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ON THE OBSTRUCTION GROUP IN HOMOLOGY SURGERY
by PIERRE VOGEL

o. Introduction

The theory ofhomology surgery has been introduced by Gappell and Shaneson [i],
This theory plays an important role in the theory of knots and codimension 2 embeddings.

Let (X, 3X) be a pair of finite complexes and f be a normal map from the normal
bundle of a (Top, PL or Diff)-manifold V to a (Top, PL or Diff)-bundle over X and
let M be a Z^X] -module. The problem of homology surgery is to determine the
obstruction to the existence of a normal cobordism, constant over ^X, from f to an
M-homology equivalence. Clearly we must suppose that / induces an M-homology
equivalence from 8V to 3X and that the cap-product by/^[V] is an isomorphism from
H*(X, aX; M) to H^_,(X; M10), w being the first Stiefel-Whitney class of the bundle
over X.

If M = A is a quotient ring with involution of Z^X] == ZTT, Gappell and
Shaneson have solved the problem and have constructed an obstruction group F^ZTT: -> A)
defined in terms of algebraic L-theory.

In many cases, this group was known to be the L^-group of some ring A. For
example, if there exists a classical localization S~lZ,Tc of ZTT, where S is the multipli-
cative subset i +ker(ZTC ->A), Smith [7] has proved that ^(ZTC-^A) is the
group L^S^ZTT). An other example is given by Hausmann [3] who proves that
r^(Z7T -> Z[7c/N]) is the group L^(Z[TT/N]) if N is a locally perfect normal subgroup ofw.

My purpose is to show that the homology surgery is possible in a more general
situation and that the obstruction group is always the L^-group of a ring with invo-
lution A endowed with a subgroup of K^A).

For example, suppose that ZTT -> A is a morphism of rings with involution (the
involution ofZjc is induced by w). Then we have a diagram of rings with involution

A

ZTC —> A
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well defined by the following properties:
i) For any matrix u with entries in ZTT, if u ® A is invertible then u ® A is inver-

tible too;
ii) A is universal with respect to the property i).

Theorem. — Suppose the morphism A -> A is onto. Then any normal map f over a
n-dimensional A-Poincare complex X which is an A-homology equivalence over 0X determines an
element a[f)e'L^A), and, if n>_^ f is normally cobordant to an A-homology equivalence
if and only if cr(/) vanishes.

Corollary. — If A is a quotient ring with involution of ZTT, the group I^(ZTC->A) is
isomorphic to L^(A).

Theorem. — Let D^ be the dihedral group of order 2n (n odd) and Dg^ -> Z/2 be the
non zero homomorphism. Then we have the following isomorphism'.

r.(ZD^z) ̂  r.(Z[z/2] ̂ z) =. L;(A),
where A is the pull back of rings'.

A ———> Z

Z(2)[Z/2] —> Z^)

TABLE OF CONTENTS

§ i. Statement of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

§ 2. A first homology surgery obstruction group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

§ 3. Algebraic surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

§ 4. Geometric surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

§ 5. Localization in the category of graded differential modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

§ 6. The ring A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
§ 7. The structure of IT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
§ 8. The isomorphism theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

§ 9. Some results about A and L^(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

i. Statement of the main results

(i. i) Let A be a ring with involution a\->d. If M is a left A-module, it can
be given a right A-module structure, by setting

ma == am, V a e A, V m e M.
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ON THE OBSTRUCTION GROUP IN HOMOLOGY SURGERY 167

Conversely any right A-module is a left A-module. From now on an A-module will
mean a left or right A-module.

Denote by ^(A) the category of Z-graded complexes

•••->G^^G^G^->...

such that each G^ is a finitely generated free A-module with fixed (unordered) basis
and © C^ is finitely generated. Theses complexes will be called finite A-complexes.

We say that a sequence of finite A-complexes o -^G ->G' -^G" -^o is j-exact
if, for any n, the complex o --> G^-^ G^-> €„' ->o is acyclic with torsion o in K^A);
see [4] and [9].

Definition (1.2). — A class ^C^A) is <w^ if ̂  contains any acyclic finite
A-complex with torsion o, and if, for any .y-exact sequence in ^(A)

o -> G -> G' ->• G" -^ o,

one has the following property:
If two of the complexes G, G', G" lie in ̂ , then the third lies in IT too.
Let C be a finite A-complex. Denote by G^ the dual module Hom(G_^, A)

endowed with the dual basis, and choose on C the differential so that the evaluation
from C ® G to A is a cocycle. So we get a new finite A-complex C.

Definition (i .3). — An exact class -5T C ̂ (A) is called symmetric if, for any G e^,
C lies in IT.

Definition (1.4). — Let H^ be an exact class in ^(A). A morphism/ in ^(A)
is a IT-equivalence if the mapping cone of/ is in IT.

Let/be a map from a finite GW-complex X to a finite connected GW-complex Y,
with fundamental group TT, and let H^ be an exact class in ^(ZTC) containing any acyclic
finite ZTT-complex with torsion in the image of TC -> K^Zjr). Then/is ^^-equivalence
if the chain map C,(X, Zn) -> C^(Y, ZTT) is a ^-equivalence.

Example (1.5). — Let A->B be a ring homomorphism and (3 be a subgroup
of Ki(B). Let IT be the class of finite A-complexes C such that C ®^B is acyclic with
torsion in p. Then^ is exact and the ̂ -equivalences are the B-homology equivalences
with torsion in p.

If, in addition, A -> B is a morphism of rings with involution and [3 is stable under
the involution, IT is symmetric.

Example (1.6). — Let M be an A-module. Then the class IT of finite
A-complexes G such that H,(G, M) (resp. H^G, M)) vanishes, is an exact class and
the ^-equivalences are the M-homology (resp. M-cohomology) equivalences.
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Notation (1.7). — Let IT be an exact class in ^(A). We denote by S the set
of matrices u such that the direct sum of the complex ... ->o-^AP->Aq->o->...
and its suspension is in H^'.

In example (1.5), S is the set of matrices u with entries in A such that u®B is
invertible.

Proposition (1.8). — Let IT be an exact class in ^(A). TA^z there exists a ring homo-
morphism A ->• A unique up to isomorphism, which is universal with respect to the following
property: For any matrix MeS, u®A is invertible.

If H^ is symmetric, A -> A is a morphism of rings with involution.

Actually, the ring A is an inversive localization of A in the sense of Gohn [2].

Definition (1.9). — Let a be the subgroup of Ki(A) generated by the torsion of
all complexes C 0 A, such that CeiT and G ® A is acyclic. The pair (A, a) will be
called the IT-localization of A.

Let f be a normal map from the normal bundle of a compact n-dimensional (Top,
PL or Diff)-manifold V to a (Top, PL or Diff)-bundle S over a pair (X, BX) of finite
complexes. Suppose X is connected. The first Stiefel-Whitney class of ^ induces an
involution on the ring A==Z[TC^X].

Let IT be an exact symmetric class in ^(A) containing any acyclic complex with
torsion in the image of 71:1 X -> K^(A).

Suppose we have the following properties:

i) (X, 3X) is a ^-Poincar^ complex; i.e. the cap-product by/»[V] is a ̂ -equi-
valence from G*(X; A) to G,(X, BX; A).

ii) The restricted map f:8V->8X is a ^equivalence.

Theorem (1.10). — Let (A, a) be the if^-localization of A. Suppose that any complex
in IT is A--acyclic. Then, the normal map f determines a well-defined element (s{f) eL^(A).
And, if TI.> 5, fis normally cobordant, rel the boundary, to a IT-equivalence if and only if o(f)
vanishes.

Theorem (1.11). — With the same hypothesis as above, if n'>_6, and X is a product
M X I, M being a (Top, PL or Diff)-manifold, any element of L^(A) is the obstruction a{f)
of a normal map f restricting to an isomorphism over M x o u 8M x I.

Remark (1.12). — The condition of A-acyclicity of complexes in ̂  is a very
crucial point because, in the situation of (i. 10), a(f) can be defined only if this condition
is satisfied, or, more precisely, if the Poincar^ duality on (X, 5X) is a A-homology
equivalence and / restricts to a A-homology equivalence on the boundaries.

On the other hand, this condition is not always satisfied. For example, if i^
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ON THE OBSTRUCTION GROUP IN HOMOLOGY SURGERY 169

is the class of finite Z[^ t~1] -complex with finite homology, the ring A is Z[^, t~1] and
there exist many complexes in IT which are not acyclic.

If the condition of A-acyclicity of complexes in IT is not satisfied, denote by i^'
the class of A-acyclic complexes in IT. Then theorems (1.10) and (1.11) hold for
the class ̂ '. Now, the last problem is to compare the surgery problems corresponding
to classes IT and ̂ '. But this question seems to be very difficult.

Let A -> B be a ring homomorphism. Let A be the inversive localization of A
in the sense of Cohn [2] obtained by formal inversion of the matrices u with entries
in A such that M ® B is invertible. The ring homomorphism A->A will be called
the localization of A ->• B.

