible (V’',G") is symplectic with zero-
dimensional quotient, then there must be a subrepresentation of the form (2¢,,C,),
and we are in the last case:

Suppose that V contains a subrepresentation of the form (V' @® V'* G’). Then
by 3.17, G'=H or H x C*, where H is simple (V' is irreducible). Case by case checking
shows that (V',H)~(9,,C,) or (¢;,A,), n=1. One easily sees that nothing can be
added, ie., (V,G)=(V @ V'* G’). The relevant representations are entry 2 of
Table I a, entry 3 of Table I b, and entries 8 and 9 of Table II. H
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Chapter VII. G-VECTOR BUNDLES

0. Résumé

We consider the problem of classifying G-vector bundles whose base is a
G-module P with one-dimensional quotient. There are several connections between
this problem and the linearization problem considered so far (see 1.2.5 Propo-
sition 6, cf. [Kr2]). The G-vector bundles over a fixed P are classified by cohomo-
logy sets Hj, (A, B), where B is a group scheme over A. We use the techniques of
Chapter VI to compute these cohomology sets and to construct universal families.
Non-trivial G-vector bundles give rise to examples of non-linearizable actions.

1. Preliminaries

(1.1) Let G be a reductive complex algebraic group and Y a G-variety. A G-vector
bundle on Y is a vector bundle E over Y such that E is a G-variety, the projection
p:E > Y is equivariant and the action of G is linear on the fibers of p. If y, is a fixed
point of the G-action on Y, then we obtain a representation of G on the fiber E, .

Let P and Q be G-modules. Let Vecg(P,Q) denote the class of all G-vector
bundles over P whose fiber at 0P is Q, and let VECj;(P,Q) denote the set of
G-isomorphism classes in Vecg (P, Q). The trivial class is represented by the product
P xQ, which we denote by @,. If G={e} is trivial, then the solution of the Serre
Problem by Quillen and Suslin shows that every element of Vec (A", C™) is trivial, so
that every Ee Vecg (P, Q) can be considered as a G-action on some X=A". Bass and
Haboush [BH2] have shown that every element E of Vecg (P, Q is stably trivial, i.e.,
E ® Oy is trivial for some G-module Q’, where @ denotes Whitney sum. However,
our examples show that VECg (P, Q) can be non-trivial.

(1.2) Proposition. — Let E, E'e Vecg (P, Q).

(1) (IMP)) Suppose that H is a subgroup of G such that (P ® Q" =P. Then E
and E' are isomorphic as G-varieties if and only if E is isomorphic to a pull-back ¢* E’
for some G-automorphism ¢ of P.

(2) ([BH2)) If E® Ope Vecg (P,Q @ P) is non-trivial, then the G-action on E is
non-linearizable.

(3) ([Kr2)) There is an open cover {U;} of P|G and G-isomorphisms
@;:E |1 wy=mp (U)X Q for each i.

Proof. — We show how to obtain (1), since no proof is in the literature: Let
V:ESE’ be an isomorphism of G-varieties. Then { induces an isomorphism
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¢:P~E" S EM~P of the zero sections, and the derivative of { induces an isomor-
phism of normal bundles: v(E")~o¢* v(E'"). But v(E¥)~E and v(E")~E’. W

(1.3) Remarks. — (1) Given Ee Vecg (P, Q), consider the G :=(G x C*)-action on E,
where C* acts by scalars on the fiber. Then 1.2 (1) gives Proposition 6 (1) of Chapter I,
i.e., E is trivial as G-vector bundle if and only if the G-action on E is not linearizable.
Now E/G~P/G. If dim P/G=1, then as soon as we show that VECg (P, Q)#{ * },
we have that ., ,#{*}, where V=P @® Q is considered as a G-module with C*
acting by scalars on Q.

(2) Using 1.2(1) and 1.2(2) we can construct (families of) non-linearizable
G-actions on E~A", but we lose the fact that the quotient has dimension1 (see
section 5). We are unable to give a classification in these cases.

(3) Let EeVecg (P, Q). Then 1.2(3) shows that E is obtained by glueing together
trivial bundles n~'(U;)x Q via G-isomorphisms o;;=¢;° ¢ ;' ePB(U;NU,), where
P (U):=Mor (r~ ! (U), GL(Q))® is the group of G-automorphisms of the trivial bundle
n~ 1 (U)x Q. When dimP/G=1 we show that P (U) is the group of sections of a
group scheme P over A, so that VEC (P, Q)~HL., (A, P):=Cech cohomology of the
sheaf of groups U B (U).

