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ON THE CREATION OF HOMOCLINIC POINTS
by RICARDO MAN£

INTRODUCTION

Let M be a compact boundaryless smooth manifold, /: MD a G1' diffeomorphism
and p a hyperbolic fixed point of/ (i.e. all the eigenvalues of Dy/: Tp M ̂  have eigen-
values with modulus =(= 1). It is well known that the stable and unstable sets ofp, denoted
and defined respectively by

Vf9{p)={x\^m^d(fn^x),p)==0}

and W^) = { K | ̂ im^ d{f- ̂ x^p) = 0 },

are G*" injectively immersed submanifolds of M. The points of intersection of W'Q^)
with W"(^) different from p (i.e. the points in W^) n (W"(^) — { p } ) ) are called
homoclinic points associated to p. The points of intersection of the closure of W^) with
W^) or of the closure ofW^) with W^), different fromj&, wiU be called almost homo-
clinic points associated to p. In other words the set of almost homoclinic points associated
to p is :

Wp) n WTO u Wp) n W8^)) - {p }.

The purpose of this paper is to study the well known problem of whether, when
there exist almost homoclinic points, it is possible to create homoclinic points by a small
perturbation of the diffeomorphism. To state this question more precisely, recall that
if a V diffeomorphism f :M~^ has a hyperbolic fixed point p, there exist a neigh-
borhood U of p and a G1' neighborhood ^U off such that every g e % has a unique fixed
point p{g) in U and moreover this fixed point is hyperbolic and depends continuously
on g. Obviously p{f) = p,

Problem. — Suppose that a CY diffeomorphism /: M 3 has almost homoclinic
points associated to the hyperbolic fixed point p. Does there exist a G1' diffeormophism
g : M ?, arbitrarily near to / in the G*' topology, having homoclinic points associated
top{g)?
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A stronger form of this problem would be to specify an almost homoclinic point q
off and require g to have an homoclinic point nearby q. Observe that if this problem
has an affirmative answer, then, by very soft arguments, it can be proved that for 0''
generic diffeomorphisms, the set of transversal homoclinic points associated to a hyper-
bolic fixed point is dense in the set of almost homoclinic points. This conclusion has
obvious interest since almost homoclinic points carry little further knowledge. On the
other hand, every transversal homoclinic point is known to be an accumulation point
of a sequence of invariant compact sets where the diffeomorphism acts as a transitive
finite type subshift (Smale [4]). But we shall restrict our discussion of the problem to
the version stated above because it seems idle to strenghten a question that even in
its weaker form remains, in its full generality, completely unanswered.

However, positive answers have been obtained under supplementary hypotheses.
Robinson [3] and Pixton [2] solved affirmatively the problem for diffeomorphisms of
the two dimensional sphere. In fact they solve also the strong form of the problem.
Takens [5] solved the problem for Hamiltonian diffeomorphisms, but only in the case
r == 1. His solution too covers the strong version of the problem and as a corollary follows
that for G1 generic Hamiltonian diffeomorphisms the set of homoclinic points associated
to a hyperbolic point p is dense in W8^) and W"(^).

The purpose of this paper is to answer the problem under a different type of
supplementary hypothesis. To explain it we need some preliminary definitions. Let^(M)
denote the set of probabilities on the Borel c-algebra of M endowed with its usual topo-

logy, i.e. the unique metrizable topology such that ̂  ->• pi if and only if ( < p fl^n -> f? ̂
for every continuous function <p : M ->R. Given fe Diff^M), denote by ^(f) the
set ofy-invariant elements of^(M). Associated to every x e M and n eZ^, define a
probability (Ji(^, n) e^(M) by

1 n

^,n) =^2^8^.

Denote by ^{x) the set of pi e^(M) such that there exists a sequence n^ < n^ < ... of
positive integers satisfying

^ = ^oo ̂ x) n^
Observe that ^(A:)C^(/).

Theorem A. — Suppose thatfe Diff^M), r = 1 or 2, has a hyperbolic fixed point p such
that there exist x eVfu{p) — { p } and (JL e^[x) satisfying [f.({p}) > 0. Then in every Cr

neighborhood of f there exists a dijfeomorphism g that coincides with f in a neighborhood of p and
has homoclinic points associated to p.

This theorem will follow as a corollary of a stronger result that in particular
implies that Theorem A also holds replacing the hyperbolic fixed point by an isolated
hyperbolic set.
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Let us recall some definitions that will appear in the statement of our main result.
We say that A C M is a hyperbolic set off e Diff^M) if it is compacts-invariant and there
exist a continuous splitting TM/A = E'® E", invariant under D/; and constants 00,
0 < .̂ < 1 such that

IKIV^II^G^
IKDJ-^/ESIJ^G^

for all x eA, n> 0. If there exists a compact neighborhood U of A such that

n/TO^A,
n

we say that A is isolated and U is an isolating block of A. Observe that every compact
neighborhood of A contained in an isolating block is also an isolating block. Define the
stable and unstable manifolds of A by

W^A) = { x | ̂  dWx), A) == 0 },

W"(A) == { x | lim d{f~ ̂ x), A) == 0 }.
n-> + oo

When U is an isolating block of A, it is known ([!]) that

n /-"(U) ==W(A) n U
n^O

and n /"(U) = W^A) n U.
n^O

We say that p is an homoclinic point associated to A if

p e W'(A) n W^A) - A.

