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ABSOLUTELY CONTINUOUS INVARIANT MEASURES
FOR MAPS WITH FLAT TOPS

by MICHAEL BENEDICKS and MICHAL MISIUREWIGZ

0. Introduction

This paper is intended as a sequel to the paper [M2] by the second author. The
aim of the paper is to study the problem of knowing what type of behavior near the
critical points can replace the polynomial-like behavior in the proof of existence of
absolutely continuous invariant measures.

The class of mappings treated is basically the same as the one in [M2], essentially
piecewise monotone mappings with non-positive Schwartzian derivative, no sinks and
trajectories of critical points staying far from the critical points. However there is one
important difference: we will allow <c flat" behavior at the critical points. It turns out
that generically the following extra conditions on the map / from an interval to itself

(A) J,log|/'W|^>~-o)

or (equivalently for our class of functions)

(B) J,log|/W-/(a)|^>-oo

for every critical point a are sufficient for the existence of absolutely continuous invariant
measures.

It is important that the condition (A) (or (B)) is also necessary: If a unimodal
map in our class satisfies

^og\ff{x)\dx=-^

then/has no absolutely continuous invariant measure. The restriction to unimodal
maps is for the following reason: in the presence of many critical points the dynamics
may split into several independent parts, some of them involving only (c good " critical
points (e.g. with polynomial-like behaviour) and therefore having absolutely continuous
invariant measure.
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This answers the question posed by Collet and Eckmann [C-E, p. 159] as to
which conditions should be imposed on < ( flat tops ".

The assumption that the Schwartzian derivative is non-negative may seem very
strong. However it is not so. Surprisingly many commonly considered maps of an interval
into itself have negative Schwartzian derivative (cf. [Ml, Examples (2.8)]). Never-
theless one can ask whether our results still hold without this assumption (although one
has to assume that the Schwartzian derivative is non-positive in some neighbourhood
of each critical point—this property is absolutely necessary to all known proofs). Recently
the results of [M2] were generalized in this manner by van Strien [S]. The methods
of [S] are completely different from those of [M2], so one cannot generalize the results
of this paper automatically. Moreover is seems that the polynomial-like behaviour near
the critical points is more important in [S] than in [M2].

The proofs of this paper follow to a large extent those in Misiurewicz [M2]. We will
state all lemmas needed but refer to [M2] for the proof if the lemma is unchanged. In
certain cases, some simplifications of the proofs in [M2] are possible, mainly due to
the fact that we do not allow the orbit of a critical point under iteration byy*to hit another
critical point. (This is the genericity mentioned above.)

This work was essentially done during a visit by the first author to Warsaw and
he wants to express his gratitude to the Institute of Mathematics of the Polish Academy
of Sciences for its hospitality.

1. Stretching far from the critical points

Let I be a closed interval, let U and V be relatively open subsets of I consisting
of a finite number of intervals each, such that U contains the endpoints of I and
TJ U V === I, and let j f :V->I be a continuous mapping. We denote the n-th iterate
of f by/n, and the Lebesgue measure by X.

An open interval J C V is called a homterval if, for all w,/" mapsj homeomorphically
into its image. We shall say that f has no sinks if there does not exist an interval J C V
and a positive integer n such that /n maps J homeomorphically into J.

Theorem 1 [M2, Theorem (1.2)]. — Let f have no sinks and be of class G1, assume
f\x) 4= 0 for all x e V and let log {/'{x) \ be Lipschitz continuous on components ofV. Then for
every homterval J there exists m ̂  0 such that

/"•(J)CU.

The Schwartzian derivative Sf of a function feC3 is denned as
fill <\ I f"\2sf=J—--{J\.7 /' Af'l

See [M2, p. 18] for a discussion.
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Theorem 2 [M2, Theorem (1.3)]. — Let f have no sinks and be of class G3,
assume f\x) + 0 for all x e V and S/^ 0. Then there exists m > 1 such that, iff\x) 1:V for
j=0, 1, ...,m- 1, one has IC/T^l^l.

2. Estimates I

In this section, U is a relatively open subset of I consisting of a finite number of
intervals and such that the endpoints of I belong to U. Let/: I\U ->I be a map of
class G1 such that \f \ ̂  a> 1 and the function log \f\x) \ is Lipschitz continuous on
the components of I\U and let B a subset of I\U such that/(B) C B and dist(B, U) > 0.
Define E^ = { x e I :f\x) i U for k = 0, .. .,n - 1 }. (Notice that since I\U is the
domain of/, E^ is the domain of/".)

