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1. Introduction

This paper is based on joint work with A. Katok. Results similar to those obtained
here have been obtained by Aubry, Le Daeron and André [7]. Our method is inspired
by some remarks of G. D. Birkhoff on the billiard ball problem. We quote Birkhoff’s
remarks in § 2. The minimax principle, described by Birkhoff, plays a fundamental
role in this paper. We discuss the minimax principle in § 3. Birkhoff’s remarks
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generalize in a straightforward way to area-preserving monotone twist mappings of the
annulus. This generalization is described in § 4. Our new results are described in
§§ 5-10. The rest of the paper consists of proofs of the results announced in §§ 5-10.

Our main result is a criterion for the existence of invariant circles for a certain
class of area preserving diffeomorphisms of the annulus, which we call ¢ monotone
twist maps .  Our motivation for studying this question comes from the version of
celestial mechanics studied by Poincaré, Levi-Civita, G. D. Birkhoff, Kolmogoroff,
Arnold, Moser, Sternberg, and others who are essentially pure mathematicians. The
studies of these mathematicians led to the consideration of invariant circles in area
preserving mappings. It is seen from these studies that it is of fundamental importance
to understand when invariant circles do and do not exist.

More recently, Percival used a variational principle to study the question of the
existence of invariant circles numerically [27], [28]. This reminded me of Birkhoff’s
proof [g] of the existence of periodic orbits in the billiard ball problem. Of course,
one cannot prove the existence of invariant circles by such a method, because very
frequently invariant circles do not exist. The orbits {(x,,%,)},cz which lie in the
invariant circles are called gquasi-periodic, because they have expansions in Fourier series

(xrn.yn) = % Ck gimkn’

where G, denotes a vector in R%  Around March 1981, I realized that a simple modi-
fication of Birkhoff’s argument [9], using Percival’s Lagrangian, provides a proof of
the existence of quasi-periodic orbits in this sense. Since there may be no invariant
circle of frequency o, these quasi-periodic orbits do not necessarily lie on an invariant
circle. However, under the hypothesis which I considered (monotone twist hypothesis),
they necessarily exist and lie on a minimal set. The restriction of the original trans-
formation to this minimal set has dynamical properties very similar to an irrational
rotation of a circle. In fact, it is semi-conjugate to such a rotation by a continuous
mapping which is 1 — 1 except on a countable set. Moreover, if there is an invariant
circle, this minimal set is necessarily in the circle.

I proved these results by maximizing Percival’s Lagrangian. Another proof was

later given by Katok, who showed that if « is an irrational number, andp—" is a sequence
n

of rational numbers converging to o, then the Birkhoff periodic orbits of type (,, ¢,)
converge in the Hausdorff metric to an invariant set. This invariant set contains a
minimal set, which is precisely the minimal set (associated to the frequency ) which
I constructed. Still another proof has been given by Aubry, Le Daeron, and André [7].
It seems that this proof is the result of ideas Aubry had developed over several years
([1], [2], [3], [4], [5], [6], [8]). The proof of Aubry et al. is quite different from either
Katok’s proof or my proof.

In March 1982, after long discussions with Katok, I discovered the results which
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I will describe in this paper. In the second half of my graduate course in the spring
of 1982, I lectured on these results. The proofs I give here follow the method I described
in my course, although I have made considerable efforts to improve the exposition.
I would like to thank the students in my course, T. Folk, D. Goroff, R. Llave, R. MacKay,
D. Nance and T. Pignataro, whose questions, comments, enthusiasm and willingness
to listen to some very obscure lectures greatly aided me in writing up this article.

The principle result of this paper gives a numerical invariant, for each irrational
number ®, which is always non-negative, and which vanishes if and only if there is
an invariant circle of frequency w. One way of defining this number is the following.
Let p/q be a rational number, expressed in lowest terms. In the case of the billiard
ball problem, Birkhoff [9] showed the existence of at least two periodic orbits of type (p, ¢).
One of these is obtained by maximizing the perimeter of a polygon; the other is obtained
by a minimax principle. Birkhoff’s arguments generalize to the case of monotone
twist mappings of the annulus. In this more general setting, the perimeter of the polygon
is replaced by the ¢ action ” of a sequence of points in R. But, we still get a max orbit
of type (p, g), with action W, . ..., and a minimax orbit of type (p,¢) with action
Wy g minimax+  We set AW, =W, @ — W, ¢ minimex+ FOr an irrational number o,
we will prove AW, , converges to a limit AW, as the rational number p/g (in lowest
terms) tends to w. Our principle result states that AW, = o if and only if there
exists an invariant circle of frequency .