Theorem (i. 13). — Let A -> B be a ring homomorphism and (B be a subgroup of K^(B).
Denote by H^ the class of finite ^.-complexes which are K-acyclic with torsion in (B, and by (A, a)
the i^-localization of A.

Then A -> A is the localization of A -> B and a is the inverse image of (3 under the
canonical morphism s : A -> B.

Moreover, if e is onto, any complex in i^ is A-acyclic.

Remark (1.14). — The ring A and the group L^(A) are difficult to compute, but
we have some interesting results.

Let S C A be the set of elements in A invertible in B. Then, if there exists a
classical localization S^A, A is the ring S^A. This holds, for example, if A is commu-
tative or if A -> B is the ring homomorphism ZTT -> ZTT' induced by a group homo-
morphism TT -> TC' with finitely generated nilpotent kernel onto a finite extension of
a polycyclic group [7].

An other example is the following (see theorem (9.7)): Let n—>G be a group-
epimorphism with locally perfect kernel. Then the localization of ZTT -> ZG is ZTT ->• ZG
itself.

Anyway, the theorems (1.10), (1.11)3 (1.13) imply that the obstruction groups
r^(A —>-B) of Cappell and Shaneson [i] are always the L^-groups of A (endowed with
a subgroup of K^(A)), at least when the theory of Gappell and Shaneson holds, i.e. when
A -> B is locally epic. This was already proved in some particular cases by Cappell
and Shaneson [i], Smith [7], Hausmann [3] and the author [8].

Nevertheless the condition of surjectivity of A -^ B holds in many other cases.

Proposition (1.15) . — Let A->B be a ring homomorphism and A->A be the loca-
lization of A -> B. Let Bo C BI C B2 C . .. be subrings of B defined by:

i) Bo is the image of A—^B;
ii) For any n^o, B î is generated by B^ and the inverses of the units ofB contained

in B,.
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Then, the image of A ->B contains all the rings B^. Therefore, ifB is the union of the
rings B^, the morphism A->B is onto and the theorems .(i.io), ( 1 . 1 1 ) , ( 1 . 13 ) hold.

In fact, the image of A -> B can be strictly greater than the union of the rings B^.

Example (1.16). — Let F be the free group with p generators, p> i, and let A
be the group ring Z[F]. Let IT be the class of finite A-complexes G such that H,(G)
is finitely generated over Z and let (A, a) be the ^-localization of A. Then the
localization of A->A is A—-A and the morphism A-^A is the identity. One
can prove that any square matrix with entries in A which is invertible in A, is invertible
in A; hence B^=A for all n, but A->A is not surjective!

Remark (1.17). — Let A->B be a ring homomorphism and p be a subgroup
of Ki(B). Denote by IT the class of finite A-complexes which are B-acyclic with torsion
in (3 and by (A, a) the ^-localization of A.

If the morphism A -> B is not onto, the condition of A-acyclicity of complexes
in IT is not always satisfied.

For example, this condition holds if A -> B is the ring homomorphism Z -> R,
but it does not hold if A is the ring Z[t, r~1] and B is the product of the localizations
of A with respect to the non zero principal prime ideals.

2. A first homology surgery obstruction group

In a first step, we will construct a surgery obstruction group I^(A, IT) which looks
like the group I^(A ->• B) constructed by Ranicki [5], but from a dual point of view.

Throughout sections 2 and 3 we assume that A is a ring with involution and that
IT is an exact symetric class in ^(A) (see (1.2) and (1.3)).

If G and G' are finite A-complexes, we denote by Hom(G, G') the set of
A-homomorphisms from G to G'; Hom(G, C') can be given a graded differential
Z-module structure by setting:

8^f(x) = 9°f+ fflx, for any fe Hom(G, G'), x e G

d{fW={df)(x)+[-lY9ff[dx), for any /6Hom(G,G'), xe G.

Moreover, by setting

f(u) = (~ lY^u o/, for any /eHom(G, C'), u e C',

we get a morphism f->f from Hom(G, C') to Hom(C', C) which respects the degrees
and the differentials.

Notation (2.1). — If G is a finite A-complex, we denote by B(G) the graded
differential Z-module Hom(C, C). The composite map:

Hom(C, C) -> Hom(C, C) ̂  Hom(G, C)

is an involution on B(G) and B(G) is a graded differential Z[Z/2]-module.
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ON THE OBSTRUCTION GROUP IN HOMOLOGY SURGERY 171

Definition (2.2). — Let G be a finite A-complex. We use Q^(C) to denote the
group H^(Z/2, B(C)). By a quadratic n-form over G, we mean an element of Q^(G)
and by a quadratic n-complex we mean a pair (C, q), ^6^(C).

Let C -> G' be an epimorphism of degree o between two finite A-complexes.
We use Q^(G ->• C') to denote the group H^Z/2, B(G)/B(C')). By a quadratic n-form
over G -> G', we mean an element of Q^(C -> G') and by a quadratic n-pair, we mean
a pair (G ̂  G', ?), y e Q^(G -> G').

Definition (2.3). — Let (G, §r) be a quadratic n-complex. We will say that q
or (G, q) is iT-non singular if the image of y by the composite map

H,(Z/2,B(G)) ̂  H,(i,B(C))^HJB(C))

is represented by a -^-equivalence from G to G.
Let (C -> G', q) be a quadratic n-pair. Let K be the kernel of G -> G'. We

will say that q or (G -> C', q) is iT-non singular if the image of q by the composite map

H,(Z/2, B(C)/B(G')) "-H,(B(G)/B(G')) ^H^(Hom(K, C))

is represented by a ^-equivalence from K to C.

Remark (2.4). — IfCis zero except in dimension —p, a quadratic 2/>-form over G
is exactly a (— i^-quadratic from over C_p in the sense of Wall [n].

Remark (2.5). — If^is the class of acyclic complexes with zero torsion, a ̂ non
singular quadratic n-form q over a finite A-complex G is an n-dimensional quadratic
PoincanS structure on C, in the sense of Ranicki [5], at least if G is (— i)-connected.

Definition (2.6). — We will denote by I^(A, IT) the set of^-non singular quadratic
n-complexes subject to the following cobordism relation: (G, q) is cobordant to (G', q ' )
if there exists a ^-non singular quadratic (n+i)-pair (S -» G ® G', u) such that
8u == q <9 — q\

Let W be the standard free resolution of the Z[Z/2]-module Z:

Z[Z/2].o ̂  Z[Z/2]., ̂  Z[Z/2]^ ̂  ...

Then Q^(C) is the n-th homology group of W®z/2B(G).

Lemma (2.7). — Two HT-non singular quadratic n-complexes {G, q) and (G', q') are
cobordant if and only if there exist two s'exact sequences

o->K ->S-°>G ->o

o^K'-^S-^C' -^o
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and an element ^ ® +o + <?i ® ̂ i + • • . ^ W ®^ B(S) j^ that:
1) y 9 ^d q' are the homology classes of 9 and 9', we have

^®^)=a-(9)-a'-(9');
n) ^o + $o ^W^j a iT-equivalence from K ^ fi/.

Proo/. — Suppose that q and y' are represented by 9 eW 0^3(0) and
9' e W ̂ z^G')- If (C, q) and (G', /) are cobordant, there exists a .y-exact sequence

O-^S'^S^GOG'-^O
together with an element 2^ ® ̂  G W ® B(S) such that:
(i) ^S^®^)=a*(9)--a"(9');
(u) +o + $o induces a ^-equivalence from S' to S.

Let K (respectively K') be the kernel of a (respectively a'). We have a homotopy
commutative diagram

o —>S ' —> K — > G ' —> o
(I) [a L L

^ + ^

o — ^ s — ^ g y ^ c ' — ^ o

where the lines are homotopy ^-exact and a and b are induced by ^Q + $0 and <: is
induced by the transfer of 9'.

Since a and c are ^-equivalences, b is a ^-equivalence too and the first part of
the lemma is proved.

Conversely, suppose we have two j-exact sequences

o —> K — > S - ^ > G —> o

o —> K' — > S - ^ G ' —> o

and an element 2^ ® ̂  satisfying the conditions (i) and (ii) of the lemma. Up to
simple homotopy type, we may suppose that a © a' is onto with kernel S' e ̂ (A). Then
we have the homotopy commutative diagram (I) where b and c are -^-equivalences and
+o + $o induces a -^-equivalence from S' to S. Hence (C, q) and (G', q ' ) are cobordant. •

Lemma (2.8). — Let (C, q) be a iT-non singular quadratic n-complex and f: G' -> G
be a inequivalence. Then (G', f\q)) is a iT-non singular quadratic n'complex cobordant to (G, q).

Proof. — We may suppose that/is epic with kernel K e ̂ (A). Then we have
the j-exact sequences

o — ^ K - ^ G ' - ^ G — > o

o —> o —>G'-^->G' —> o

and the result is an easy consequence of lemma (2.7). •
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3. Algebraic surgery

In order to kill the homology of a i^'-non singular quadratic n-complex, in low
dimension, we need the following:

Lemma (3.1). — Let o-^I-^G->J->o be an s-exact sequence of finite A-complexes.
Let q be a H^'non singular quadratic n-form over C such that y*q = o. Then, q is represented
by a cycle S^®/,p.