The next theorem is a generalization of Theorem A to hyperbolic sets and more
general probabilities.

Theorem B. — Letf: M ? be aGr dijfeomorphism (r == 1 or 2) and A an isolated hyperbolic
set off. Let { x^} C W"(A) be a sequence converging to a point x ^ A and m^ < m^ < ... be
a sequence of integers such that the probabilities [f.{x^y m^) converge to a probability (A with (i(A) > 0.
Then every Cr neighborhood off contains a dijfeomorphism g coinciding with f in a neighborhood
of A and having a homoclinic point associated to A.

Our next result says something about the case when the hypothesis { x^} C W"(A) is
dropped. We need another definition. Let us say that Ap C M is a basic set off e Diff *'(&!)
if it is hyperbolic, isolated and//Ao is transitive (i.e. there exists^ eAo with <^{p) == Ao).
Recall that if A is an isolated hyperbolic set ofy: Mi) and Q(y/A) = A (where Q(y/A)
denotes the set of nonwandering points ofy/A) then A can be uniquely decomposed
as a union A = Ao u ... u A^ of disjoint basic sets that we shall call basic components
of A. This property is an obvious adaptation ofSmale's Spectral Decomposition Theorem.
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r̂ orm C. — Letf: M ̂  be a G1' diffeomorphism (r = 1 or 2) W A a» isolated hyperbolic
set off such that Q(//A) = A. Suppose that {x^} C M is a sequence converging to a point x ^ A
and m^<m^< ... is a sequence of integers such that the probabilities ^{x^, wj converge to a
probability ^ with (A(A) > 0. Then given a G" neighborhood °U of'fone of the following properties
holds:

I) There exists g e W coinciding with fin a neighborhood of A. and having homoclinic points
associated to a basic component of A.

II) For every neighborhood U of A there exist a neighborhood V C U, a diffeomorphism
g €% whose inverse coincides with /~1 in V u LP, k > 0 and 0 < m < m^ such that

g'W =/^)

for all 0 ̂  j ^ m — 2 W

)̂ e n ^"(v) = n /-TO
n^O n^O

Our final result shows a special case of Theorem G when property (I) always holds.

Theorem D. — Letf'. M3 be a G*' diffeomorphism (r = 1 or 2) and A ̂  isolated hyper-
bolic set of f with Q(//A) == A. 7y^? ̂ ^ x (f: W'(A) J^A ^Afl^ (JL(A) > 0 /or ̂  p. e^(^)
^A^ ^^ry C1' neighborhood off contains a diffeomorphism that coincides with f in a neighborhood
of A and has an homoclinic point associated to a basic component of A.

Theorems B and G can be stated in a unified (but less clear) form. In fact the next
result (Theorem I.I) gives more information about the position of the homoclinic orbit
that is created by a perturbation. Theorem D is proved through a variation of part
of Theorem I.I.

We advise the reader to follow the proofs in the simpler case when A is a fixed
point p, M is two dimensional and / is linear in a neighborhood of p. This simplifies
the technicalities and exposes directly the idea of the proof.

I. — Proof of Theorems B and C

Here we shall prove the following result from which Theorems B and C follow
immediately.

Theorem I.I. — Let f: M~^ be a GT diffeomorphism (r == 1 or 2) and A an isolated
hyperbolic set off. Let x f A be a point such that there exist a sequence { x^ } C M converging to x
and a sequence of integers 0<m^< m^< ... such that the sequence of probabilities ^(^^, wj
converges to a probability (A that satisfies pi(A) > 0. Then, for every neighborhood^ of fin Diff^M)
and every neighborhood U of A in M, there exist g e% and a neighborhood VC U of A such that

//(VuU^^VulP),
/^/(V u U0) = ̂ /(V u U6)

and moreover satisfy one of the following properties:
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I) There exist k> 0 and 0 < s < m^ such that:

g'W =fJW

for all 0 < j < s and

g9^) e n ^-"(v) == n /-"(v).
n^O »^0

Moreover when there exists an isolating block VQ of A such that {x^}C f1 Y^Uo), then g can
»>o

be chosen also satisfying g^^x^) =f~^\x^ for all j ^ 0, n ̂  0.

II) There exist k > 0 and 0< SQ< s^< m^ such that

(i) gW^-fW^))
for O ^ J < S ^ — S Q and

w g^f"W) ^ n rw = n /TO
n^O n^O

(iii) ^-^V^)) e n ^—(V) = n ./—TO
n^O n^O

The proof of Theorem 1.1 relies on four lemmas. Ths first one is quite simple
and we leave its proof to the reader.

Lemma 1. — Given c> 0 and a neighborhood^ of the identity in Diff^M), there exists
R > 0 such that for every 0 < r < R and every pair of points a e M and b e M satisfying

d(a,b)^rJe+e

there exists h e^T such that

h{a) == b
and h{x) == x

for all x outside the ball By(a).

For the statement of the second lemma suppose that/, A and U satisfy the hypo-
theses of Theorem I.I. Suppose also M endowed with a Riemannian metric such that
if TM/A = E" © E1* is the hyperbolic splitting of TM/A, there exists 0 < \o < 1 such
that ||(D,/)/E^ || < Xo, ||(D,/-i)/E; || < \ for all x eA.