2. The group scheme 3

(2.1) Let P, Q be as in (1.1). From now on we assume that dimP/G=1. Let
t:P - P/G=A be a homogeneous generator of @ (P)°, where degt=d. We will also
denote ¢t by m or mp. Let A, ..., A, generate the (free) O (A)-module Mor (P, End Q).
Then, using composition in End Q, we have that A;° A;=)" d,; A, where the d;; € 0 (A).
As in VI.1.3, these formulas enable us to construct an algebra scheme € over A.
Then € (X)=Mor (X x , P, End Q)¢ for any A-scheme X. We use the same symbol €
to denote the Lie algebra scheme associated to the (associative) algebra scheme €.

Note that det:EndQ — C is G-invariant. Choose coordinates ¢, x,...,Xx, on
E~AxA", and consider a section ) x;A; of €. Then det() x;A;) is a polynomial
p(xy, ...,x,) in the x; with coefficients in (¢ (A). Consider p as a function from €
to C. Then P:=p ' (C\{0}) is a group scheme representing the functor sending an
A-scheme X into Mor (X x , P, GL(Q))°. We call ‘B the automorphism group scheme
of ©4. One may realize B as

{(txy, .. X)) EAXA™|p(xy, ..., x,) (0)#0}
with canonical projection pr=pr, :f — A. The fiberwise multiplication is given by

(6,X1, o). (X o X = (XY, LX),
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where x;' = )" x; x}dy; (1)
i Jj

(2.2) Example (compare II1.2.8 and [Sch5]). — Let G=0,~C* x Z/2, P=V, and
Q=V, in the notation of IIT.2.8. Let {u,v}, {x,y} be coordinates on P and Q
corresponding to the C*-weights 1, —1 and n, —n, respectively. Then f=uv, and
EndQ~V,,® C® ¢, where C is the one-dimensional trivial representation of G and
g, its sign representation. It is easy to see that Mor(V,,End V,)® is generated by A

(corresponding to C) and B (corresponding to V,, = End V,), where A<u> multiplies
v

2n
<x> by the identity matrix and B<u> multiplies it by < 8 uO ) Now A°A=A,
y v v°"

A°B=B=B°A and B-°B=r*"A. Moreover, det(aA+bB)=a>—1>"b%. Thus
€={(t,a,b)e A’} and

P={(t,a,b)|a>*—1*"b*#0},
with both schemes having fiberwise multiplication
(t,a,b).(t,a',b")=(t,ad’ + >"bb',ab’ +a'b).

2.3) Let Fp:=m,'(1) = P. Then M:=%,=Mor (Fp, GL(Q))® has Lie algebra
m:=E, =Mor (Fp, End Q)€. In fact, M is the group of units in m (considered as an
Artin algebra), hence M is a connected linear algebraic group. The group I'=p, acts
as usual on B and via composition on M, i.e., via m—mey ! As in II1.4.4, we
define a group scheme IM§, where My (X)=Mor (X x , B, M) for any A-scheme X.

(2.4) Remark. — Set G:=GxC*, and let V denote the G-module P ® Q, where
C* acts by scalars on the second factor. Let L and I" correspond to (V,G) as usual
(see II1.3.1). Then I'=T", M is a I'-subgroup of L and the action of I" on M is the
one given above.

(2.5) Proposition (cf. 111.4.6). — The canonical morphism p:B*" F, — P gives rise
to a morphism of group schemes ¢ : P — ML, and ¢ is an isomorphism over A.

Proof. — For any A-scheme X, we have B (X)=Mor (X x , P, GL(Q))®. Composi-
tion with p gives a morphism from B (X) to
Mor (X x , (B *" Fp), GL(Q))° ~Mor (X x 4, B, Mor (Fp, GL (Q))°)"
=Mor(Xx ,B,M)" =" (X). W

(2.6) Example (continuation of 2.2). — We have M~{(a,b)|a®>—b*#0} ~(C*)>.
Note that ['={ +1} acts trivially on M (since A and B only involve even powers of u
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and v), so that ME~AxM. It is easy to calculate that ¢ sends (t,a,b) into
(t,a®—("b)He{t}x M.

(2.7) Theorem. — Let ‘B, etc. be as above, and let E € Vecg (P, Q).
(1) Hz.. (A, B|)={*}, hence E|; is trivial, where P:=n; 1 (A).
(2) VECg(P,Q)~DB:=B(AN\B(A)/B(A).