Moreover if q is represented by such a cycle, (C, q) is cobordant to a iT-non singular quadratic
n-complex (G', q') where G' is the mapping cone of atf^ (the grading of G' is chosen so that the
map C' ->J has degree o).

Proof. — Consider the following exact sequences of graded differential Z[Z/2]-
modules:

o -> B -> B(G) ̂  B(I) -> o

Hom(G, J) ® Hom(J, C) -^ B -^ o.

If o^q is zero, q is represented by a cycle in W ®^ B, and there exist morphisms// and//'
in Hom(J, G) such that q is represented by

^®(//(B+pyn.
Now we have

^i4-l®//'p)=^®//'p+(-I)i+^®p///+(-Iy+l^l®^^^
Then there exist morphisms ^eHom(J,C) such that q is represented by S^®/,(B.
Since S^OO^.p is a cycle, we have

V z^o, (~ i)^(3 +/^,p + (- i)14-^! = o.

whence ^(o^o) = °5 ^ = o? for any z > o.

Let G' be the mapping cone of o^. We have a split exact sequence

I Ct,' m

o —> ^=± C' -^-> J —> o

such that
a°a' ==-»-!, ^p'^o, rfr'=a/o?', r'a'=l

and o-^S-"-1!-^' -^J^o

is j-exact.
Let 2 be the pull-back of G and C' over J:

S —^G

4 1s
Y Y

C' -^J

273
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Let r be a retraction of a and let u be the element ^®Y?T'Y' eW®^B(S).
We have

^ = <?o®?^Y + <?o®?/oPY + ̂ o ̂ (^c ~ i)/oPY

and it is easy to see that ^{^e,®f^)—du has the form -/'(S^®^'), 9; eB(C').
On the other hand, yFr'y'+ y'F'ry induces the identity from the kernel of y'

to the dual of the kernel of y. Then S^®<p,' represents a IT-non singular quadratic
%-form ({ over C' and, by (2.7), (C, q) and (G', ?') are cobordant. •

Corollary (3.2). — Any iT-non singular quadratic n-complex is cobordant to a iT-non

singular quadratic n-complex (G, q) such that G is [\ :zn-\—^-connected.
/
/r

Proof. — Just apply lemma (3.1), I being the (p^-i)-skeleton of the
complex. • \L 2 J /

Lemma (3.3). — Let o -> I -°> G ->J -^ o be an s-exact sequence of finite ^.-complexes
and Y : J -^ K be an epimorphism of degree o which respects the differentials. Let q be a iT-non
singular quadratic n-form over G -^ K such that v*q = o. Then q is represented by S^®/,(B.

Moreover, if G' is the mapping cone of oifo {the grading being chosen as in lemma (3.1)),
there exists a iT-non singular quadratic n-form q' over G' ->• K such that 8q and Sq' coincide
^ Q^-i(K).

Proof. — We have the following exact sequences of graded differential Z[Z/2]-
modules:

o -> B -> B(G)/B(K) ^> B(I) -> o

Hom(C, J) ® Hom(J, C) -^ B -^ o.

Then, as in lemma (3.1)3 we show that q is represented by an element S^®/,p and
we have

^fo) == °5 ^fi == o? for any i > o.

Consider, as above, the diagram: o-^I^G'-^J-^o and let s be a section of p.
We have

A=a8, 8eHom(J,I).

It is not difficult to see that the element
u==eo®ySr' +S^®p/;y,(B'

represents a quadratic n-form q' over G' -> K and that ̂  and 9q' coincide in Q^_i(K).
Moreover, the transfer V of u is:

y= p's/ + (~ ly+^sy + yw + p'/^p'
174
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and we have

2a'=p'8 and S'S^Sp'.

Denote by G, J, C' the kernels of the morphisms C -> K, J -> K and G' -^ K.
We have the following commutative diagram:

o —. 1 ̂  C' -^> J —> o

I8 !" I8
y Y y

o -. J ̂  c' -^ i -. o,
and we obtain a j-exact sequence between the mapping cone of 8, V and 8. Now the
boundary of this j-exact sequence is homotopic to the morphism (— i^^/oP + P/o)
from G to C, which is a ^-equivalence. Then the mapping cone of ff: C' -> C' is
in IT and q* is ^non singular. •

Corollary (3.4). — Let (G, q) be aiT-non singular quadratic n-complex cobordant to zero.
Then there exists aiT-non singular quadratic (n + i)-pair (S -> G, u) such that q is the boundary

of u and the kernel of S -> G is [\ ———— — i ̂ connected.
\L 2 J /

Proof. — If (C, q) is cobordant to zero, there exists a iT-non singular quadratic
(n + i)-pair (S' -> C, u') such that q is the boundary of u\ Then apply lemma (3.3),

I being the ( —n——I- — 11-skeleton of the kernel of S' -^ G. •
\L 2 J /

Now, if we want to kill the homology of a iT'non singular quadratic »-form beyond
the middle dimension, we must suppose thaf)^ satisfies some other properties. Actually,
it is useful to consider the new class ̂ ' of all A-acyclic finite A-complexes.

Splitting lemma (3.5). — Let C be a complex in IT' and let n be an integer. Then, there
exist two finite ^.'complexes L and L' concentrated in dimension n and a if^'-equivalence from L
to the complex

L'®(.. .^G^->G^o->.. .) .

This lemma will be proved in § 7.

Lemma (3.6). — Any H^'-non singular quadratic n-complex is cobordant to a i^'-non

singular quadratic n-complex (G, q) where G vanishes except in dimension —— [and —— + i
if n is odd). L 2 J \ L 2 J

Proof. — Let (C, q) be a^'-non singular quadratic TZ-complex. By corollary (3.2),
r-^iwe may as well suppose that G^ vanishes for i<\ —— \.
L 2 J
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Suppose n = — sp. Since (G, q) is iT'-non singular, we have the following
complex in i^':

•••-^C^^G^G^G,,^^...
and, by splitting lemma (3.5), there exist two complexes L and I/ concentrated in
dimension p and a ^'-equivalence

/: L^GOL'.

Up to stabilization, we may suppose that Lp is even dimensional. Let q' 6 Q,,,(L')
be a standard hyperbolic structure on L'.

Then (G, q) is cobordant to (G © L', q ® q ' ) and by lemma (2.8), (G, a} is cobordant
to (L,/*(<7®<7')).

Suppose n = -2p- i. Since (G, ^) is ^T'-non singular, we have the following
complex in iT':

•••-^G^^G,®C^C^^...,

and, by the splitting lemma (3.5), there exist two complexes L and L' concentrated
in dimension p + i and a ^'-equivalence

L^L '©( . . . -^C^a^G^^o...).

We deduce a ^'-equivalence

/:(... ->o->L^ i ->Gp®L;+ i^o . . . ) ^G

and (G, y) is cobordant to ( . . . -> o ->• Ly.^ -. Gp® Lp.^ -„ o .. .,/*^). •

Lemma (3.7). — Zef (G, q) be a IT'-non singular quadratic (— 2p) -complex such that
C. vanishes for i^p. Then (G, q) is cobordant to zero if and only if there exists a IT'-non
singular quadratic {—zp+ i)-pair (S -> G, u) such that q is the boundary of u and S. vanishes
for i d p p , p — i .

Proof. — Suppose (C, q) is cobordant to zero. By corollary (3.4), there exists
a ->r'-non singular quadratic (— 2p + i)-pair (S' ->G, u ' ) such that q is the boundary
of u' and S,' vanishes for i<p— i. Let K' be the kernel of S -^G.

Since u' is IT'-non singular, we have the following complex in ^"':

...^K;^->K,-^K;_,©2;_^S;^S;^-....

and, by the splitting lemma (3.5), there exist two complexes L, L' e ̂ (A) concentrated
in dimension p and a ^'-equivalence

( . . . ̂  o -> Lp ̂  K; _ i © L; -^ o -^ . . . ) -^ K'.

//e
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Let K be the complex . . . o ->Lp-^Kp_iCLp->o-> . . . Since the ^'-equi-
valence K-^K' is {p— i) -connected, the boundary C-^K' lifts through K and we
get a commutative diagram

o —> K —> S —> C —> o

i \'
o —> K' —> S' —> C —> o

where the lines are j-exact.
Then (S->G,yY) is the desired quadratic pair. •

Lemma (3.8). — Let (G, q) be a i^'-non singular quadratic {—2p—i)-form such
that G, vanishes for i =t= p, p + i. Then (C, q) is cobordant to zero if and only if there exists
a iT'-non singular quadratic (— 2p)-pair (S -> G, u) such that q is the boundary of u and S^ -> C,
is a simple isomorphism for i 4= p.

Proof. — Suppose (C, q) is cobordant to zero. By corollary (3.4), there exists
a^'-non singular quadratic (—2j&)-pair (27 -^C, u') such that q is the boundary ofu'
and Ŝ ' vanishes for i<p.