While I was preparing this text, I became aware (in May 1982) of Aubry’s work
([t1, [2], [3], [4], [5], [6], [7], [8]). Starting from a question in solid state physics
which is completely different from the question we started with, he has arrived at results
which are similar to ours. In particular, he defines a number which he calls the Peierls
energy barrier. A principal result in his paper [7] is that the Peierls energy barrier
vanishes if and only if there is an invariant circle (for the given frequency). This is
closely related to our result. The Peierls energy barrier is a lower bound for AW,,.
We will discuss the Peierls energy barrier in our terminology in § 25.

The methods of the paper of Aubry, Le Daeron, and André are very interesting
and quite different from our methods. They also have a number of results in their
preprint which we have not proved, and this paper contains a number of results which
they have not proved. Specifically, we have the following results: continuity results
for AW, and semi-continuity results for the minimal sets whose existence was proved
in [21]. Moreover, we show the connection with the classical results described by
Birkhoff in [g].

Our setting is somewhat different from Aubry’s. We consider diffeomorphisms
of a bounded annulus A = (R/Z) X [0, 1]; Aubry considers diffecomorphisms of an
infinite annulus (R/Z) x R. The difference is that our annulus has finite area and
a boundary; Aubry’s has infinite area and no boundary; moreover, in Aubry’s set-up
the diffeomorphism twists arbitrarily much in the negative direction near the lower
end, and arbitrarily much in the positive direction near the upper end. However,
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these are only technical differences; they do not affect the main ideas. Nevertheless,
treating the case where there is a boundary does require a lengthy discussion of techni-
calities at several points.

One of my principle aims in developing this theory was to find a rigorous criterion
for existence or non-existence of invariant circles which would be possible to implement
numerically. I have had several very useful conversations with J. Greene, J. Percival
and R. MacKay, who have been in the forefront of numerical studies of invariant circles.
In particular, I learned the whole approach of studying invariant circles through
maximization-minimization in Percival’s formulation) from Percival. The influence of
Greene may be seen in the use of approximating periodic orbits to study quasi-periodic
orbits, which follows an idea Greene has used for numerical purposes.

This idea of using approximating periodic orbits to study quasi-periodic orbits
also derives from Katok’s ideas in his paper [17] and in many conversations I have
had with him. In [21], I used a method analogous to Birkhoff’s to construct quasi-
periodic orbits. In [17], Katok showed that the existence theorem for quasi-periodic
orbits could be obtained from Birkhoff’s existence theorem for periodic orbits and a
limiting procedure. He also suggested to me (in conversation) that there should be
something which corresponds to the Birkhoff minimax orbits for the quasi-periodic (as
opposed to periodic) case. His original idea was a second Cantor set, in the case the
invariant set which I constructed was a Cantor set and not a circle. This idea turned
out to be very valuable; following it, I found not a second Cantor set, but an orbit
homoclinic to the first Gantor set. This, in turn, led to the orbits I describe in this paper.

I believe it should be possible to develop numerical methods to compute AW,
to an arbitrary degree of precision, together with a rigorous estimate for the error. If
that were done, the main result of this paper would give a means of proving the non-
existence of invariant circles when they, in fact, do not exist. (Hence, the title of this
paper.) On the other hand, computing AW, to arbitrary precision will never tell
whether it is zero or not, so the result in this paper does not provide a means of proving
the existence of invariant circles, when they do, in fact, exist.

Newman and Percival [26] also have a criterion (different from the above) for
proving non-existence of invariant circles. A rigorous proof of their criterion follows
easily from the work of Aubry, Le Daeron and André [7].

2. The Periodic Orbits of Birkhoff in the Billiard Ball Problem

Since I got some of my basic ideas for this paper and some of the previous papers
I have written on this subject ([21], [22], [23], [24]) from considering Birkhoff’s
description of the billiard ball problem, I will quote what he says at length [9, § 2]:
¢ In order to see how the theorem of Poincaré and its generalization can be applied
to dynamical systems with two degrees of freedom, I propose to draw attention to a
special but highly typical system of this sort, namely that afforded by the motion of
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a billiard ball upon a convex billiard table (Fig. 1). This example is very illuminating
for the following reason: Any dynamical system with two degrees of freedom is isomorphic
with the motion of a particle on a smooth surface rotating uniformly about a fixed axis
and carrying a conservative field of force with it. In particular if the surface is not
rotating and if the field of force is lacking, the paths of particles will be geodesics. If
the surface is conceived of as convex to begin with and then gradually flattened to the
form of a plane convex curve C, the ¢ billiard ball > problem results. But in this problem,
the formal side, usually so formidable in dynamics, almost completely disappears, and
only the interesting qualitative questions need to be considered. If C happens to be
an ellipse an integrable system results, namely as a limiting case of the geodesics on an
ellipsoid treated by Jacobi.