Lemma 2. — There exist compact sets V+ C U, V- C U, 0 < QQ < 1 and 0 < y < X < 1
satisfying:

^/(v^cv^y-^v^cv-;
b) A = V + nV-$
c) Y d(x, V-) < d{f(x), V-) < \ d{x, V-)

and Y d{x, V^ < d(f-^x), V4-) < X d{x, V4-),

for all x satisfying d{x, V'1') < s^ and d{x, V~") < e^.
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If the reader, following the suggestion given at the end of the Introduction, is
keeping track of the proof in the case there described, then this lemma becomes completely
trivial just taking a square W contained in U and defining V'1" and V"" as the connected
components (that are segments) ofW^) n W and W"^) n W, as illustrated in figure I.

FIG. I

The proof of Lemma 2 will be given after the proof of Theorem I.I.
Let x ^A be given as in the statement of the theorem and denote ^ = p.(^, m^)

for k > 0.
To prove Theorem 1.1 we start by taking a compact neighborhood W C U of A

such that
n/TO^A,
n

^w
and f{x) i W.

Define V(r) == { x \ d{x, V+) < r, d{x, V-) < r }.

Choose 0 < Si < SQ, where Sg is given by Lemma 2, such that
V(si) C W.

Now take 0 < 8 < 1 and a sequence fg, r^, ... satisfying
(1) 0<r,,<si,

(2) r^=r^8
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and

(3) ^(^V(rJ) = (x(aV(rJ) == 0

for all n > 0 and k > 0. Set V,, = V(rJ and define S, as the set of points x e Vo that can
be written as x ==/•»( jj, OT e Z, with ̂  e V, and f\y^) e Vo for all 0 <j'< m if
OT > 0, or for all m < j < 0 when OT < 0. In the simplified case the sets V, and S, look as
in figure II where V, is a square of side 2r» centered at p and S, is the subset of Vo
bounded by hyperbolas passing through the vertices of V,,.

W(p)

Fio. II

For x e Vg define:

T(x) = sup { j \f{x) 6 Vo for all 0 < i < j }
+ sup { j \f~\x) e Vo for all 0 < i < j }.

Lemma 3. — There exist Gg > Gi > 0 such that, for S as above and for all n> 0,

T(x) < Ca(l + 8)"

ifxeVy-S^ and

Ci(l +8)»<TM

ifxeS9.
19
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Proo/. — Observe that by (1), Vo = V(fo) CV(ei) CV(eo). Then we can apply
the inequalities of part c) of Lemma 2 to the points in Vo. Hence, if/^) eVo for all
— »i < j < »2? lt: follows that

ro ^ ̂ /"'W, V4-) ^ ̂  d{x, V-^-),

^ ̂  ̂ /"^M, V-) ^ 5T"1 ̂ , V-).

Since x ̂  either ̂ , V-^) ^ ̂  or rf(^, V-) ^ r^. Then

r^ max {^» ro^ro }•

But by (2) we have logr, == (1 + ̂ log To, implying

(1 + 8)" log ro ̂  log ro + log X(max{7Zi, ̂  }).

Hence n, + n,^ 2^sro{l + S)\
logX

From this inequality the upper bound of the lemma follows easily. The lower bound is
obtained by the same method applying the lower bounds of part c) of Lemma 2.

Define a (n,k) -string as a set a of the form a == {/^), .. ̂ /^(^CV^
1 ^ J < J + ^ ^ w^, such that f3-1^) ̂ V^ and/^-^J ^V^. Observe that there is a
natural order relation among (n, A)-strings, defined by a^ < a^ if the first element of a^
is a strictly positive iterate of the last member ofo-r To simplify the notation, (0, k) -strings
will be called A-strings. Most of the time we shall deal only with yfe-strings. More general
strings will appear only once in our arguments.

Now we are ready to state the fundamental lemma of the proof of Theorem I.I.

Lemma 4. — For all n^ > 0, one of the following properties holds:

a) There exist n ̂  n^ k> 0 and two k-strings a^C S^i, o-i< crgCS^i such that
a n (S^ — S^.^) = 0 for every k-string a^ < a < erg.

b) There exist n^ n^k> 0 and a k-string a^C S^+i such that a n (S^ — S^+i) == 0
for every k-string a < a^.

Proof. — Take 1 + 8 < S < 2 and ^ e Z4- such that 2s - 1 > .̂ Define v^(SJ as
the number of ^-strings contained in S^. Now we shall prove three claims.

Claim 1. — Suppose that property a) of Lemma 4 does not hold for a certain n^ > 0. Then

^(SJ^(l/S)v.(S^,)

for all k> 0 and n> n^ such that v^(SJ > s.

Proof. — Suppose that a^ ..., (T^, p == v^(SJ, are the ^-strings contained in S^.
Ifn> n^ the hypothesis of the claim implies that between any two consecutive A-strings <y,,
^i+i in ^ there exists a ^-string $, such that ^ n S^_i + 0, therefore 8,C S^i (by
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the definition ofS^_i) and then S^i contains the strings (TI, ..., cry and 81, ..., 8 _r
Hence

^(Sn-i) ̂  - 1 = 2v,(SJ ~ 1 ̂  ^(S,),

because ^(SJ > s.