Proposition 1 [M2, Proposition (2.1)].— There exists a constant T] such that 0 < T] < 1 and
for every n ̂  0

X(EJ ^^(I).

We will now prove some technical lemmas on the integrability of functions, which
are related to the conditions (A) and (B).

Lemma 1. — Assume that ^ is a C1 function on [0, a} such that
a) +(0) = +'(0) = 0,
b) ^f is strictly increasing.

Then the following conditions are equivalent:
^^~\t) , .fV(o) ^-1

(I)! -7
(ii) Fiog^dt

J o

(III) flog^A
•'0

dt< oo;

>-oo;

> —00.

Proof. — Note that a) and b) imply that ^) > 0 and ^\x) > 0 for 0 < x < a.
(I) => (II): By the change of variables t = ^(w) we have

^-'(f)^r"^^r'"" ̂  (f) ̂  r"
Jo < Jo/o t Jo W

Furthermore for every s e (0, a)

r°t4'(«) . r°^'(«), r - . . / ^ f°f° um-lu) f» MA'(«) f0

Jo W rf" ̂  t W rf" = [" log WYt ~ ilog w du

and therefore

flog 4>(u) du > a log ^(a) + e log -1 - f ttyw du.
J. <Ke) Jo ^{u)
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If e is small, then slog(l/^(e)) > 0. Hence f log ^(u) du> — oo.

r(II) => (I): Since log ^(u) du> — oo and ^ is increasing,
Jo
i r8 i

s ̂  TT\ ̂  ^S TT\ du -> 0 as e -̂  + 0.
+(s) Jo W

Hence lim^.^ slog 4>(e) =0 and the result follows again by integration by parts
and change of variables.

(II) => (III): Since ^' is increasing,

w = r+'w^^).
J o

Hence

f log ^{t) dt ̂  flog 1 dt + flog ̂ ) dt > - oo.
Jo Jo F </o

(III) => (II): Since ^' is increasing,

^^w^w^w
« t

and again the result follows by integration. D

Lemma 2. — Let 9 be a positive increasing function on (0, &]. If for some ( B > 0 , 0 < a < 1
and Ho such that (Ba"0 ̂  b we have 2^ ̂  9(Pa") < oo, ^^

f69^^^..
Jo t

ftb
Conversely if (y(<)^) dt < oo, ̂  S^ ̂  ^(Pa") < oo for all (B > 0, 0 < a < 1, pa"0 ̂  b.

Jo

Proof. — Since v -^ cpdBo^) is a decreasing function, this follows from the integral
test for the summability of a series and the equality

r°° i c^"0 of^
<p(^)rfy=.——— ^-dt

Jn, log I/a Jo t

(obtained by the change of variables t == (Bo^). D

Lemma 3. — If^ is a G3 function on (0, d\ such that S^ < 0 and ̂  vanishes at finitely
many points, then there exists a' e (0, a~\ such that ^' is either constant or strictly monotone on [0, a'].

Proof. — Since the function 1/V| ^' | is convex on some interval [0, a"] (see
[M2, (3.1)]) it is either constant or strictly monotone on some [0, a'] C [0, a"]. Hence | ^ \
is also either constant or strictly monotone on this interval. D
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3. Estimates 11

In this section (and the next ones) I will be a closed interval, A a finite subset of I
containing its endpoints, and/: I\A -^ I a continuous map, strictly monotone on each
component ofI\A. To avoid cumbersome notation we shall assume that/extends to a C1

map of I (and in the sequel we shall consider this extended map/: I -> I).
However, the situation could be carried over in an obvious way to that in [M2]

considering one-sided limits at the points of A.
Now we make further assumptions on/ (as in [M2]):

(i) / is of class G3 on I\A;
(ii) /' + 0 on I\A;

(iii) S/< 0 on I\A;
(iv) if f^^x then K/TW^l ;

(the condition (iv) implies that/has no sinks, see [M2, p. 25])

(v) a) there is a neighbourhood U of A such that for each a e A and n ̂  0,
/^)eAu(I\U);
b) iff\a) == 0 then/V^)) + 0 for n == 1, 2, ...;

(v1) flog|/ 'W|^>-oo.
J i
We also make two additional assumptions:

(vii) |/'|> 1 on I\U;
(viii) if a e A is a periodic point for/it is a fixed point for/.