Proof. — Consider the pull-back E of E|; to the d-fold cover
BxFp > Bx"F,~P. Then E gives rise to a principal M-bundle over B, which is
trivial by IV.3.1(2). Thus we may assume that £=(B x F;) x Q is a trivial G-bundle.
Now E is the quotient of E by a free G-equivariant action of I'. We must have

b, f, Dy=bv, v " f, b1 (b, f, @), beB, feF,, qeQ, yeT,
where h, ' (b):=h, ' (b, -, ) lies in M. One easily verifies that
hy'y'=hy'(0 (Y) (hy'°7))

where o (y)(m)=me°y~ !, yeI', meM. Thus the h, give rise to an element of

HY ([, , M(B)), where o:I'—>AutM is as above. By IV.5.6, we have
H'(T, M (B))={*}, and it follows that we can change the action of I on E by a
G-automorphism so that the 4, become the identity element of M. Hence E|; is
trivial, proving (1). Part (2) is an easy exercise. W

Evaluation at 0cP:=Px , A gives a homomorphism from P (A) to GL(Q)°.
Clearly, GL (Q)° < B (A). Thus we have

(2.8) Proposition (cf. V1.1.5(3)). — There are canonical split exact sequences

1 B(A); > B(A) - GLQ 1,
1- P (A); »P(@A)->GLQ° -1

(2.9) Remark. — The fiber B, of P at reA is the group of units in the algebra
€,=span {A;(?)} (see 2.1). The dimension of this algebra is independent of 7, hence
P — A is equidimensional with connected fibers. It follows that the subgroup scheme
PO of P (V.1.6) actually equals B.

3. Moduli of vector bundles

We apply the techniques of Chapters V and VI to compute moduli and construct
universal families of vector bundles. We review, more than strictly necessary, some of
the results of Chapter VI since they become more transparent in the vector bundle
setting.
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(3.1) Let P, Q, A;,...,A,, etc. be as in 2.1. Let d;:=degA;=k;d+a; as in
VI.1.10. Set A;:=A,|r,- We know that VECg (P, Q) ~D%P (2.7(2)), and we have the
morphism ¢ : P — ML which is an isomorphism over A (2.5). Let ¢, : P(A) S M (B)"
denote the induced isomorphism. Replacing B by € and M by m, we similarly have
an isomorphism ¢, : € (A) S m(B)".

We obtain an exponential map exp: €(A), - P(A),, r>1 in the obvious way
from exp: End Q —» GL (Q). It is easy to establish the following analogues of previous
results:

(3.2) Proposition (cf. VI.1.11 and VI.1.14(1)). — (1) The A, are an O (A)-module
basis of €(A), the A] are a basis of m, and the s*A] are an O (A)-module basis of
m(B).

() ¢, A=1(s%A)), and ¢ :€(A) > m(B)' is homogeneous of degree 0 and is
an injection of free O (A)-modules.

(3) o,:€ (A) » m(B)T is an injection of free O (A)-modules.

(4) For every r=1 there is a commutative diagram

B (A),— M (B)F

o*

exp’l ll exp

€(A), —> m(B)
O #

(3.3) Proposition (cf. VI.2.1). — We have DB~M (B)"\M (B)' /o, B(A).

Proof. — We have M (]§)F= M (B)' M (B)" (see V.2.8). Asin VI.2.1, one obtains
the desired result. W

Let M’, 1:M — M/M’ and 1, : M (B)] > (M/M’) (B)}, etc. be defined as in VI.2.2
and VI.2.3.

(3.4) Theorem. — (1) (cf. V1.2.4) There is a canonical isomorphism
DP~M/M') (B)}/z, 0, B(A),.

Moreover, DPBP~VECs(P,Q) is trivial if and only if T+m'=m, where
f=span{A;:d;<d}.
(2) (cf. VI.2.7) The logarithm gives an isomorphism

DB~ (m/m’) B)j/r, ¢, €A),,
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and, as in V1.2.5, this induces a structure of vector group on DP~VEC, (P, Q).

(3) (cf. VI.2.11(2)) Holomorphically, B has the decomposition property, i.e., every
element of Vecg (P, Q) is holomorphically trivial.

(4) (cf. VI.2.12) There is a G-vector bundle p:% — P x VEC; (P, Q) such that,
for every EeVecg (P, Q), the vector bundle p™*' (P x [E]) is an element of Vecg (P, Q)
isomorphic to E.

(3.5) Remark. — The results in VI.2.6-VI.2.8 on computing dimensions of moduli
spaces hold for D. Just replace 2 by B, L by M, etc.