Claim 2. — Suppose that property a) of Lemma 4 does not hold for a certain n^ > 0. Then

^(Sn ~ S^,) < cj1^ (1+8)^S

for all k> 0 and n> n^ such that ^(SJ > s.

Proof. — The first claim proves that
v.(SJ^(l/S)tt-nlv.(SJ

for all k > 0 and n > n^ such that ^(SJ > s. Denote by T the supremum of the lenghts
of the A-strings contained in S^ — S^+^; then

^(Sn -S^i) == (1/m,) # { 1 < j^ m^f^x,) eS, - S^,}
^ (1/m,) T(v,(SJ - v,(S,^)) < (l/^) Tv,(SJ.

But by Lemma 3,
T< €2(1 +8)»+1.

Hence ^(S, - S^^) ^ G^l + S)^1 (l/^) v»(SJ
<C,(1 +8)"+l(l/^)(l/S)•l-tlv,(SJ.

But (I/OT,) v,(S,,) < (1/m,) ff { 1 < j ̂  m, \ f{x,) e S^ } < 1.

Then ^(S» - S^^) < C, f1^} (1 + 8) S»1.

C'̂ aiff! 3. — Suppose that there exists n^ > 0 .wA fAaf property b) 0/' Lemma 4 does not
hold. Then

^(sj ̂  c^cr^i + 8)a4-2wSn-2 - sj
for all n> n^+ 2 and k> 0 such that ^(SJ < s.

Proof. — If property b) of Lemma 4 does not hold for n^ then, for all m ̂  ^i,
^> 0 and every Sj with j^> m that contains a ^-string CTI, it follows that S,_i — S,
also contains ^-strings. This means that the family of sets S,_i — S,5^> m, that contain
a A-string has the form { S^ — S^.^, ..., S^^.^ — S^^^^.i }. Now suppose that
n > HI + 3. Put m = n — 2. Then w > n^. Hence S^ — ^m+i === ^n-2 — ^n-i and
^OT+I — ^n»+2 == ^n-i — ^n contain ^-strings. At least one of these two strings has the
form o- =={/^jfc)5 • . •^'^G^)} ̂ ith 1 ̂ J ^ J ' + ^< ̂  (remember that the definition
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of^-strings only requires j ̂  m^\ but there exists at most one ^-string whose last point is
an iterate larger than w^). By Lemma 3 the lenght of a is larger than or equal
to Ci(l + 8)"-2. Then

^(Sn-2-SJ^ (l/^GiO+S)"-2.

Moreover, denoting by T the supremum of the lenghts of the A-strings contained in S^,
we have

^(SJ < (l/^) Tv,(SJ.

But since n> n^ the above argument shows that there exists t such that every set
S, — ^j+i9 y1 ̂ J ^ n +^3 contains a A-string and conversely every ^-string contained
in $„ is contained in one of these sets. Therefore ^(SJ ^ I + 1 and Vfe(SJ ^ s implies
{ < s. Now, by Lemma 3, we have

T< C^l +S)n+8,
hence ^(SJ < (1/w^) G^l + S)^8.?.
Therefore ^(SJ ^ G, G l̂ + 8)'4-2 ̂ (S^, - SJ.

Now we are ready to prove Lemma 4. Suppose it is false. Then there exists n^ > 0
such that a) and b) do not hold for n^. Define

r(A) = min { j \ ̂ (S,) ^ s }.

Then ^(SJ = ̂ (S,J + S ^(S, ~ S^,).
»»^j<r(fc)

Moreover it is easy to see that
Urn r(k) == oo.

Jc->+m v /

Hence r(k) > n^ + 2 if ^ is large enough. Applying Claim 3, we obtain:

^(s^) ^ c, cr^i + ̂ ^'^(s^-, - s,j.
Now r(^) — 2 > n^ and ^(S,^_i) > s; therefore Claim 2 implies

hfc(S,.(Jfc)-2 ~~ Sy(^) = ^(Sy(^___2 —————— Sy(^___l) + ^(Sy(Jfc)___l ————— Sy(^)

/l + sV^-2 - /l + sV^-1 ,- /l + sV^-2

•̂M +a'(-^) ^^{-r) '
where €3 == C^l + 8) S"1. Moreover, Claim 2 implies

^(s, — ^+1) < GS
fl + 8V

S ;

for every n^<j< r(k). Hence, setting €4 = 2^Gi-1 Gg €3(1 + S)^2 we obtain

(i i ^\rW-2 /, ^\3

^(sj<c,L+8 +c. s 148
^ / n^3<r(k}\ S /
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for n > n^ and k large. Taking limits when k -> + oo, and recalling that (1 + 8)/S < 1
and Urn r ( k ) = oo, we obtain

fc->+oo v / 9

lim lim aJSJ = 0.
n-».oo k-^+ao ' K ' n/

But (3) implies

^(SJ

(X(A)

lim !^(S»).&->•+ 00

Hence lim (x(SJ = 0,
n->+ oo

contradicting the hypothesis pi (A) > 0 and proving Lemma 4.
Now let us complete the proof of Theorem I.I. By Lemma 4 there exist n, arbi-

trarily large, and k > 0 satisfying property a) or property b). Suppose that property a)
is satisfied; in other words there exist consecutive ^-strings a^< a^ contained in S^i,
such that a n S^ = 0 for all A-strings a^< a < a^. Now observe that by the definition
of strings, the intersections di n V^, c^ n V^ are {n, A)-strings. Let q^ be the last point
of the (w, k) -string a^ n V^ and ygs Ae first point of the (n, A)-string erg n V^. In the
simplified case, the situation is described in figure III.