Note that (v) is different from the corresponding condition in [M2], in that we
do not allow critical points to be mapped onto critical points.

Lemma 4. — If/satisfies conditions (i)-(vi) then some iterate of/satisfies conditions (i)-(viii)
(perhaps with a different set A).

Proof. — Let m ̂  \,f=fm, A = \J^f~\A). ̂  is easy to see that (i)-(iv) are
satisfied by /A instead of/, A. In (v) we take 0 == U^o1/"^11)- To prove (vi) use
the chain rule. Here, it is essential that a critical point is not mapped onto another critical
point.

Now it remains to show that if/satisfies (i)-(vi) then some iterate satisfies (vii)
and (viii). The first fact follows from Theorem 2, and the other one is obvious. Q

Set AI = { a e A :f{a) == a }, Ag === A\Ai, A^ = { a e Ag : there are b e A and n ̂  1
such that/'(&) = 0 and/^) = a }, A;' = A,\A,, G, = U^AA), G = U^i/^A),
B = C. For an L1 function y on I we denote by <pX the measure which is absolutely
continuous with respect to X and with density (i.e. Radon-Nikodym derivative) 9. For
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a measure (JL and a map g, g*{[L) denotes the image of [L under g, i.e. a measure such
that for each measurable set E:

g-W (E) = ^-^(E)).

For a map ^ we define the Perron-Frobenius operator g^ on an integrable function 9 by

^(?)^==^(?^)-
Notice that

f 9 d\ = f ^(9) rfX.
J^CE) ^E

Proposition 2 fM2, Proposition (3.2)]. — If/satisfies (i)-(iii) then, for every xel\C^,
one has

fnm(x}<-^-<-^-J» { i ) W ^ , . / . „ ^ x ^ i.., -DN-dist(A;, €„) dist(A:, B)

Now we assume that f statistics (i)-(viii). By (v) B\A is disjoint from U. Since
S/*^ 0 and by the continuity ofjf' there exist open intervals U^, a e A, such that Uae A ̂ a
is disjoint from B\A, and |/' | > a > 1 on I\Uae A ̂ a' ^t ls easv to see ̂ ^ we can ^so

have \f | ^ a > 1 on U,, if a e A^.
Let us introduce the class of functions ^\ [a el). A non-negative ^-function ^

on a neighbourhood of a e I belongs to ^\ if there exists a continuous function 9 on
a neighbourhood of a such that

a) 9(0) = 0,
6^) 9 is increasing,
c ) 9 is of class G1 except at a,

o(t)d ) —l— e L1 on some neighbourhood of a,
t — a

e ) ^ ̂  9' on a neighbourhood of a.

Remark. — Notice that if S is bounded in a neighbourhood of a then ^ e j^,.

Lemma 5.

flj 7/^i, ^2 6 «< ^en Si + ^2 e ̂ .
&; ̂  S e ̂ a. fl^ K > 0 ̂  K^ e ̂ a-
c) If ̂  e s^a and f\d) 4= 0 ^A^, y^r some neighbourhood V of a,

(/Iv). 00 6 .<<,)•

Proof. — a^ and ^^ are obvious. To prove c) notice that for some neighbourhood V
ofa,y|y is one-to-one. Then

^((/Iv)-1 W)
{f\^{^W= !/'((/! v)-1^)) I'
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If V is small, the denominator is bounded away from 0 by a constant 8 > 0. It is also
bounded from above by a constant M. Therefore

(/Iv).^)^)^1^/!^"1^))"8

< ^ <P'((/lv)-1 W) < ̂  I (<P ° (/Iv)-1)' W 1.

Consequently, to prove that (./|v)» (S) et^f(a)lt remains to show that

yo(/lv)-^)
t -M

is integrable in a neighbourhood of f{a). But this follows by the change of variables
t ==f{u) and the fact that

u — a _ - ,/'(")fW -Aa)
is bounded near a. D

Lemma 6. — 7/* ̂ : I -^ R ̂  non-negative and bounded in a neighbourhood V of a, then

(/lv).00e^/(«)-

Proof. — Take a small one-sided neighbourhood V of a and a function given by

-̂ . K/lv)-1^)-^ if^/(^)
9 -K/k)-1^)-^! a^Aa)

(^ is defined on a one-sided neighbourhood off{d)). Clearly ̂ (/(a)) = 0, ̂  is increasing
and of class G1. By Lemma 3 we can use Lemma 1 and the assumption (vi) to conclude that
^!{t)l[t —f{a)) is integrable in a neighbourhood of f{a) (we set ^{x) ==f{x + a) —f[a)
and get |?(A;)| == \^~l{x ~/(^))|). Since ^ is bounded by some constant K, we get
(/lv)» (^) ^ K.y. Now the statement of the lemma follows from Lemma 5 a) and b). D

Lemma 7 (Cf. [M2, Lemma (3.4)]^.
1) For all a eAg', sup^o./^) ls bounded on a neighbourhood of a.
2) For all a eA;, sup^o^(l) ^<-
3) For all a eA^ sup^o(/lu,), (/;(!)) e^/(a).