“In this problem one can arrive at the existence of certain periodic motions by
direct maximum-minimum methods. As of interest in itself I wish to show how this
can be done. Results which are being obtained by Morse (but not yet published)
indicated that the scope of these methods, already developed to some extent by Hadamard,
Poincaré, Whittaker, and myself, can further be extended. Thus the power of such
maximum-minimum considerations in the billiard ball problem is likely to prove typical
of the general case.

¢ Any longest chord of the curve C (or boundary of the billiard table) when
traversed in both directions evidently yields one of the simplest periodic motions. The
billiard ball moving along this chord strikes the curved boundary at right angles and
recoils along it in the opposite direction. If we seek to vary this chord continuously,
while diminishing its length as little as possible, so as to finally to interchange its two
ends, there will be an intermediate position at least length which will be the chord G
where C is of least breadth. Detailed computation of the slightly perturbed motions
indicates that the first of these two periodic motions is unstable, while the second is
stable, i.e. with formal trigonometric series for the perturbations.

“Next we ask for the triangle of maximum length inscribed in C. Evidently
at least one such triangle will exist, and can have no degenerate side of zero length.
At each of its vertices the tangent will, of course, make equal angles with the two sides
passing through the vertex. Hence a harmonic triangle is obtained which will correspond
to two distinct motions, one for each of the two possible senses of description.

“ Moreover if we seek to vary this triangle continuously, without changing the
order of the vertices and diminishing the perimeter as little as possible, so as finally
to advance the vertices cyclically, we discover a second harmonic triangle, also corres-
ponding to two periodic motions.

¢ In this way the existence of two harmonic # sided polygons which make £ circuits
of the curve G (k less than n/2 and prime to z) can be proved. The [motion] corres-
ponding to the polygon of maximum type will be unstable, while the other of minimax
type may be stable or unstable. ”
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3. The Minimax Principle

Here, we give a version of the minimax principle which is suited to our needs.

We begin by considering a C! function H on a smooth, connected, compact
manifold . Since Z is compact, H has a maximum on &. We will suppose that
H takes its maximum value at at least two distinct points x° and x!. Intuitively, one
expects to find a ¢ pass >’ between two ¢ peaks ” represented by x° and x! (Fig. 2). If
one imagines a traveler traveling between two peaks who wishes to stay at as high an
altitude as possible, i.e. keep H as large as possible, it appears that he must travel through
a pass. This leads to the following definitions, which make sense when Z is a compact,
Hausdorff topological space, which is connected and locally pathwise connected, H is
a continuous real valued function on &, and H takes its maximum value at at least
two points x° and x!.

Definition. — A path connecting two points x° and x! is a continuous mapping
y:[o,1] > % such that y(0) = x° and +(1) = x.

Definition. — The minimax value of H associated to the two points x° and #?! is
sup mtin H(y(?)), where vy ranges over all paths connecting x° and %!, and ¢ ranges over
the unit interval [o, 1].

For any real number a, let {H > a}={xeZ : H(x) > a}.

Proposition (3.x). — The minimax value of H associated to the two points x° and x' is
max{ a:x® and x' are in the same connected component of {H > a}}.

The proof follows from our assumption that % is locally pathwise connected, by
means of elementary topological arguments. Note that the maximum of {a:x° and
x! are in the same connected component of {H > a}} is actually achieved, as may
also be seen by an elementary topological argument based on the fact that 2 is compact.
We omit these arguments. O

Note that there may be no path y connecting #° and x! such that

min H(y(#)) = sup min H(x(?)),

even if H is a C* function on a C® manifold, although there is such a path if H is an
analytic function on an analytic manifold, by the Bruhat-Cartan Selection Lemma
([14], [19], [20]).

Let H,;pi.x denote the minimax value of H associated to the two points x° and .

Definition. — A point y e{H = H ...} will be said to be free (with respect
to (H, Z, % x1)) if there exists of continuous mapping F of {H > H_ ...} into
itself with the following properties:
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1) HoF > H,
2) HoF(y) > H()),
3) HoF(x) =H(x) = F(x) =x, forall xe{H>H_,,

mmuna.x}'

Other points in {H = H_;;;,...} will be said to be bound (with respect to (H, &, x°, x1)).