FIG. Ill

Since q-^ is the last point of o-i n V^,/(^i) does not belong to V^. Hence either
^(/(?i). V-^) > ̂  or ^(/($i), V-) > r,. But Lemma 2 implies

^(/(^i), V-) < X d{q^ V-) ^ ̂  < r^,
thus
(4) d(f^),V+)>r^
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Take a point A 6 "i n V,,+i and write ̂  =/°(A). Then (4) and Lemma 2 imply
rn < d^W, V+) < Y^" d{p,, V+) < Y^" r^ = Y"'^" ̂ +s,

and therefore
(5) ^T0-".

Using again Lemma 2, we have

^(?i, V-) = rf(/°(A), V-) <$ ̂  d(p^, V-) < X0 r,,^ = X» r3,+8.

Write X == Y" with 0 < a < 1. From (5) it follows that
^i,V-) < y""^^ (^/Y)".^6 = Y-"^^018.

The only restriction we used about 8 was 0< S< 1. Suppose we take it so near to 1
that 8(1 + a) > 1 and take 0 < p < 8(1 + a) — 1. Then the last inequality, ifnis large,
yields

^i,V-)<r;+P.

Then we can choose ̂  e V~ such that
(6) ^eB^,^).

Now we shall prove that if n is large enough, then
(7) f-^mr^^,^)

for all j > 0. From (4) and Lemma 2 it follows that

^i ,V+)>Y^(/(?i) ,V+)>Yr,,
and therefore (6) implies

(8) d{j,, V^ > d{q,, V+) - d{y,, q,) > y^n - ̂ + p.

Also, for all j> 0, Lemma 2 implies that
<V(j'i), V+) < ^d{y,, V+) < \d{^, V+),

hence from (8) it follows that
d(f~\^),^) > (1 - X) d{y,, V+) > (1 - \) (yr, - r^+P).

But if n is large,
( 1 _ ^ ) ( ^ _ ^ + 3 ) > ^ + ( 0 W

Hence (7) holds for all j> 0, if n is large enough. Now write q^ =/'»(^), ^ =/(•(^)
and define Ng = ^ — t^. We claim that if n is large enough, then

(9) / î) ^B(^+<^)

for all 0<j'^No. First we prove (9) for j == 1. Take A > 0 such that
^f^JW < A d{z, w) for all z, w e M. Then (6) implies

(̂/(̂ i) > ̂ (J'i,/(j'i)) - d(f^),f{j,)) > ̂ i,/(j'i)) - Ar;+e.
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Now from Lemma 2 and (8) it follows that

/̂(Ji)) ^ ^(/( î), V4-) - d(^ V^) ^ (1 - l) (y^ - r2,-̂ ),
^ /

hence ^(/(?i) î) ^ (1 - l) ̂  - (1 - 1 + A\ r^ \
^ 1 y^ 1

But if n is large, the right hand side of that inequality is larger than r^378^ and (9)
holds forj == 1. Now suppose that

rf(yw^i) < r1^
for some 2 < j < N o and take B > 0 such that rf(/~l(-^),/''l(w)) < B d{z, w) for all
z, w e M. Since y^ e V~, Lemma 2 implies

^/^l(^ V-) ^ rf(/3--l(?l),/-l(^)) < Br^<^

and therefore, if n is large,
(10) ^-W, V-) < r».

On the other hand, (6) and Lemma 2 imply
d{f-1^, V+) < d{f-\^,f-\q^ + ̂ y-^^), V+)

< B d{y^ ^) + ^ </(?i, V+) < Br2^ + ̂ .
because ̂  € V, and therefore

d^-W, V^ < rf(/f-l(?l),/-l(J'x)) + d{f-1^, V-1-)
^(B^/s+Br^P+X)r».

When TZ is large, this means
(11) rfC/^^V^r,.

From (10) and (11) it follows that/^1^) eV^. Let a be the A-string containing/^•~l(^).
Then a n S^ + 0. Also <TI ̂  o because V^""1^!) e (T, J — 1 > 1 and ^i e cr^. Moreover
CT< (Tg because

/M•-t+l(/<-l(9l))=./•N•(?l)=<72,
NO —^ + 1 ^ 1 ^d f3"1^) e CT. Now CTI ̂  (T ̂  02 and or n $„ == 0 imply o-i = c-
or (T = Og* Suppose (TI = (T; thenj^"1^) e a^ n V^ and now j — 1 ^ 1 means that ^i
is not the last point of the A-string (T^ in V^, which is a contradiction. Suppose <y = erg.
Then /'"(NO~'+1)(?2) ==/'"'l(?l) e ^2 n Vn and No — j + 1 ̂  1 imply that ^ is not
the first point of the A-string (T^ in V^, which also is a contradiction. This completes
the proof of (9).

Similarly to (6) and (7) we prove that i f^ is large, there exists j^ eV4" such that
(12) ^€B(r^,^)
and
(13) f^iW^,^
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for all j > 0. Moreover

(14) /^2)^B(r^3^)

for all^'^ 0. To prove (14), observe that/5 (^2) eV^ for allj^ 0. Hence, using (8)
we obtain

d{y^f\y^ ^ d{^ v^ ^ y^ - r^.
But if n is large, y^n — ^+0> ^+(p/3), proving (14).