(3.6) Let (V,G)=P®Q,GxC*) be as in 2.4. We compare VEC,(P,Q) with
My 4. Let [E]e VECg (P, Q). We may consider E as a G-variety, so [E] gives rise to
{E}ey ,. Note that {E}={y*E}, yel', where y*E denotes the pull-back of E
by y:P — P. Thus we have a natural morphism A:VECs(P,Q)/I' = 4y ,.

Let A denote the automorphism group scheme of (V,G) and U, that of (P, G).
We consider 2, as the subgroup scheme of 2 of elements acting by the identity on Q.
Then A, normalizes B < A, so we have a semidirect product A, x , P < A.

(3.7) Theorem. — (1) A=A, x , B.
(2) M VECG (P, Q)T & My, 4 is injective.
(3) If (P,G) is rigid (see VI.3.1), then \ is an isomorphism.

Proof. — Let X be an A-scheme. Then A (X) is the group of G-automorphisms
of the X-scheme (XX ,P)xQ. Since C* only acts on Q, one easily sees that
AX)=Wp (X) X Mor(Xx ,P,GL(Q) =Ap(X) X P(X), proving (1). Clearly, we
also have A°~AY x B, and using VI.2.7 and 3.4(2) one easily sees that
DA~ DAY x DP. By V. 1.9, DA~(DAL x DP)/T, and (2) and (3) follow. MW

4. Additive structure

By Theorem 3.4 (2) we have a vector group structure on VEC (P, Q). We relate
this structure to the Whitney sum of vector bundles.

4.1) Let P, Q, M, F;, etc. be as in section 3. Let H be a principal iso-
tropy group of (P,G). Then Fp~G*"W where 0OMW)"=C, and
M = Mor (Fp, GL (Q))¢ ~Mor (W,GL (Q))" only depends upon H, W and Q. Let
V: M — GL (Q)! denote evaluation at 0 W. Note that | depends upon some choices,
but that its kernel does not.

(4.2) Lemma. — The homomorphism \ is surjective, and Ker y=M,,.
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Proof. — One can deduce the lemma from III.3.3, but here is a direct proof:
Clearly V is surjective. Now m=~(0 (W) ® End Q)" is a graded Artin algebra, via the
multiplication in End Q. The elements of strictly positive degree form a nilpotent
subalgebra m, and clearly I+m_ =Ker { is unipotent and normal in M. B

p
(4.3) As H-module, Q~ ® n; W, where the W, are irreducible and pairwise non-

i=1

p
isomorphic. Thus GL (Q)"~ [ GL,,~M/M, and M/M'~(C*)~.

i=1

(4.4) Proposition (cf. VI.3.12). — Suppose that every H-isotypic component in Q is
G-stable (e.g., H is central in G). Then VEC;(P,Q)= { *}. In particular, if H={e}
(i.e., (P,G) is semifree) or G is a torus, then VECg (P, Q)= { * }

Proof. — For each i, the isotypic component n;W; is G-stable, hence
C*~Cent(GL,,) = Cent (GL (1 W,)S). Thus the composition

GL(Q)° & GL(Q">M —»M/M’

is surjective, so we have End (Q)®+ m’=m. The proposition now follows from Theo-
rem 3.4 (1) since End (Q)® consists of degree 0 elements of m. MW

4.5) Let Q; and Q, be G-modules. We compare VECg(P,Q; ®Q,) with
VEC, (P,Q,) and VECy (P, Q,): Set M,=Mor (W, GL (Q,)), i=1,2, and let M denote
Mor (W, GL (Q, @ Q,))". The inclusion GL(Q,)*xGL(Q,) < GL(Q, ® Q,) induces
a canonical morphism 1n: M, x M, - M. Let A’em. Then we can write A’ uniquely
in the form

<A,“ A,“>, Ajye Mor (W, Hom (Q;, Q).
Az Ay

p

p
Write Q, = @ n;,W,, Q,= @ m; W; as H-modules, where n;+m;>0, i=1,...,p.
i=1

i=1

(4.6) Lemma. — Let Q, Q,, A’, Aj;, etc. be as above.
(1) The morphism n: M, x M, - M induces a surjection of M, x M, onto M/M".
Q) If n,#0, i=1, .. .,p, then the canonical map M,/M’, > M/M’ is an isomor-
phism.

(3) ™ contains all elements B’ of the form
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(0 B'12>
B,, 0/

In particular,
A'e<A“ 0 >+n~1’.
0 22

(4) Suppose that Q, =Q,=Q. Then m’ contains all elements B’ of the form

4 4

Bll B12
' _ N’ :
21 11

In particular,

A’e(A’“ + A2 0>+n~1’.
0 0

Proof. — Let M, , = M], etc. denote the unipotent radical of M,, etc. We have
a commutative diagram

Ml/Ml,uxMZ/MZ,u_n) M/Mu
l l |
l—[ GL"i X n GLM.' - n GLni+mi

where n induces 1. Parts (1) and (2) are now clear.