Proposition (3.2). — There exist bound points in {H = H_ ;... 3.

minim;

Proof. — Suppose the contrary. Then for each ye{H =H_,, ..}, there
exists F, =F with the properties listed above. Let

U, = {0 e{H = Hypinae } : HE, (') > H()") }-

Since U, is open and yeU,, the family of sets {U,} forms an open cover of
{H = Hpinax ). Since this set is compact, the open cover {U,} of {H=H

minimax}
has a finite subcover Uy, ..., Uy, . Let

G = Fy(l)o ees O FU(”)'

Then Ho G(y) > H(y), for all ye{H = H_ ...} Moreover, since x° and x!
maximize H, it follows from 1) that Ho F (x°) = H(x°) = H(s') = Ho F (), and
from 3) that F,(x0) = % F, (x1) =1, for all y e{H = H ;.. }. Then G(x0) = x°
and G(x1) = aL

We have proved that G{H>H_,....}C{H>H_;,....}, G is continuous,
and G(x°) = x% G(x!) = x1. But this is impossible because x° and #! are in the same
connected component of {H > H_,. ..}, but in different connected components of
{H> H_;in.x}- This contradiction proves the proposition. O

Proposition (3.3). — If & is a smooth manifold without boundary (in addition to being
compact, connected, and Hausdorff) and H is a G function on %, then any bound point in
{H = H_jin.} @ a critical point of H, i.e. dH vanishes there.

Proof. — Let y e{H = H_;;...}. If dH(») + o, then there is a C! vector
field € supported in a small neighborhood of y such that £.H(y) > o, £.H > o, and
£.H = o only where £ = o0. Let exp§ denote the exponential of £ (i.e. the time one
map of the flow generated by £). Then F = exp& has the properties listed in the
definition of a free point, so y is free. O

Proposition (3.4). — If Z is a smooth manifold with boundary, H is a C* function on &,
and for each y € OX, there exists a tangent vector &, pointing into the interior of & such that
g, H> o, then any bound point in {H = H, ...} is in the interior of Z and is a cnitical
point of H.

Proof. — Same as for Proposition (3.3). O
To summarize, the minimax principal allows us, given two points which maximize
a C! function, to find a third critical point, a sort of *“ pass > between the two ¢ peaks .
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All this has been well known for a century or so (as indicated by Birkhoff in our quote
from his article). Nonetheless, because it forms the basis of our reasoning in what
follows, we felt it would be helpful to give an exposition of it.

4. Generalization of Birkhoff’s Results
to Area-Preserving Twist Mappings of the Annulus

In [9, § 3], G. D. Birkhoff points out that the billiard ball problem is equivalent
to a dynamical system which may be described as follows: Let A ={(x,2):x € C and
v is a unit vector at x directed towards the interior of G or tangent to dC} (Fig. 3). Let
(x', ') be the pair, where x’ is the point in C where the ray starting at x and directed
in the direction of v intersects C, and ¢’ is the unit vector obtained by reflecting this
ray in the tangent to C at x’. Topologically A is an annulus, and we have a homeo-
morphism £ of this annulus into itself, defined by f(x,v) = (x',v'). Periodic orbits in
the dynamical system generated by f correspond to harmonic polygons in Birkhoff’s
sense (§ 2). Therefore, Birkhoff’s argument proves the existence of periodic orbits in
the billiard ball problem.

Birkhoff’s argument generalizes without any difficulty to a class of mappings of
the annulus which we call area-preserving monotone twist homeomorphisms. To
describe the condition which we impose, we consider not the annulus A, but its universal
cover A, which we represent as {(x,5) eR2:0<y<1}. We consider a homeo-
morphism f: A — A. We suppose that the representation of A as the universal cover
of A is chosen so that the translation by the unit, T(x, y) = (x + 1,)), is a generator
of the group of Deck transformations. In other words, A = A/T. We suppose that
f is the lifting of a homeomorphism of A, i.e. fT = Tf. We suppose that f is area-
preserving (for the usual area in the plane), orientation preserving, maps each boundary
component of A into itself, and satisfies the following monotone twist condition:

7 f(%,9) > m f(%, 2), when 3> 2z,
where m: A=RX[o,1] >R
denotes the projection on the first factor.
For x eR, we let fy(x) = = f(x,0), fi(x) = = f(x, 1). We let
B={(x#)eR?: fo(x) < ¥ < fi(x)}.

We may associate to f a real-valued continuous function %, defined on B, such that A
is C! in the interior of B, and

__ Oh(x, x')
, )= ox
(4.1) S%) = (#,)) < oh(x, ¥
.y = axl
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