In a similar way we prove the property

(15) /-^iKB^^)

for all j ̂  0. Moreover, the proof of property (9) can be adapted to show that

(16) f^W^^y,)

for all 0 ̂  j < No. The casej == No — 1 is treated separately and if (16) is false for some
O^j '^ No — 2, proceeding similarly to the proof of (9), we find a string a satisfying
(TI <: or < (Tg and a n S^ 4= 0 and then, by the way o-i and og were selected, it musi satisfy
a^ == a or or = 0-2. As in the proof of (9), both possibilities immediately lead to
contradictions.

Now apply Lemma 1 to^T == ^of~1 (where W is the neighborhood in the statement
of Theorem I.I) and

- 2 + P _ 9
' ~ 1 + (p/3) ~

when r = 2, or

,_ ^P i
1 + (P/3)

when r = 1. This gives a number R > 0, and we can suppose, taking n large enough,
that ?•„ < R. Then, by Lemma 1, there exists h e^ such that

A(?2) ==J'2>

^O'l) = 9l

and A(^) == ^ if z ^ B^w8', ̂ ) u B(r^ <P/8', ̂ ).

Define g = hf and

V = V, - S -/-^S),
where S == B(r^ 'P/3', ̂ ) u B(r^ 'P/3', ̂ ).

Then ge^of=%.

Clearly VC V, and then, by (1),

VCU.
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Moreover it is easy to check that
//(V u U6) = gl(y u U0) and /-'/(V u U6) = ̂ /(V u U6).

Now let us verify that V is a neighborhood of A if n is large. First we shall show that
(17) rf(A^)>r^<^
(18) d{A,^)>r^^.

Using (8), we obtain
^A^J^V^j^Yr^r2^.

When n is large, y^n — ^+e > ^+(3/8)? thus proving (17). Inequality (18) is proved
similarly. Properties (17) and (18) imply that the closed set S does not intersect A.
Since A is invariant, A ny-^S) = 0. Then V^ — (S U/^^S)) is a neighborhood of A.

Now we shall check that option (II) of Theorem 1.1 is satisfied for g, V and an
appropriate choice of k and 0 < SQ < s-^ < m^. As k we obviously take the k in the cons-
truction of CTI and CTg. Choose 0 < SQ < s^ < m^ satisfying

/"W - ̂  /W == ?2.

Observe that SQ and s^ coincide with the numbers ^ and ^ used to define the number
No = t^ — ^ of property (9). Then ^ = = = ^ + N 0 . We shall prove property (i) of
Theorem 1.1 by induction on j.

For j = 1,
^(/^))=^(?l)==A/(^).

But by (9) and (16), /(^) ^ S. Then ̂ ) ==/(^) and

5(/^)) ==/(?i) =/(/W).

Now assume that^^^i) = ^(^i)? 1 ̂  i < (^i — ^o) — !• Then

^-"(/W) ̂ -"(yi) -^?1)) =^(/i(yl)).
But/*-1'1^) ^ S because !' + 1 < ^ — ^ = Ng and, according to (9) and (IS),/^) i S
for all 0<j< No. Hence .?(/*(^)) = A^/^^)) = A^^)) ̂ /^^^ and then

(19) ./'^V0^))^4-1^^)),

completing the proof of (i). To prove property (ii) of Theorem I.I, we first prove,
by induction onj, that

(20) rVW) =f-'W

for all j > 1. When j == 1,

S-\f"{^) =f~lh-W -f-1^.

Assume that (20) holds forj = !> 1. Then

^-"-"V^)) ==g~lg~i{f"W)=g-lf-i{^ =/-1A-1/-(A).
20
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But by (7) and (15), /-'( î) ^ S. Then
^-«+i)(y..(^) ̂ -î -,̂  ̂ -(,+i)(̂

This completes the proof of (20). It follows that
(21) ^(/'W)6V,

for all j ̂  \ because, by Lemma 2, /-^V,, n V-) C V, n V- for all j > 0. Since
^ e V, n V-, this implies that /-^i) e V,, n V- C V,, for all j ̂  0. This property
together with (20) implies (21). Moreover, property (20), together with (7) and (15),
implies

(22) g-W^^f-^^S

for allj^ 1. Hence

(23) g-W^)) ̂ (S)

for aliy> 2. Clearly, property (ii) of Theorem I.I follows from (21), (22) and (23).
The equality

n /»(v) = n r(v),
n^O n^O

also contained in that property, is a trivial consequence of^/V ==//V. Property (iii) o
Theorem I.I is proved using similar methods, observing that (19) implies

^——(/^)) ^gg81-89-1^89^)) ̂ A^-^VW)
== ̂ —(/^)) == A/̂ ,) == A(^) =^.

Then we have to prove that g\y^ ==/^(^2) e V for allj > 0. We shall do it by induction.
For j = 1

g^2) =A/(^).