Let K' be the kernel of S' -> G. We have a complex in ̂ '

... -> ̂ p+i -> Sp -^ Kp -^ Kp+i ~> ...

and, by the splitting lemma (3.5)3 there exist two complexes L and L' e^(A) concen-
trated in dimension p and a ^'-equivalence

/: L-^S'CL'.

Up to stabilization, we may suppose that Lp is even dimensional. Let v e Q^_2p(L')
be a standard hyperbolic structure on Ly.

Let X be an acyclic finite A-complex with torsion zero concentrated in dimen-
sion ^ — i , p, p + i and X-^G be an epimorphism with kernel in ^(A) such that
Xp+i -^Gy+i is an isomorphism. Let (S"^G,^") be the quadratic (—2^)-pair
defined by S" == L C X, ^" =f\u' © y) C o.

It is easy to see that u" is ^'-non singular and that W = ^. Moreover the
kernel K" of S" -> C is concentrated in dimension p — i and p.

Now, by lemma (3.3)3 we can kill the p— i skeleton of K" by surgery and we
get a^'-non singular (— 2^)-pair (S -> C, u) such that 8u== q and the kernel of S -^ G
vanishes except in dimension ^. •

Now, with the above lemmas, it is possible to give an interpretation of I\(A, ̂ ')
in term of special forms in the sense of Wall [10] and Cappell and Shaneson [i],
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Definition (3.9). — Let 73 == ± i and 1̂  =={fl — r^a, a eA}. A H^'-spedal r^-form
is a triple (H, X, pi) where H is a finitely generated free A-module, X a Z-bilinear map
from H ®z H to A and (A a map from H to A/I^, and satisfying the following conditions:

Q,i \{ax,yb) == a\{x,y)b, V A:,J/ e H, V a, b e A

0.2 ^j0 = ̂ (^ ̂  V A:,J e H

Oa piM + 7]pi(j0 = X(^jQ, V ̂ j e H

04 ^ +j0 = ̂ x) + pi(jQ + X(^) mod !„ V^,^ eH

05 [L{xa) ==a[i{x)a, VxeH, V a e A

Oe the morphism ^ induced by X is a A-isomorphism {i.e. ^ ® A is an
isomorphism).

Definition (3.10). — Let (H, X, pi) be a ^'-special Tj-form. A H^'-subkernel of
(H, X, (Ji) is a free A-module K endowed with a morphism f: K->H satisfying the
following conditions:

Si /^-o, /^=o
83 the following complex lies in H^'\ o - > K — > H — > K - > o .

(3.11) Let ^ ^ ( — i ) ^ and let (H, X, pi) be a ^'-special 7]-form. Since H is
free, there exists a map 90 : H -> H such that

\{x,y) = 9oW (j0 + ̂ 9o(^) W. V x,y e H

^W ^ 9oW W mod I^ V A: e H.

And, if 90 and 9^ are such two maps, 90 — 90 has the form ^ — T]$.
Choose a basis for H and denote by H^ the finite A-complex defined by

H,=("- ———^
' [o, z + -^

Then ^o ® 9o represents a ^'-non singular quadratic 2^-form q over H, and the
cobordism class of (H^, q) is a well defined element <o(H, X, pi) e F^A,<^'').

(3.12) Let 73 == (— iY and 1̂  /: K -^ B®B be a ^'-subkernel of a standard
7]-kernel B®B (B is a finitely generated free A-module). The map/is induced by
maps ^ : K — » - B and 9o:K~^B. Since the quadratic form is trivial over K, there
exists a map 9i:K->& such that $00 d= 91— (— i)^. Choose basis for K
and B. Let C be the —^-dimensional complex

o^K-^B->o
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Let <po | B = o. We get two bilinear forms <po and ̂  on G, and we have
fi?<po== <p^—^.

Then, ^o^o--^®?! is a cycle in W ®^[C) inducing a quadratic {2? + i)-form y
over G.

It is easy to see that q is ^'-non singular. We denote by co(/) e I\,^(A, ̂ ')
the cobordism class of (G, q). This element depends a priori on the choice of 9^.

On the other hand, the tensorization by A induces a map from I^(A, ̂ ') to
^(^^i) where ̂  is the class of finite acyclic A-complexes. But the group F (A,^)
is isomorphic to L^(A). Then we get a morphism e from ]^(A, ')T') to L^(A) and £(o(/)
is the class of/®A in L^(A). We deduce that £G)(/) does not depend on the choice
of cpi. But it will be proved in § 8 that s is an isomorphism. Therefore co(/) is well
defined.

Proposition (3.13). — Any element of r^(A,^T') has the form <o(H, X, pi) /or jom^
^-special (- i)P-/om (H, X, ^ and any element of r^^(A,^') has the form co(/) /or
some i^'-subkemel / :K-^B®B o/a standard (— lY-kernel B ®B.

Proo/l — In the even dimensional case, this is a trivial consequence of lemma (3.6).
In the odd dimensional case, we know by lemma (3.6) that any element of

^^^(A,^') is the cobordism class ofa^'-non singular 2p + i-complexes (G, q) where
C, vanishes for i+ —p, — p — i . It is not difficult to see that q is represented by
^o^yo+^i0?!? where the morphism 90 is trivial over G_p_i. Then the cobordism
class of (G,y) is co(/) where/is the map d@^: G_y -> C_p_ i©C_p_i . •

Proposition (3.14). — Let (H, X, pi) ^ a i^'-special (— i)P-/owz. r^n G)(H, X, p.)
^ ^ro x/ ^af only if the direct sum of (H, X, p.) ̂  a standard kernel has a iT'-subkemel.

Proof. — Suppose that (H, X, pi) has a ^'-subkernel /: K^H. Consider the
quadratic 2^-complex (H,, q) constructed in (3.11). Choose a basis for K and denote
by K^e^(A) the complex defined by

K, i==-^p
o, i ^ — p .

K,=

Let K,-^H^->H, be a factorization of/such that g is a simple homotopy
equivalence and K^-^H^ is a monomorphism with free cokernel. After doing an
algebraic surgery along K,-^H:, we show that (H^g'q) is cobordant to (H:', y")
where H,' has the simple homotopy type of

. . . ->o^K->H->£->o-^ . . .

The complex H^ is thus A-acyclic and (H,, q) is cobordant to zero.
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Now suppose that the direct sum of (H, X, (A) and a standard kernel H' has a
^'-subkernel. We have

co(H, X,(i) = <o(H, X,ix) + o(H') = o.

Conversely suppose that co(H, X, [L) vanishes. By lemma (3.7)3 there exists a ̂ '-non
___ Q( ___

singular quadratic (2p + i)-pair (S -> H,, ^) such that q is the boundary of u and S,
vanishes for i 4= — p , —p — i.

The form u can be represented by ^o^^o 4- ^i®^i3 4'o vanishing on S_ ^.
Let K be the kernel of S_p->H.

Since u is ^'-non singular, the following complex is A-acyclic:
.__,y ^©(-D^o y ..y _J^_^__^
0 ——> 2^_p——————> 2<_p_i^i,_p_i——————^ K ——> 0,

'̂ / ^s

and since X : H -> H is a A-isomorphism, we deduce that

aC^®(-i)^o-- S_^-^H®S_^_i®S_p_i

is a ̂ '-subkernel of the direct sum of (H, X, (i) and the standard kernel S_p_i ® S_p_i.

Proposition (3.15).— ̂  /: K-^B®B be a iT'-subkernel of the standard [—lY-kernel
BOB. Then ̂ {f) is zero if and only if there exist a kernel G @ C endowed with its standard
subkemel g : C -> G €> G and an isometry h of B < 3 B © G © C leaving each element of B @ C
fixed, such that the composite map

Kec '^BeBecec—^Bec
is a A-isomorphism.

proof, — Consider the "if" part first. If g is the standard subkernel of G<3C,
the complex associated to g (see (3.12)) is acyclic and then w{g) vanishes.

The complex associated to f@g is
o - ^ K ® G - > B ® G - ^ o - ^ . . .

If we perform a surgery along B, we get a new complex
. . . - ^ K ® G - > B ® G - ^ o - > . . .

and <o(/) is equal to co(/'),/' being the new ^'-subkernel

K®G-^B®G®(l f®G) .

It is easy to show that, for any isometry h of B ® C ® B ® C leaving each element
of B®G fixed (AeUUy(A) with the notations of [10]), the two ^'-subkernels /' and
hof represent the same quadratic {2p + i)-form over the same complex.

It suffices now to perform a surgery along B ® G to get a A-acyclic complex and
co(y) is zero.

Conversely, suppose <o(/) is zero. Let (C^, q) be the quadratic complex associated

180



ON THE OBSTRUCTION GROUP IN HOMOLOGY SURGERY 181

to/ (see (3.12)). By lemma (3.8), there exists a ^T'-non singular quadratic {2p + 2)-
pair (S, -> G,, ^) such that y is the boundary of^ and 2, -> C, is a simple isomorphism
for z 4= — p — i.