The subspaces Mor (W, Hom (Q;, Q)" = m are nilpotent for i#j, hence they lie
in m’, and we have (3). If Q,=Q,, then the image of the subalgebra
{(C,—C)em,; ®@m, } in m/m, lies in @ sl,,, and we have (4). W

(4.7) From 3.4 we have isomorphisms
VEC; (P, Q) ~(m/m) (B)}/1, ¢, E(A), ~(C?, +).

We give VECg (P, Q) the additive structure carried over from that of (C?, +), and we
denote addition of isomorphism classes by +. The next result shows that + comes
from Whitney sum, denoted @®.

(4.8) Theorem. — Let Q, Q, and Q, be G-modules.

(1) Whitney sum induces an epimorphism of vector groups

WS: VECq (P, Q,) X VEC4 (P, Q,) - VEC (P, Q, ® Q).
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(2) If Hom (Q,,Q)"={01}, then WS is an isomorphism.

(3) If every simple H-submodule of Q, also occurs in Q,, then the map
VEC; (P,Q,) » VECg (P,Q; ® Q,) sending [E] into [E @ Oy,] is surjective.

(4) Let E,, E;eVecg(P,Q). Then E; @ E,~E; @ O, where [E;]:=[E,]+[E,].
(5) The map VECs(P,Q) — VEC; (P,Q ® Q) sending [E] into [E ® O] is bijec-

tive.

Proof. — Let M;, M,, n, etc. be as in 4.54.6. The inclusion
GL(Q,)XGL(Q,) = GL(Q, ®Q,) induces a homomorphism of group schemes
B, X 2P, > B, where P, etc. is the automorphism group scheme of 0,,, etc. The
resulting homomorphism

VECg (P, Q) X VECg (P, Q,) » VEC (P, Q)

is just Whitney sum. If Hom(Q,,Q,)*={0}, then PP, x , P,, proving (2). The
canonical inclusion.

Mor (P, End Q,)® @ Mor (P, End Q,)¢ — Mor (P, End (Q, ® Q,))°

induces a morphism of Lie algebra schemes €, x , &, - &, where €,, etc. is the
endomorphism scheme of ®,, etc. One now obtains (1), (3), (4) and (5) from 4.6
using the isomorphism of 3.4(2). M

5. Examples

We present several examples where VEC;(P,Q)#{ *} and examples of non-
linearizable actions of simple groups. In particular, we give proofs of the results
announced in [SchS].

Let O,, V,, etc. be as in Example I11.2.8.

(5.1) Theorem (see VII.2.2 and VII.2.6). — Let G=0, and EeVecg(V,,V,),
n>=1. Then

(1) VEC4(V,,V,)~C" L
(2) E® Oy, and E @ Oc are trivial, where G acts trivially on C.
(3) E, considered as a C*-vector bundle, is trivial.

(5.2) Theorem. — Let G=0, and EeVecs(V,,V,), n odd, n>1. Then
(1) VECg(V,, V,)=C™ 12,
(2) E® Oy, is trivial.

(3) E, considered as a C*-vector bundle, is trivial.
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(4) Whitney sum with O, induces an isomorphism of VEC;(V,,V,) and
VEC;(V2, V, ®V,).

Proof of (5.1)-(5.2). — Let P=V,, Q=V, and n=2m+1 be as in 5.2. The
principal isotropy group of (P,G) is the Klein 4-group H=(Z/2)> = G, and
Q. H)~W, ®W, where W; and W, are non-isomorphic one-dimensional repre-
sentations of H. Thus M=GL((Q)"~(C*)?. It is easy to compute that
€ (A)=Mor (P, End Q)¢ has homogeneous generators of degrees 0 and 2m+ 1, so that
VEC; (P,Q)~(C™, +) (see VI.2.6-VI.2.8), proving 5.2(1). Now the representation
(Q=V; ,+1,H) is independent of m, and VECg (P, V)={*}. It follows from 4.8 (3)
that direct sum with @, gives a surjection from VECg (P, V,) onto VEC;(P,Q @ V,),
hence we have 5.2(2). Part 5.2(3) follows from 4.4. Now {i 1} = C* < 0, acts
non-trivially on Q and trivially on P, and 5.2 (4) follows from 4.8 (2).