Proo/*. — 1) follows immediately from the definition of Ag', Proposition 2 and the
form of the Perron-Frobenius operator.

2) and 3) follow from 1), assumption (v) b) and lemmata 5 and 6.
We can form the supremum with respect to n because in view of Proposition 2,

we are interested only in what happens at a finite number of inverse images of a inde-
pendently ofn (cf. the proof of Lemma (3.4) of[M2]). D

27
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Lemma 8 [M2, Lemma (3.5)]. — Let HC I and

^={x:f\x)eH / ^ i==0, l ,2 , . . . ^ - l} .

Then for every j, w ^ Aflz^

f / ^ ^ r f ^ S f sup (/|^). (/:(!)) ^+X(H^J.
•/H, &=» JHjfc n^O

Z^wwfl 9. — For every a e Ai, and e > 0 ^r<? ^ a neighbourhood Vf of a such that

f /:(l)^<s
JwnUa

y^r ^ry w ̂  0.

Proo/*. — Let a e A^. There exists a constant (3 > 1 such that

1/W-/(^M^-^1 for^eU,.

The set V^ == { x :f\x) e U^ for i = 0, . . . , & — 1 } is a neighbourhood of a in U^ and we

have X(V^) ^ ^(I)^. Therefore it is enough to prove that sup^o | /;"(l)rfX-^0
as s -> oo. First we write vs

(/li\n;. (/:(!)) == (/la), (/:(!)) + (/livaun,)), (/:(!)),

where G = U ^ R U , , R = { b eA\{a}:f{b) = a}.
By lemmata 5 and 7 and Proposition 2 we have

(3.1) S = sup (/| ̂ ), (/:(!)) e<.
n^O

(Notice that RC A^ so that we can use Lemma 7.) In view of Lemma 8 (for H = U,,;
then H^ = V^) and (3.1) we get for s large enough

S = sup f /-(I) ̂  S f^J <p'(,) A + -^
w^oJv, fc=<»J^_^D P11 '"1

P*

where 9 is a function as in the definition of ̂ * Set ^(<) == ^{t + a). We get

supJ/.••(l)^skm+y(-^)]+ lW.
m^oJv, ^4 \ P / \ P / J P

This tends to 0 as s -> oo by Lemma 2 and condition d) in the definition of j^. D

Lemma 10. — For ^ry s > 0 ^r^ exists a neighbourhood W o/* B\A such that

\ /<"(!) ̂  < s /or ^ry w > 0.
Jw



ABSOLUTELY CONTINUOUS INVARIANT MEASURES FOR MAPS WITH FLAT TOPS 211

Proof. — If we put UagA ̂ a instead of U and B\A instead of B, then the hypo-
theses of Section 2 are satisfied. Let £„ be defined as in Section 2. Clearly, £„ is a neigh-
bourhood of B\A. Hence it is enough to prove that

^P f^W d\ ->0 as s -> oo.
w^oJEj

By Proposition 1 it follows that there exists a constant T), 0 < T] < 1, such that
X(E,) ^ T]' X(I) for all s ^ 0. We obtain by (3.1) and Lemma 5 that for some ̂  positive

and increasing in some (0, e] and with (^{t)lt) dt< oo,
J o

f ^P (/lUoe. U,)* (/"(I)) ̂  < ?W ^(1))
J ' E s w^O

for all ^^ 0. Hence by Lemma 8 we obtain that with H = I\UaeAU»

sup f /"(I) < S W X(I)) + X(I) ̂  -> 0 as ^ -> oo
Bi^O^E, f c=a

by Lemma 2. D

Proposition 3. — If/satisfies (i)-(vi), then for every s> 0 ^?r<? m'.̂  8> 0 ^cA that

if GC I W X(G) < 8 one has f /^(l) ^X< e /or ^ ^
JG

Proof. — Suppose first that/satisfies (i)-(viii). From Lemma 7, 1) and 2), it follow
that the statement of Lemma 9 also holds for all a eAg. This and lemmata 9 and 10

imply that for every e > 0 there exists a neighbourhood W o f B such that /<r(l) d\ < e
for all n. Jw

The rest of the proof proceeds as the proof of [M2, Proposition (3.8)]. D

4. The main results

We are now ready to state our first main result

Theorem 3. — If f satisfies (i)-(vi) then f has an invariant probability measure absolutely
continuous with respect to Lebesgue^s measure.