The map S^ -> C^ has the form

o —> K -^> K

i i' !'y ^ ^

o — ^ X - ^ S - ^ B — ^ o

where K -^ S is the complex 2^.
I f^ is represented by 2^®^, ^ is a homomorphism from S to S satisfying

^ o f l f ' + p o 9 o = o with ^ = ^ — ( — i ) P ^

and the following complex is A-acyclic:

o-^K-^S^X—>o.

By the splitting lemma (3.5), there exist two finitely generated free A-modules C
and I and a homomorphism y : C -> S ® I such that (y ® d ' ) ® A is an isomorphism.
After adding a kernel to 2,, we may suppose that I is zero and y is a homomorphism
from G to S.
^ Then tlle "lorphism a o ^ o Y : C - ^ X is a A-isomorphism, and the morphism
^ O Y ® P : C ® B - > S is also a A-isomorphism. That implies that the composite map
from G ® K to C ® B

(YO^© p) o (y © <T)=-(- 1)^0^ oy©(- 1)^0 p o 9 o © ( B o Y ® r f

is a A-isomorphism.
Let A be the homomorphism from B ® B ® C © C to itself defined by

A = ^(-i^opQ^i^+^oY^-i^ 'YoyoY.

It is easy to check that h is an isometry leaving each element of B ® C fixed and
that the composite map

Kec'-^BeBecec-^Bec
is a A-isomorphism. •

4« Geometric surgery

Throughout this section, we will suppose that A is the group ring ZTT with an
involution induced by a morphism w: TT ->± i, and that IT is an exact symmetric
class in ^(A) containing any acyclic complex with torsion in the image of TC -> ICi(A).

We denote by (A, a) the ̂ -localization o fA( i . 9 ) and by^' the class of A-acyclic
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complexes in ^(A). The class ̂ ' is exact and symmetric and the ^'-localization
of A is (A, S^(A)). The fact that any element in K.i(A) is the torsion of a complex G ® A,
G e^', will be proved in § 7.

Let/be a degree one normal map from the normal bundle of a compact ^-dimen-
sional (Top, PL or DifT)-manifold V to a (Top, PL or Diff) -bundle ^ over a connected
^-Poincar^ complex with fundamental group TC, such that the first Stiefel-Whitney
class of ^ is w. We assume that / induces a ̂ -equivalence on the boundaries.

Suppose that any complex in i^ is A-acyclic. Then / induces a A-homology
equivalence with torsion in a between the boundaries. Then we can use Wall's tech-
nique [10] in order to define a(/)eL^(A) and a{f) depends only on the normal
cobordism class (relative the boundary) of/, and vanishes if/is normally cobordant
to a ^-equivalence.

(4.1) Proof of theorem ( 1 . 1 0 ) in the case ^==^'

Suppose n==2p or 2p + i >_ 5 and a(/) = o. After performing surgeries, we
may suppose that the normal map /: V -> X is ^-connected.

Denote by C, the complex S^G^X, V; ZTT). If g is a homotopy inverse of the
cap product C^V; ZTT) -> G,(V, BV; Zpr), the composite map

G, -> G,(V; Zn) -> G,(V, BV; ZTT) -^ C*(V; ZTT) ̂  C,

is a ̂ '-equivalence.

a) The even dimensional case
If n •== 2py we have a complex in i^'

...^G^^G,->G,->C^^...

and by the splitting lemma (3.5), there exist two complexes L and L' concentrated in
dimension p and a ^'-equivalence L -> C^ @ L'.

After performing trivial surgeries, we may suppose that L' is zero. Then the
intersection and self-intersection forms on IL^i(X, V$ ZTC) induce forms X and (JL on 1̂
and (Lp,X,(Ji) is a ^'-special (—i^-form. Clearly, co(Lp, X, [L) is sent to a{f) by
the canonical map: s : ̂ (ZTT,^') ->I^(A).

But s is an isomorphism. This will be proved in § 8.
Then <o(Lp, X, [L) is zero and by proposition (3.14)3 the direct sum of (Lp, X, pi) and

a (— i ̂ -kernel has a ̂ '-subkernel. We can realize the direct sum by trivial surgeries.
So we may as well suppose that (Ly, X, (i) has a ^'-subkernel K -> Lp. Now it suffices
to perform surgeries along a basis of K, via the map K -> Lp -^ C -> IL.^(X, V; Z-rc),
to get a ^'-equivalence.

b) TA^ odd dimensional case
If w = 2^ + i, we have a complex in ̂ '

...->C,^->C^,->G,®C^C^,->G^^...
252
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and by the splitting lemma (3.5)3 there exist two complexes L and L' concentrated
in dimension p + i and a ^'-equivalence

L-^(... ^q,+2->Gp+i^o^...)®L'.

So we get a ^'-equivalence ( . . . ->• o -^ Lp+i --> Gp®L^i -> o -> . . . ) -> G.
Denote by K-> B the map Lp^i->Gp®Lp^^ and consider the composite

map B -> Cp -> n.^(X, V). The basis of B induces maps from S^ to V homotopic to
zero in X. These maps are covered by fibered maps and we get immersions a,: S29 -> V,
which we can suppose to be disjoint embeddings. Let U be a regular neighborhood of the
images of these embeddings, connectified with i-handles. The group Hy^i(pt, ^U; ZTT)
endowed with intersection and self-intersection forms is the standard (— i ̂ -kernel B © B.

The morphisms K -> B and K-> Gp^i induce a morphism from K to the relative
homology group

,u —> pt \ / au —> pt \
H^j| |; Zn =H^, j | ; ZTT

| y Y y \ Y T I
\v —> x / \v-u —> x /

and we get, upon composing with the boundary, a morphism h from K to
H^i(aU -^pt$ ZTT) ==H^(pt, BU; ZTT) ==B®B.

It is not difficult to see that the image under h of the basis ofK can be represented by
spheres immersed in 8\J with zero intersections and self-intersections. To prove that A is a
^'-subkernel, it suffices to show that the complex ... ->o ->K->B®B->IC-^o -^ . . .
lies in i^* \ and this follows from the ^'-equivalences

( . . . ->o ->K->B-> . . . ) - ^G , ->C , -> ( . . . ^o ->B->g : ->o -> . . . ) .

Then we get a ^'-subkernel h and an invariant co(A) er^(Z7r,^'). By cons-
truction, O)(A) is sent to cr(/) by the isomorphism e : ̂ (ZTT,^') -> I^(A). Hence
<o(A) is zero. By proposition (3.15), there exist a standard (— ^-kernel C ® C endowed
with its standard subkernel g : C -> C <9 G and an automorphism < p o n B ® B © G © C
leaving each element of B 0 6 fixed, such that the composite map

Kec^^BeBecec—^Bec
is a A-isomorphism.

If we add trivial disjoint embeddings (^., from S^ to V, corresponding to the basis
of C, the new ^'-subkernel is h@ g. If we perform surgeries along the spheres 0^3
the ^'-subkernel h@g is replaced by To(A©^) , where T exchanges the factors B
and B. The new embedded spheres are the duals o^ of a^ and (3,.

Now we can choose a regular homotopy depending on 9 (see [10]) to get new
disjoint embeddings a,' and (3j and the ^'-subkernel Tocpo(A®^) .
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If we perform surgeries along the spheres ô ' and (Bj, we get the ^'-subkernel
T 'o (po(A<9^) where T' exchanges the factors G and C.

So we obtain a new normal map f : V -> X normally cobordant to f and a
^'-equivalence

( . . . ^ o - ^ K ® G - > B ® G - > o - ^ . . . ) ^ S-^CUX, V'$ Zn).

Therefore /' is a ^'-equivalence. •

(4.2) Proof of theorem ( i . 11) ^ ̂  ^<? IT = i^'

a) TA^ even dimensional case

Suppose n==2p^>_6 and let GeL^(A). Since the morphism
s: r,(Z7r,^r')->4(A)

is an isomorphism, a is represented by a ^'-special (—i^-form (H, X, (i) (3.13).
Then we construct a normal map /: W - > M x I exactly as in ([io], p. 53). This
normal map is an isomorphism over M x o u 8M x I and a ^'-equivalence over
M X i because X is ^'-non singular. By construction, cr is the surgery invariant of/.

b) The odd dimensional case

Suppose n = = 2 ^ + 1 ^ 7 and let ceL^A). We can represent a by a trivial
(—i^-kernel BOB endowed with a ^'-subkernel ^ : K - ^ B © B ((3.14)). After
adding ^-handles to M x I corresponding to the basis of B, we get a normal map

fo : Wo -^ M x o, - which restricts to an isomorphism over M X o u 8M x o, - .
L -I j •- J

The inverse image M' of M X - is the connected sum of M and copies of S^ X S^ and

( \ ^
the group 7^+1 M X -, M'| is the kernel B ©B. Then we can perform surgeries along

the image under g of the basis of K and we get a normal map

/,: Wi->Mx^, i1 .

These two normal maps induce a normal map /: W -> M X I. It is easy to see
that / restricts to an isomorphism over M X o u ^M X I and a ^'-equivalence over
M X i. Moreover a is the surgery obstruction o{f). •

Actually this proof is almost identical with [10], p. 66.