Let P=V,, Q=V,, etc. be as in 5. 1. In the notation used above we have H=7Z/2
and (Q,H)=C @ ¢, where ¢, is the sign representation of H. Thus M= (C*)2. One
computes that € (A) has homogeneous generators of degrees 0 and 2xn. Now 5.1(1)
etc. follow as above. W

(5.3) Proposition. — (1) Let K be a finite group and U a reflection representation of
K with U¥=(0). Then Aut (U)¥=GL (U)X.

(2) Let V be a stable G-module, i.e., V contains an open dense subset of closed
orbits. Let H be a principal isotropy subgroup of (V,G) (see 11.1.2), and let
(U,K)=(V",Ng (H)/H). If K is finite and (U,K) is a non-trivial irreducible reflection
representation, then Aut(V)®=GL (V)¢ =C*.

(3) Let (V,G)=(C"0,), n=1, or (Lie(G), G) where G is simple. Then
Aut (V)¢=C*,

Proof. — Let @ e Aut(U)¥ where (U,K) is as in (1). For each reflection o,, let /,
denote a linear function which vanishes on the hyperplane fixed by ;. Since ¢
commutes with o; for all i, @*/,=X\;[; for some A;eC*. The /, generate U* (since
UX=(0)), hence ¢ is linear.

Let (V, G) be as in (2). Then G-V is dense in V, hence each ¢ e Aut(V)® is
determined by its restriction ¢ |,_yneAut(U)*. By (1), Aut(U)*=GL (U)* which
equals C* by Schur’s lemma. It follows that ¢ is just scalar multiplication by an
element of C*.

The representations (V, G) in (3) satisfy the hypotheses of (2). H

(5.4) Corollary. — (1) There are families of non-linearizable actions of O, x C* on
A* with one-dimensional quotient.
(2) There are families of non-linearizable actions of O, on A*.
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Proof. — Use 5.2,5.3(3)and 1.2(1). M

(5.5) Example. — Let G=0,, P=V, and Q=V;. Let u, v, x, y be coordinate
functions on P @ Q corresponding to the weights 2, —2, 3, —3, respectively, so that
t=uv. Consider the following section of P (A):

[ OLEH s )0

The corresponding vector bundle E can be trivialized as a C*-vector bundle. Thus we
can find an isomorphism E~®, as C*-vector bundle, where the action of Z/2
transforms to one which is linear on the fibers of ®,, but not constant. One can
compute that an explicit such action is:

G} CC0 =)0
bl = bl .
v) \Y u u’ 1—t) \x
By 1.2(1) (or 1.2(2) and 5.2 (4)), this action of O, is not linearizable as an action
on A* Recall that by VI.3.2(5) there are no examples of non-linearizable actions in
dimension 3 arising from vector bundles.

Let R, denote the SL,-module of binary forms of degree n. For n even, the SL,-
action descends to an action of SO;=SL,/{ +£1}. Recall that R,~sl, and that
t=det:sl, > A is of degree d=2.

(5.6) Theorem. — Let G=SL,, n>1.
(1) VEC4(R,, R,)~C?, where p=[(n—1)?/4].
(2) Whitney sum with O, gives a surjection

S,: VECG(R;,R,) = VEC; (R, R, @ R)).

(3) If n is odd, then S, is an isomorphism.
4) If n=6, then ImS,=VECg; (R,, R, ® R,) is non-trivial.

(5.7) Corollary. — (1) There are non-linearizable actions of SL, on A" and of SO,
on A'°.

(2) There are families of non-linearizable actions of SL, on A2™*! m>4.

Proof of (5.6)-(5.7). — Parts (1), (2) and (3) of 5.6 use no new techniques,
and we leave them to the reader. We need to establish (4) (with n even), so
consider the case Q=Q, ® Q,=R,®R,,, m>1. Note that —IeSL, acts trivially,
so we are actually considering SO5-vector bundles. Now a principal isotropy group
of R, is a maximal torus C*, and the weights of R,, relative to C* < SO,
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are m, m-—1,...,—m. Thus, in the notation of 4.5 M,~(C*)3,
M, ~(C*)*x (C*)2™~2 and M ~(GL,)*x (C*)2™~2, where M, and (C*)*> = M, map
into (GL,)® = M. The copy of (C*)>™~2 in M, maps isomorphically onto M/(GL,)>.
Now minimal homogeneous generators A; of Mor(R,, EndR, )¢ have degree d,: =1,
0<i<2m. The only way that all the elements of VECg; (P,P @ Q) could be trivial is
if the restrictions A;=A; le’ i<d=2, map onto the Lie algebra of M/(GL,)? (see
3.4 (1)). This can only happen if 2m—3<2, hence VEC; (P,Q, & Q,)#{ * } as soon
as2m—3>d=2,1i.e., as soon as m>=3.