But by (13) and (14),/(j^S. Then g{^) =/(^). Moreover ^ eV-^ n ¥„.
Then /(^) ^/(V4- n VJ C V+ n V^C V^. Finally observe that /(^) ^/-'(S) because
/(^) ^/-^S) implies/"(^ eS contradicting (13) or (14). Then

/(^^v.-s-y-^^v.
Now suppose that/^eV. Then ^+l(^) = ̂ (^2)) == ^(/i(J?2)) - A/^1^).
By (13) and (14),/^^^ ^ S. Then ^O^) ^^C^) and, by the argument
already used in the case j = 1, f^1^) eV^. Hence ^'^(j^) eV„. Moreover
5i+l(^2) ^S U/^^S) because otherwise we have ^(j^) ^^(j^) ^ S u/'^S)
and then either y14-^^) eS or/14"^^) e S, violating properties (13) or (14). Hence
g^1^ ^H— (S ^/""^S)) ==V, thus concluding the proof or property (II) of
Theorem I.I.

Finally, let us show that when in the application of Lemma 4 it is option b) that
holds, then we can find geW and V satisfying property (I) of Theorem I.I. Let
<TI ^/''(^fc)? • • •?/to+^)} be the string given by option b) of Lemma 4. As in the
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previous case, we prove that, if n is large enough, there exists y e V"1" such that, setting
q ==/"(^),

yeB^3,^),
f\y) Wr\^\y)

for all j > 0, and
/^w^^jo

for all 0 < j < SQ. Now take h 6Diff''(M) satisfying
h{q) =y

and h{z}=z if z ^(r^8*,^).

Using Lemma 1 as before, we show that if n is very large then g == hf e %. Define
S =B(r^8^)

and V == V^ - S -/^(S).

Using the same methods as in the previous case it is easy to check that g, A, V andy'^)
satisfy property (I) of Theorem I.I. Moreover, in the particular case when there exists
an isolating block Uo of A such that {x^}C A8, where A* is defined as A' = f1 /^(Uo),

w^O
we have g~3{x^) =/~^(A:J for all j ̂  0, n ̂  0, as property (I) of Theorem I.I requires.
To see this, observe thatj^"1 and g~1 differ only on S. Therefore we have only to show
that/~^J e S for all^^ 0 and n ̂  0. But there exists No > 0 such that/-^) e V-
for all j> No, n ̂  0. Since S n V~ = 0, it remains to show that f~\x^ ^ S for all
O^'^ No, n > 0. But the set {/~^J | n ̂  0, 0 ̂ j ^ No} is compact and disjoint
from A; since S can be taken in an arbitrarily small neighborhood of A, it follows that S
does not contain points of that set. This completes the proof of Theorem 1.1 but for
Lemma 2.

Finally, let us prove Lemma 2. For all A: e A define
Wi(x) == {y | ̂ /"(^/"(jO) ^ s for all n ̂  0 },
W;(x) == [y | ̂ /-"(^/-"(jO) ^ e for all n ̂  0 }.

When s is small, these sets are C1 disks tanget at x to the subspaces E^, E^. Take a compact
neighborhood Uo of A such that

rvTO^A.A
Choose s > 0 so small that
(24) W^) u W.'(̂ ) C Uo

for all x e A and define V+= U W.'(A-), V- = U W^(a;). Clearly these sets are
i ^* f ic£A ;e€Acompact and satisfy

(25) /(V-^) C V+
(26) /"'(V-) C V-.



156 RICARDO MANfi

Moreover property (24) implies that V+CU( ,GU and V-CUoCU. From (25)
and (26) follows that ifjeV+ n V- then/"(ji») e/»(V+) C V+ C Uo, for all n > 0, and
/""(.>') e/~"(V-) C V-C Uo, for all n ̂  0. Hence y e n/"(Uo) = A. Then

(27) V+ n V- = A.

To complete the proof of Lemma 2 it remains to show the inequalities ofc). To prove
them we take e so small that

(28) V+-/(V+)nA=o
V--/-i(V-) nA==0.

That such an s exists is proved in [1]. Besides this non trivial property we shall need two
easy lemmas.

Lemma 5. — There exist S>0and0<f<^<l such that if p e A, x e M and
d(x, p) < 8, then

Y d{x, W;(/>)) < d{f{x), W:(/(^))) < \ d{x, W^p))
and Y d{x, W^(^)) < d{f-\x), ̂ {f-^p))) < \ d{x, W.'(/>)).

This lemma is an easy application of the basic properties of hyperbolic sets. We
leave its proof to the reader.

Lemma 6. — For all N > 0 there exists c(N) = c > 0 such that ifd{x. A) < c and? e V-
satisfies d{x,p) = d{x, V-) then? e/'^V-).

Proof. — If the lemma is false, there exist N > 0 and sequences { x^ } and {/»„ } C V~
such that
(29) d(x,. A) < 1/n,

(30) ^,eV-,

(3!) d(x,,p,)=d(x^V-)
and

(32) A. ̂ /-^V-)

for all n > 0. We can suppose that the sequences {p,} and { x^} converge to p and x
respectively. From (29) it follows that x 6 A. Moreover, by (31),

<^»,A.) = ̂ », V-) < d^. A) < 1/n.

Hence p = x. But (30) and (32) imply that

A>eV--/-^(V-)
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for all n ̂  0, hence

x = p e V - -/-N(V-).