Lemma (4.3). — Let T£K.i(A). Then there exist two matrices u and v with entries
in A such that u0A and v®A are invertible and T == r(^®A) —T(y®A) .

This lemma will be proved in § 7.

Lemma (4.4). — Let M be a connected compact (Top, PL or Diff) -manifold, dim M >_ 5.
Let <p be an epimorphismfrom T^M to TT; and T be an element o/'K^(A). Then, there exists a normal
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map /: V —>- M X I restricting to an isomorphism over M x o u 8M. X I and such that f is
a A-homology equivalence with torsion T.

Proof. — By lemma (4.3)3 there exist two matrices
u: ZTT^ -> ZTT^ and v : 7^€ -> Zn8

such that u^A and v®A are invertible and
T=T(M®A)—T(y®A) .

After adding q i-handles to M X I, we get a normal map /i: Vi -> M X I which is
trivial on the handles. Now we add p 2-handles on V\ along u and we get a normal
map fz: ̂ a -> M X I restricting to an isomorphism over M X o u 8M X I and such
that: T(/g) = T(^®A) e K^A).

Let M' be the manifold/g"1 (M X i). After adding s trivial 2-handles and r 3-handles
along v, we construct a normal map f^ : Vg -^ M' X I which restricts to an isomorphism
over M ' X o u ^ M ' x I , and/3' is a A-homology equivalence with torsion —T(y®A) .

Then after gluing/g and/g' together, we get a normal map /: V -> M X I which
has the desired property. •

(4-5) Proof of theorem ( 1 . 10 ) in the general case

Consider the Ranicki-Rothenberg exact sequence

L^(A) ̂  IP(Z/2, Ki(A)/a) -> L^A) ̂  L;(A).

Suppose that cr(/) vanishes in L^(A). Then the surgery invariant of/ is zero
in L^(A) and/is normally cobordant (relative the boundary) to a normal map /i: Vi -^ X

which is a ^'-equivalence. Moreover/i is - -connected.

Let reKi(A) be the torsion of/^. Since <r(/) is zero, there exists an element
^eL^i(A) such that 8u is represented by T. But/i is 2-connected and n^V^ = TT.
Then, by theorem (i. 11) (proved in the case iT== ̂ ', M = V^), there exists a normal
map g^: Wi -^ Vi X I restricting to an isomorphism over V^ X o u 8V-^ x I and such
that a{g) == u. This normal map induces a normal cobordism (relative the boundary)
from/i to a normal map /g : Vg -> X which is a ̂ '-equivalence. Moreover the torsion
of/a is zero in ir(Z/2, Ki(A)/a).

Then, there exists T' e K^A) such that: r(/a) == T' + (— i)^' (mod a).
By lemma (4.4), there exists a normal map g^: W^ -> V^ X I restricting to an

isomorphism over Vg X o u SV^ X I such that g^ is a ^'-equivalence with torsion — T'.
This normal map induces a normal cobordism from /g to /3 : Vg -> X and /3 is a
^'-equivalence with torsion in aCK^(A). Thus, theorem (1.10) is a trivial conse-
quence of the following lemma (proved in § 7):

Lemma (4.6). — Any finite A-complex which is A-acyclic with torsion in a lies in H^.
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(4.7) Proof of theorem (i. n) in the general case

Consider again the Ranicki-Rothenberg exact sequence

IP(Z/2, K,(A)/a) -^(A) ->H(A) -^IP-^, £i(A)/a).

Let (T be an element ofL^(A) and <?' be the image ofoin L^(A). By theorem (i. 11)
(proved in the case iT= ̂ ') there exists a normal map f^ : Wi -^ M X I restricting
to an isomorphism over M X o u ^M X I and such that the surgery obstruction ofj^
is CT' in L^(A). Let V^ be the inverse image of M X i. Since <y' is sent to zero in
IP'^Z/a, £i(A)/a) the torsion of /i: Vi-^ M is congruent to T-^—i^r^moda)
for some T e K-i(A).

Then, by lemma (4.4), we can glue together f^ and a normal map f[ : W^ -̂ - M X I
in order to construct a new normal map f^: Wg -^ M X I such that

(i) f^ and^g have the same invariant in L^(A);
(ii) Yg restricts over M X i to a ^'-equivalence with torsion in a.

By construction, cr(y^)—a is the image of an element of IP(Z/2, K^(A)/a)
represented by r'eK^A). By lemma (4.4), there exists a normal map

/2'-- W^/^Mx^xI

restricting to an isomorphism over /^(M X i) X o u ̂ "^M x i) X I and such that
j '̂ is a ^'-equivalence with torsion — T'. Then, after gluing /g and /g' together, we
get a normal map /: W -> M X I with surgery obstruction a. •

5. Localization in the category of graded differential modules

Consider now the general case: A is a ring and ̂  is an exact class in ^(A). The
^•localization of A is (A, a).

Definition (5.1). — A complex CeiT will be called if^-splittable if there exist,
for any n, an n-dimensional complex C'e^ and an (n—i)-connected morphism
from C' to G.

The class of ^-splittable complexes of IT will be called i^8.

Lemma (5.2). — The classic8 is exact.

Proof. — The class IF8 is clearly stable under simple homotopy equivalence and
under any suspension.

Now let o -> G -> C' -> G" -^ o be a .y-exact sequence of finite A-complexes.
Suppose that C and G' are ^-splittable.
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Let n be an integer. There exists a diagram

o —> C —> C' —> C" —> o

t t
G G'

such that C (respectively C') is an {n— i) -dimensional (respectively n-dimensional)
complex in H^ and the morphism C->C (respectively G'->G') is (n—2)-connected
(respectively (n— i) -connected). The obstructions to factoring the morphism C->C'
through C' are in the groups IP(C, Hp(C', C')) which are all trivial. So we get a
morphism C->C'. It is easy to see that the mapping cone C" of C->C' is an
w-dimensional complex in IT and the induced morphism from C" to G" is {n-—i)-
connected.

Then G" is ̂ -splittable and, since IT8 is stable under simple homotopy equivalence
and suspension, it is easy to prove that i^8 is exact. •

Lemma (5.3). — IT88 ==i^8.

Proof. — The proof is by induction on the length of the complex. Clearly any
complex miT8 of length two is ̂ -splittable. Suppose any complex in IT8 of length <p
is ̂ -splittable, and let CeiT8 be a ̂ -splittable complex of lengthy. The complex C
is n-dimensional and (n— j&)-connected. Since C is ^-splittable, there exist an
(n—p + 2) -dimensional complex G'e^ and an (n—p + i) -connected morphism
C'->G.

The length of C' is 2 and C' lies in IT83. Then the mapping cone of G' ->C
is a complex in IT8 of length p— i. By induction the mapping cone of C' ->G lies
miF88 and GeiT88. •

We will work out a theory of localization in the category of graded differential
modules. Unfortunately, the category ^(A) is too small to do that and we must
consider the category ^(A) of graded differential free A-modules bounded from below.

Notations (5.4). — Denote by ̂  the exact class of finite A-complexes G such
that C ®2G lies in IT and by ̂  the class (^o)8- w^ use IT to denote the class of
complexes C e ̂ (A) such that any morphism from a finite A-complex to C factorizes
through a complex in ^o8,

A morphism / in ^(A) is a ̂ -equivalence if the mapping cone of/ lies in H^.

Definition (5.5). — A complex Ce^A) will be called local if any morphism
from a complex C eiT to C is null homotopic.

A morphism /: C -> C' is a localization ofG if/is a ̂ -equivalence and C' is local.
Clearly, if G has a localization, this localization is unique up to homotopy.
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Proposition (5.6). — Any complex in ^(A) has a localization.

Proof. — Let G e^(A). Suppose C is (n— i)-connected. Let ^ be the set of
moiphisms K->C such that K is a (72—2)-connected complex in iF^. Let 0(C) be
the mapping cone of the morphism © K -> G.

sf
Clearly 0(C) is {n— i) -connected and we can carry on this process:

G -> <D(C) -> (^(C) -> (^(C) -> ...

Denote by E(C) the limit of this system.
The complex ^P+1{C)|^P{C) is a direct sum of complexes in ̂ . Then, by

induction, it is easy to show that (^(C^/G lies in i^. But, by construction, E(G) is
(n— i) -connected and E(G)e^(A). Moreover E(G)/G lies inland G~>E(C) is
a ^-equivalence.

Now, let ^ be the class of complexes G' e ̂ (A) such that any morphism from C'
to E(C) is null homotopic. The class V is stable under homotopy equivalence and
extension. The last problem is to prove that ^ contains ̂ .

Let K e^8. Since any complexe in H^^ is ^^-splittable ((5.3)), there exists a
homotopy j-exact sequence o -> K' -> K -> K" —> o such that K' is a n — i-dimensional
complex in ̂ 8 and K" an (n — 2)-connected complex in i^^. Clearly K/ e %7. Let f
be a morphism from K" to E(C). Since K" is finitely generated, the image offis
contained in some O^G) and/is homotopic to zero in O^^C). Hence K"e^ and
Ke^ too. Then ^ contains the class ̂ .