Part (1) of the corollary follows from 5.6 using 1.2(2). Part(2) results from
5.6(1),5.3and 1.2(1) withH={+1}<=SL,. W

(5.8) Remark. — Let G be simple with non-trivial center C. Then Knop’s construc-
tion ([Kn], see 1.2.9(2)) shows that one may choose G-modules Q with Q¢=(0) such
that VECg (Lie (G), Q) contains families of arbitrarily large dimension. Applying
1.2(1) and 5.3(3) one obtains families of non-trivial actions of G on affine space.
One easily extends these results to the case of semisimple groups G with non-trivial
center.

In Tables IITa and IIIb below we list triples (G, P, Q) for which (P, G) is
rigid, Q is irreducible, VEC4(P,P)={*} and VEC;(P,P@®Q)#{*} (hence
VECg (P,Q)#{*}). Using 1.2(1) and 1.2(2) we then obtain examples of non-
linearizable actions of G x C* and G on affine space. In each case one has to argue
as in 5.6(4) to establish that VEC (P, P @ Q) #{ * }. The tables, together with [Schl],
contain all the information needed for verification. Some sample verifications are
given below. In each case, the fiber Fp=m, ! (1) is isomorphic to G/H where H is a
principal isotropy group of (P,G). In Table IIIb we list the decomposition of P
and Q (as H-modules). From this decomposition one can determine the groups
M, :=Mor (Fp, GL(Q))°*~GL (Q)" and M :=Mor(Fp, GL(P ® Q)°~GL (P @ Q)"
(so P=Q, and Q=Q, in the notation of 4.5). In Table IIla, an entry (A < B)?> x C,
etc. is shorthand for AXAXC < BxBXC, etc. To compute the generators of
Mor (P, End Q)¢ one needs to know EndQ as a G-representation, or at least that
portion of End Q which occurs in @ (P). In Table III b we list either the decomposition
of End Q, or only those components which occur in ¢ (P) (entries 5, 6, 6’, 7 and 10).
Knowledge of the decomposition of @ (P) as an ¢ (P)®-module then allows one to
compute the generators of Mor (P, End Q). We list their degrees in Table 1Ila and
also the degree d of the homogeneous generator of ¢ (P)°. An entry k<) denotes k
invariants homogeneous of degree/, and 0; denotes a trivial representation of
dimension j. We have:

(5.9) Theorem. — Let G be a simple classical group, a spin group, G,, E¢ or E,.
Then G has a non-linearizable faithful action on A" for some n.
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(5.10) Example. — Consider entry 4, where G=A,, m>3, P=¢,+¢,, and Q=0¢*.
k

From the decompositions (Q,H)=0,+¢,+ @ ¢, and (P,H)=0,+¢,+¢,_,, one
i=2

sees that M, =(C*)? x (C*)*"! € M=GL, x GL, X C* x (C*)*~ !, where the image of
M, ~(C*)? lands in the first three factors of M. As in the argument of 5.6(4), to
show that VECg; (P,P @ Q)#{ * }, it suffices to show that the number of generators
of Mor (P, End Q)€ of degree <2 is less than k— 1. Now the covariants of type ¢ ¢,
in O (P) have multiplicity one (see III.2.6), and the generators clearly occur in the
copies of ¢} ¢! =S¢, ®S ¢, =S* (¢;+0¢,) S O(P). Thus the generators have
degrees 0,2, ...,2k and VECG(P,P@Q);é{ *} as soon as k—1>3.

(5.11) Example. — Consider entry 11, where G=E,, P=¢, and Q=¢?}. From
the decompositions (Q,H)=05+4(p,+0s)+ ... +(ej+0]0s+...+0%) and
(P,H)=0,+¢,+¢s one sees that M,=GLsx(GL,)>%...x(GL,=C*’< M
=GL, % (GL)? x (GL,)3 x ... x(C*)>. The image of M, ~GL, X (C*)? lands in the
factors GL, x (GL5)? of M. Dividing M by these factors and also by M’ we have a
surjection of M, onto the quotient (C*)*2. From [Sch1, Table 5 b] there are 8 generators
in degree <4 of the covariants corresponding to elements of EndQ. Thus
VECG (P,P@ Q) #{*}.