Then V- -/-^V-) n A + 0,

which is easily seen to contradict (28), thus proving Lemma 6.
To complete the proof of Lemma 2 take 0 < 81 < 8 (where 8 is given by Lemma 5)

such that d{a,b)^ 81 implies ^(/-~l(fl),/-l(6)) ^ 8. Choose N > 0 such that
(33) diam/-N(W:^)) ^ 8i/2

for all p eA. By (27) there exists £i> 0 that if d{x, V4-) < ei and d{x, V-) < ^ then
d(x, A) ^ c and ^(/(*v), A) ^ c, where <: = <:(N) is given by Lemma 6. Define
So = min{ Si, 8^/2 }. Let us show that this choice of SQ satisfies property c) of Lemma 2.
Itd{x, V4-) ^ so and d{x, V-) ^ e^ then

rf(.v. A) ^ c

and then, by Lemma 6, there exists y e/~•N(V~) such that
d{x^)==d^V-).

Since j/ ef-^^V-) it follows that
^/-^W^CW^/-^))

for some q eA. Define j& r^-^y). By (33), we have

^^8i/2
and then

rf(^,j&) ^ d{x,y) + rf(^^) < ^(^ V~) + 8i/2 ̂  eo
+8i/2< 8i/2+8i/2 ==8 i< 8.

Now we apply Lemma 5 to obtain
^(/W. V-) ^ d(f{x), W:(/(^))) ^ d{x, W:̂ )) ^ \d{x^) == \d(x, V-),

thus proving one of the desired inequalities. Moreover, by the way we chose SQ and £1,
we know that d(x, V-) ^ e^ and d{x, V4") < SQ imply

d{f{x},A)^c.

Then, by Lemma 6, there exists z e^-^V-) such that
rf(/(^)=rf(/M,V-).

Since z e/'^V-) we can write
^/-^W^CW^/-^))

for some q eA. Define p ==/-N(y). By (33), d{z,p) < 8i/2. Hence, arguing as above,
we obtain

d{f{x),p) ̂  d{f{x), z) + d{z,p) < d(f{x), V-) + 8i/2 ̂  so + 8i/2 < 81
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and, by the way we chose S^, this inequality implies

d^f-^p)) ̂  8.

Applying Lemma 5 to x and^"1^), we have

Y d{x, V-) ^ Y rf^, W:(/-1^))) < rf(/(A;), W:(/0) ^ d(f{x), z)

=rf(/M,V-).

This concludes the proof of the inequalities of Lemma 2 involving x, f{x) and V~".
The proof of those involving x,f~~l{x) and V^ is the same with some obvious modifications*

II. — Proof of Theorem D

To prove Theorem D we shall use all the auxiliary sets and notation of the proof
of Theorem I . I . Suppose that x ^ W'(A) and ^i(A) > 0 for all (JL eJi(x}. Since x i W'(A)
there exists N> 0 such that f^(x) ^Vg. Obviously w{x) n A = f = 0. Then there exists
Ni> N such that/^M eVo. Ifj^ N1 define

AU) = sup{ n | S, n^M, .. .,/^)}+ 0 }.

Observe that A(j) < + °o because otherwise we would have:

Wx), .. .,/^W } n (V+ u V-) = n ({f^x),.. .,f\x)} n SJ + 0
n^O

and then either f^{x) e V- (that is impossible since f^(x) ^ Vo) or f^x) e V"^ (that is
impossible because .y^W^A)). Hence A{j) < + °o and then in its definition the
supremum is actually a maximum. Let a^ < a^ < ... be the set of values of A(j) for
j ^ NI. Define

^=max{j|A(j) =^}.

Then %i < Wg < .... Take a subsequence %^ < m^ < ... such that, denoting m^ == m ,
the probabilities [L{x,m^) converge to \xe^t{x}. By hypothesis, pi(A) > 0; hence
(Ji(Ao) > 0 for some basic component Ao of A.

Let us apply Lemma 4 of Section I to x == A:, the isolated hyperbolic set A() and
the sequences x^ = x and (A (A:, m^), A e Z"^. If property a) of the conclusion of that lemma
holds, then the proof of Theorem 1.1 shows that it implies the validity of property 1.1 (II).
This means that in every neighborhood off there exists a diffeomorphism g that coin-
cides withy in a neighborhood of A and has an homoclinic point associated to AQ, thus
proving Theorem D. Therefore the proof of Theorem D will be completed if we can show
that when property b) of the conclusion of Lemma 4 holds, then property a) also holds.
More specifically we shall prove that if for some k > 0 and n > 0 there exists a ^-string
^iCS^+i such that CT n (S^ — S^i) =0 for every ^-string, then there exist two
(A + l)-strings a[ < cr^ contained in S^i and such that a n (S^ — S^i) =0 for



ON THE CREATION OF HOMOCLINIC POINTS 159

every (k + 1)-string a[ < a < Og. To prove this observe that since a^ is a ^-string and
is contained in S^_^, we have

^ == A(%^) = A(W^) ^ 7 2 + 1 .

Let cr^ be the first (^ + 1)-string that is not a ^-string. The definition of m^ implies that
o^C Sf for some t> a^, thus /' > n + 1. Then o-i and ^ are (A + 1)-strings contained
in S^+i and 03 > 01. Moreover, if there exists a {k + l)-string a such that CTI < a < <s^
then, by our choice ofag, necessarily CT is also a ̂ -string and therefore a n (S^ — S^i) ==0
by hypothesis. Setting (T^ = ori and (12=^, the proof of Theorem D is concluded.
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