If Ke^(A), denote by Jf(K) the group [S-'K, E(C)] of homotopy classes of
morphisms from S^K to E(G). The group ^^(K) vanishes for any Ke'3^ and
any i eZ, and we must prove that ^^(K) is zero for any K e^.

If K e^, K has the homotopy type of the limit of a directed system K<, K^ e i^^
and we have a spectral sequence with the following Eg term:

E^=limPj^(K,).

The Eg term is trivial and the spectral sequence converges to J^K). Then
^(K) vanishes and G -^E(C) is a localization of G. •

The localization plays an important role in view of the following propositions:

Proposition (5.7). — Let G and G' be two complexes in ^(A), with dim G = n. Let
G' -> E(C') he a localization of G'. Then, for any morphism f:C-> E(C'), there exist an
n-dimensional complex C e ̂ (A) and a homotopy commutative diagram

G —> G'i i-
G —> E(G')

such that C -> G is a i^-equivalence.
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Proposition (5.8). — Let G and C' be two complexes in ^(A) with dim G ==n. Z<^
G' -^ E(G') ^ a localization ofG'. Let f\G->G be a map such that e of is null homotopic.
Then, there exists a ^-equivalence C -> G such that C e ̂ (A) ^ n-dimensional and the
composite map G -> C -> G' î  ^^// homotopic.

Proof of (5.7). — Suppose e is monic with free cokemel. We have an exact sequence

o -> C' -> E(G') -> K' -> o, K' e^.

Let us construct the homotopy commutative diagram

G ——————> G'i i
C ——————> E(G')

1\ i
K —> L —> K'

in the following way: Since C is finitely generated, the map G -> K' factorizes through
a complex L e^8 and by (5.3), there exist an {n + i)-dimensional complex K e^g
and an n-connected map K -> L. Then there is no obstruction to factorize the map
C->L through K.

Let C be the homotopy kernel of G -> K. It is easy to check that G is w-dimen-
sional and that the map G->E(C') factorizes through C'. •

Proof of (5.8). — Suppose s is epic with kernel K'e^. Since the composite
map C -> G' -> E(C') is null homotopic, f is homotopic to a map f : G ->K'. Then
f factorizes through a complex L e^8. By (5.3), there exist an (n 4- i)-dimensional
complex K e ̂ 8 and an w-connected map K -> L. As before the map G -> L retracts
in K and the homotopy kernel of C -> K has the desired properties. •

6. The ring A

In this section, we will compute the homology groups of the localization of a
complex Ce^(A) in terms of the ring A defined in (1.8).

Let M be a (right) A-module. This module will be said local if any q x p matrix
in S induces an isomorphism Hom^A3, M) —^Hom^A^ M).

Lemma (6.1). — A module M is local if and only ^H^G, M) vanishes for any n e Z
and any C e IT.
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Proof. — Suppose that H"(G, M) vanishes for any n e Z and any G e i^. If u
is a matrix in S, denote by G the i-dimensional complex

... -^o-^A^A^-^o-^...

Then CCSC lies in -)T (see (1.7)) and G is a complex of ^CiT. Hence
H*(C, M) vanishes and M is local.

Conversely, suppose M is local and denote by ^ the class of complexes G e ̂ (A)
such that H*(C, M) = o.

If C is a complex of length two in H^^ G lies in ^ by definition.
If G is a complex in H^^ of length p > 2, there exists a homotopy j-exact sequence

o -> C' -> G -> C" -> o

such that C' and C" are complexes in i^^ of length <p.
By induction, G is in ^ and ^ contains the class if^^.
If C e ̂ , G is the limit of a directed system C» e ')̂ 8 and we have a spectral

sequence with Eg term E^= lim^H^G,, M). The Eg term is zero and the spectral
sequence converges to H*(C, M). Hence H*(C, M) vanishes and the lemma is proved.

Corollary (6.2). — A complex C e^(A) is local if and only ifH.^{C) is local for any
neZ.

Proof. — If K is a complex, denote by e^(K) the group of homotopy classes of
maps S'^K-^C. We have a spectral sequence with Eg term

E^=H^(K,H_,(G))

and this spectral sequence usually converges to ^*(K).
Suppose C is local and let K e i^^ be a complex of length 2 defined by a matrix

u e S. Then the above spectral sequence collapses to exact sequences
o -> H^K, H_,(G)) -^jr^K) -> H^^K, H_,_i(G)) -> o {n == dim K).

Then all the groups H*(K,Hi(G)) vanish and H((C) is local for any ieZ.
Conversely suppose H»(C) is local. Then for any K e ̂ , the Eg term of the

above spectral sequence vanishes and the spectral sequence converges to J^*(K). Hence
this last group vanishes and C is local. •

Lemma (6.3). — Localization respects exact sequences.

Proof. — Let o ->C -^G' —>-C" ->o be a short exact sequence in ^(A). Take
localizations C -^E(C) and C' -^E(C') of G and G'. We get a commutative diagram

o —> G ———> G' —> G" —> o

E(C) -^ E(G)
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Let E(C") be the mapping cone of E(G) -> E(C'). We have a homotopy commu-
tative diagram

G G' G"

E(C) E(C') E(G")

Clearly E(G") is local and the map G"->E(C") is a ^-equivalence. Then
C" ->E(G") is a localization of G" and the result follows.

Lemma (6.4). — Localization respects direct sums.

Proof. — Let G^e^(A) be a class of complexes. Suppose that G» is (n—i)-
connected for any i, and take localizations G^E(G,).

Clearly the mapping cone of © C^-> (B E(Cy lies in IT and, by (6.2)5 the
i i

sum © E(G,) is local. Then the map © G, -> © E(CJ is a localization of © G,. •
t i i i

Now if G is a complex in ^(A), denote by ^(C) the group H^(E(G)) where
G -> E(G) is a localization of G.

If M is a (right) A-module, we will also denote by 0^(M) the group 0^(C) where
C is a free resolution of M. The O^s are functors and we have a natural transfor-
mation T] : M -> Oo(M).

Clearly, if M is local, a resolution of M is local ((6.2)). So T] is bijective and
0^(M) vanishes for i=(=o.

Lemma (6.5). — Let M be an A-module, Then, there is a natural homomorphism

£': M®^o(A)-^$o(M),

such that the following diagram commutes".

M®zA ————> M

1®7]

M^z^A) Oo(M)

Proof. — Let m e M. Denote by 9 : A -^ M the homomorphism a l-> ma. By
setting €(m, x) == Oo((P)(A")5 f01' any A? e ̂ o(A), we get a map e' : M X Oo(A) -^ ^o(M).
Clearly, s'(^, x) is Z-linear on ^ and, since Oo respects direct sums, it is easy to see that
s'(772, x) is Z-linear on m. •
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Lemma (6.6). — The module ^(A) ls a ym? an^ z Educes a homomorphism

e: M^^A^^M).

Proof. — Let m e M and A:,^ e 0(A). Denote by <p : A -> M the map a\->ma
and by 4/ : A -> ̂ (A) t^le n^ap ^ ""̂  ̂ -

We have a commutative diagram

A ^ A TMA

A Oo(A) ^ Oo(M)

^ / A \ °o(^) ,.<%/A \ °S(<P) ,K2/AT\Oo(A) —> 0^(A) —> <^(M)

and the following formulas:

^(9)o<i>oW(jO= ̂ (p)^'^^))= ̂ '(^ ̂ r18'^))
^o?o(?)o+](J/)=^(^(^^^)

whence •y]£'(^ •y3~l£'(^J;)) = £'(s'(^ ^),J;)•

Then the map T]""^' from Oo(A)(x)zoo(A) to ^(A) induces a ring structure
on Oo(A) and 73 is a ring homomorphism from A to ^(A)- Moreover s' induces a
homomorphism s : ̂ [^^^(A) -> <[)o(M)- •

Lemma (6.7).
phism A —^ A.

T^ n^ homomorphism A -> Oo(A) ^ isomorphic to the homomor-

proof. — Let A -> B be a ring homomorphism. The A-module B is local if and
only if any q Xp matrix u e S induces an isomorphism u * : Hom(A^ B) -> Hom^A^, B).
But the matrix of u* is the transpose of u ® B. Then, B is local if and only if, for any
u e S, u ® B is invertible.

Hence, for any matrix u e S, u ® Oo(A) is invertible and we will prove that ^(A)
is universal with respect to this property.

Let A -> B be a ring homomorphism such that u ® B is invertible for any u e S.
Let us choose free resolutions A^ and B^ of A and B and a localization A, -> E(AJ
of A,. Since B is local, there exists an extension E(AJ -> B^ unique up to homotopy.
Then there exists a unique extension Oo(A) "̂  ̂  of A -> B.