(Added in Proof:) One can replace Q=¢? by ¢% for any k>4. One needs to
verify the analogues of the formulas in Table IIIb for End Q and (Q, H). E. Elashvili
(private communication) has verified the formula for End Q. Both required formulas
follow from Littelmann [Li].
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TasLe IITa
G P Q M, c M Degrees
1 A1 (P% (Pfk+1 (C*)2k+2§(c*)2k+5 0,1,...,2k+l
k=1
2| SO, ok @1* | (C* = GL,)* x (C*)** 2 0,1,...,2k
k=3
3| A, 01T, ol (C* = GL;)* x (C*) ! 0,2,...,2k
k=4
40 A, lo+on| o |({e}=CHx(C*<=GL,) 0,2,...,2%
m>3 k>4 | x(C* < GL,)x (C*)~1
5| SO, ? o} (C* = GL,)?* x (C*)F ! 0,2,...,2k
m=5 k=4
6| B, ? 059, | ({e} = CH*x(C**F*2 0,1,...,2k+1
m=2 k=1
7| D, 0, ok, | ({e} = C¥2x(CH! 0,2,...,2k
m=3 k=2
8 Cn 29, o (GLy+1 € GL45) X U+ 1)2<2j>,
m=2 k=7 (GL, = GL,,,) x 0<j<k
k—1
[16L,
j=1
k+2—i )
9 G, o) o (C* = GL,)? X [ : ](kd:z),
k=3 (C*)(k;z)_3 0<igk
10 | Eg 0, o} (C* = GL,)* x (C*)*! (k+1)<{2k)
k=2
11| E, 21 ot (GLs = GL,) x 0,2<2),5(4)

(GL, = GL4)*x
(GL3)* x (GLp)* x (C*)°

and higher
degree
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TaBLE III b
G End Q H (Q, H) (P, H)
2k+1 k
1 A, @ (Pfl Cc* @ Viity Votvetvo,
i=0 i=0
2k ) k
2 | SO, @ @' C* @D Vv,; v, +vet+v_,
i=0 i=—k
k ko
3 A, @ (P1 o} A, @ o} 29,106,
i=0 i=0
k koo
4 A, D ¢} (Pm A,y .@ 0} o+, 16,
mz3 i=0 i=0
k . k
5 SO,, = .('B o1’ SO, -1 .@ 0} ¢, +6,
mgs i=0 i=0
2k+1 B K _
6 B, > @ 0 A XA, (@ @i toioi) | 9, ®9,16,
i=0 i=0
2k+1 k
6’ Bm = @ (pll Dm @ ((pl (pm 1+(P1 (pm) (p1+91
m;3 i=0 i=0
ko ko
7 | Du > @ 9} B, D 01 Pm-1 ®1+6;
mg3 i=0 =
k
8 Cm @ (p%l(PJZ Cm—l @(k+1—l)(Pl1 2([)14‘04
m>2 i+j<k i=0
k k+2—i k+ i i
9 G, S [ ] i SL, @ 019 ¢+, +0,
i=1 2 i+j<k
k+2
+[T](Pli
k
10 E, > @ ¢2lol F, - @ 9 ¢, +0,
i+j<k i=0
4
11 E, @ o1 05 0% Eq @ (5—1) ¢} 05 ¢, +0s+0,
l+m+n<4 i=0 s+r=i
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™

vb

L(B), L(B), ...
L(B),, L(B)
LI

L,

[(B), [(B),

Ly

25, L (Y)

M

MY), ...
M, M(B), ...
My, My,

My

m

m, m’

Ha

N

n

0, 0
0,
0(X), 0X)°

PX’ PV

P, P

pt

Tix, Ty

ro (D), ro (U/F), ro (M)
P. P

P, P

P#
Rin k

o8

Yo’

V.0.6
I1.1.3,1.4,1.5(2)
IIT.2.8

1.4

w

II.
II.

<<~
P
[N NS T
—_

—
EEN

VI.1.12
1.3.3

I1.4.1
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5, 60
5, 30
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11
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65
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24
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80

44

46

4

80

11

7

12

14

50

15, 16
29

12

8

81

79

12

63

10

34

63

15

10, 35
35

11, 63
10

6

24

4
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[BHI]
[BH2]
[Br]

[DG]
[Go]

[Gr]
[Ha]

[Ka]
[Kn]
[KoR1]
[KoR2]
(Kr]

[Krl]

[Kr2]

[Kr3]

[KPR]
[KP]

[KS]
[Li]
[Lu]
[LR]
[MP]
[MMP]
[Pa]

[Schl]

[Sch2]
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