Proof. — Take any weak-* limit of a subsequence of
1 n-i
n s /:(x)-n & = o

It follows from Proposition 3 that it is absolutely continuous. D

Remark. — Notice that the rest of the results of [M2] also go through under our
new assumptions (in particular Theorems (6.2) and (6.3)).

We next turn to the converse result.
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Theorem 4. — Letf: I ->I 6^ a unimodal map satisfying conditions (i)-(v). If/has an
absolutely continuous invariant measure then

flogl/'WI
Ji

tl(x)\dx> - oo.

For the proof we will need the theory of the functional spaces ^.(J) as developed
in [M2], Section 4. Here we merely give the definition and refer to [M2] for results and
proofs.

Definition. — Let J be an open interval. We denote by ^y(J) the set consisting of
all positive G' functions T on J such that l/\/r is concave, and the function 0.

Lemma 11. — If a unimodal mapf: I ->I satisfying conditions (i)-(v) has an absolutely
continuous invariant measure than it has an absolutely continuous invariant measure with density
in QQ on each component of I\B, positive at the critical point c.

Proof. — Let v be a weak-* limit of some subsequence of

( \ n-i xoo
- S (/T W
n k==0 Jn=i

(as before, X is the Lebesgue measure on I). Then v is invariant and since B is invariant
then v = Vi + vg, where both v^ and Vg are invariant, v^ is supported by B and v^ by I\B.
On each compact subset K C l\B,f^{l) is bounded by X(I)/dist(;v, B), which is integrable
on K. Thus, V ^ I K ls absolutely continuous. Hence v^ ls also absolutely continuous.

Set T = rfvg/dX. By [M2, Proposition (4.5)], T e Qf^ on components of I\B. Let J
be the component which contains c.

Suppose that r| j is identically equal to 0. Since the inverse images ofc are dense,
we obtain Vg == 0. Denote the absolutely continuons measure, which we assume to exist,
by x. For every e> 0 we have K = iq + Kg, where d^d\ is bounded by some cons-
tant M and K^(I) < s. Hence, on a set K as above

1 ro-l I/he \ 1 n-1

- s/^ <- S^M)-^
n k^o \aA/ n f c=o

on a subsequence which gives v. Since for all n

K(K) = 1 "S1 (/T (K,) (K) + i 'S1 (/T (K.) (K),
n k-=0 Tt k " 0

we have K(K) < Ka(I) < s. Since e and K were arbitrary, we obtain K(I\B) == 0. But
X(B) = 0 and thus K(B) = 0. Consequently, K = 0 — a contradiction.

This proves that r | j is bounded away from 0. Therefore the measure ^ (after
normalization) satisfies the assertion of the lemma. D
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Proof of Theorem 4. — For definiteness assume that/has a maximum. We now call
our good invariant measure (i.e. Vg) (JL. The density of [L is bounded away from 0 by some
constant 6 > 0 on some neighbourhood U of c. We can assume that dist(U, B) = y > 0.
Set

J. = U n/^IYU) n ... ny-^U),
K, = (I\U) n/-l(I\U) n ... ny-^U).

Clearly J^ n K^ == 0 and J^+i u K^+i ^-^(K^). By induction
(x(I) = ^(Jo) + (jt(ji) + ... + ^CL) + pt(K,).

We have |y | < a for some a> 1. Let

L.=[/M-^,/(<4
L a J

If k is sufficiently large thenjf~" l(L^)CJ^. Hence

^(i)> s ^(/- l(L,))^e s © ^ .
fc=fco fc=&o \a"'y

Here @{x) = 97" ̂ A;) + 971 {x), where 9^) ==/(c) —/(A; -- c), and 971 and 97"1 are
the two branches of the inverse function of 9.

It follows from Lemma 1 and Lemma 2 that ) log \f\x)\dx> — oo and the
proof of Theorem 4 is finished. D
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