2P^
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Consider the following diagram:

A —> <D,(A)i i
B -^> <D,(B)

All the morphisms of this diagram are ring homomorphisms and B ̂  ^o(K) is
an isomorphism. Then the extension Oo(A) -> B is a ring homomorphism. So
A-^Oo(A) satisfies the universal property of A and A-^ Oo(A) is isomorphic to A-^ A.

Zcwwfl (6.8).— For any module M, the morphism e : M ® A -^ Oo(M) ^ a% isomorphism.

Proof. — By lemma (6.4), the functor 0^ respects direct sums and e is an iso-
morphism if M is free. Moreover, by lemma (6.5), O^ is right exact and e is an iso-
morphism for any M. •

Corollary (6.9). — IfM is local, the canonical map M -> M®A is an isomorphism.

Lemma (6.10). — If M is local, Tor^M, A) is trivial.

Proof. — Choose a free module L and an exact sequence

o-^N-^L->M->o.

By lemma (6.4)3 we have an exact sequence

<Di(M) -^ <Do(N) -^ <Do(L) -> ^>o(M) -> o.

If M is local, $i(M) is zero and Oo(N) -> Oo^) is monic. But this map is isomorphic
to the map N ® A - ^ L ® A and its kernel is Tori(M,A). •

Corollary (6.11). — Let Ge^(A) be an (n— i) -connected local complex. Then the
canonical map H,(C) -> H»(C ®A) ^ ^ isomorphism for i<n and an epimorphism for
i = 7i + i •

Proo/. — We have a spectral sequence with E2 term E^ = Torp(H^(C), A) which
converges to H,(C®A). Since G is local, H,(C) is local and, by (6.9) and (6.10),
we have

E^=Toro(H,(C),A)=H,(G),

E^=Tor,(H,(C),A)=o.

The result follows.
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Theorem (6.ia). — Let C and C' ^ two finite A-complexes and suppose that G '®A
is (n—^-connected. Then we have the following properties:

(i) Iftl\C,A) vanishes/or i>n+i and f is a morphism from C®A to G'®A,
there exist a ̂ 'equivalence s : C -> G with dim G == dim G and a morphism g : C -> C'
such that g®A is homotopic to /o(s®A).

(ii) IfH.\C,A) vanishes/or i>n and f is a morphism from G to G' such that f® A
is null homotopic, there exists a ̂ -equivalence e : G -> G, with dim G == dim G such that
foz is null homotopic.

Proof. — Let G' -> E(C') be a localization of C' and consider the following
diagram:

C' ———> G'®A

E(C') —> E(C')®A

If / is a morphism from G ® A to C' ® A, / is defined by an A-homomorphism
/ ' :G^G'®A.

The obstructions to lift the composite map /" : G -> G' ® A ~> E(G') ® A through
E(G') lie in the groups IP(G, H^E(C') ®A, E(G'))). Let Hp be the module
Hp(E(G /)®A,E(C')). Since E(C') is local, Hp is a A-module and is trivial for
p <_ n + i, by (6.11). But H^G, A) vanishes for i > n + i and the localization E(C)
of C is {—n— 2) -connected. Then we have, for p>n-{- i,

IP(G, H,) == H_,(C, H,) = H_,(E(C), H^) = o.

Then^/" lifts through E(G') and, by (5.7), there exist a complex Ce^(A) with
dim C == dim G, a ^-equivalence e : C -> C and a morphism g : C -> G' such that
the following diagram is homotopy commutative:

G —9—> C'

C ^-> E(C')®A

On the other hand, any complex in ̂  of length two is A-acyclic and, by induction,
any complex in ̂  is A-acyclic. This implies that any complex in i^ is A-acyclic
and G' ® A ->• E(G') ® A is a homotopy equivalence.
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Then the following diagram commutes up to homotopy:

C -^ C'•i 1
G -̂ » G'®A

and part (i) of the theorem is proved.
Suppose now f is a morphism from G to C' with dim C == n. If y® A is null

homotopic, the composite map C-> G'-> E(C') ®A is null homotopic and, by
obstruction, the map G ->E(C') is null homotopic. Then we may apply (5.8) and
the theorem is proved.

7. The structure of^

Lemma (7.1). — The class if^^ is the class ITf of A-acyclic complexes in ^(A).

Proof, — If C is a complex in H^Q of length two, it is A-acyclic by definition of A.
Then, by induction, any complex in H^ is A-acyclic.

Conversely, let C e ̂ (A) be a A-acyclic complex and G -> E(C) be a localization
of G. Since C is A-acyclic, E(G) is A-acyclic too. Suppose E(G) is not acyclic and
let H^ be the first non trivial homology group of E(G). The module H^ is local and

H^ H^®A ^ H^E(G) ®A) = o.

Hence E(G) is acyclic and Ge^. Since G is finite, the identity C -> C factorizes
through a complex Ke^8 and we get a split exact sequence

o->C'-->K^G->o.

This implies that C©C' has the simple homotopy type of K and C©G' lies in iT^.
On the other hand, SK has the simple homotopy type of the mapping cone of

the zero map C' -> SG and C' -> SG is a ̂ -equivalence. Then G © SC lies in ̂ .
Now we will prove that G is in H^^ by induction on the length of C.
If the length of G is two, G ® SG is contained in ̂  and G © SC ® SC © S^

lies in i^. But S(G©SG©SC©S2G) is the mapping cone of the zero map
SG © SG © S2G -> SG which is a ^-equivalence. Then G © SG lies in H^ and C
lies in ^o- since the length of G is two, G lies in ̂ .

If the length of G is j^>2, G is n-dimensional and (n—j&)-connected. Since
C © SG is ̂ ^-splittable, there exist an {n—p-\- 2) -dimensional complex Ke'3^ and
an (n—^+ i)-connected morphism/®^ from K to G©SG.

The morphism/©o is clearly (n—p + i) -connected. Let M be the mapping
cone off. The complex M®SM is the mapping cone ofy©S/' and lies in ̂ 8. But
the length of M is p — i. By induction, M lies in ̂  and G lies in ̂  too. •
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(7.2) Proof of the splitting lemma (3.5)

Let G be a complex in H ^ ' and let n be an integer. Since ^ = ̂ , G is
^'-splittable and there exist an ̂ -dimensional complex G' 6 ̂ ' and an {n — i)-connected
morphism G' -> G.

Up to simple homotopy type, we may suppose that the map C,' -> C, is bijective
for i < n — i and is epic with free kernel L^ for i = n — i. Then we have the following
complex in / '̂':

• • • ^ Cw 2 -> G^, C C^ G, ® L, ̂  o -^ ...
Now by setting

L = = ( . . . ->o->G^->o-^. . . )

!/=(.. .->o->L^o^...),

we get a ^'-equivalence

L^I/®(. . .^G^->C^o->.. .) . •

Lemma (7.3). — For ̂  complex Ge^', the complex C®SG lies in IT.

Proof. — If G is A-acyclic, C lies in ^C^o and then G®SGe^. •

(7.4) We use KQr) to denote the class of complexes Ce^' fulfilling the fol-
lowing relation:

G-G'oCeSG'e^.

By (7-3)5 this relation is an equivalence relation and K(^) is a well defined set.
Moreover the direct sum of complexes induces an abelian group structure on K(^).

If G is a A-acyclic complex in ^(A), the class of G in K(^) will be denoted
by 6(G).

Lemma (7.5). — Let o -> G -> G' -> G" -> o be an s-exact sequence of A-acyclic
complexes in ^f(A). Then 6(G') = 6(G) + e(C/').

Proof. — We have an ^-exact sequence
o -> C © SC -> G' C SG ® SG" -> G" ® SG" -^ o

and, by lemma (7.3), G'QSGCSG" is in i^. That proves the lemma.
Now if/is a A-homology equivalence between two finite A-complexes, we will

define 6(/) as the class of the mapping cone of/in K(')F).

Lemma (7.6). — Let /:G->G and ^rC'-^C" he two A-homology equivalences
between finite ^-complexes. Then 6 [g of) = 6 (/) + 6 [g).

196



ON THE OBSTRUCTION GROUP IN HOMOLOGY SURGERY i97

Proof. — We have a short .y-exact sequence between the mapping cones of/, g,
gof@i^. Then the result follows from (7.5).

(7.7) Let f: A19 -^Aq be an isomorphism. Denote also by A the o-dimensional
complex ... ->o->A—^o-^ ... Then/is a morphismfrom AP®A to Aq®A, and,
by (6.12), there exist a ^'-equivalence e : C-^A^ and a map g:C-^Aq such that
/o(e®A) is homotopic to g®A.

Since / is an isomorphism, g is a ^'-equivalence.
Then we define 6(/) as Q{g)—Q(s). By (6.12)3 it is easy to show that 6(/)

does not depend on the choices.

Lemma (7.8). — Let /^-^A^ and g:A(l->AT be two isomorphisms. Then we
have

eQ?o/)=e(/)+6QO.
Proof. — By theorem (6.12), there exists a homotopy commutative diagram in ^(A)

G

J

such that the morphisms are A-homology equivalences and h ® A and A' ® A are homo-
topic to /o (e®A) and g o (e'®A). Then we have

Q{g o/) = 6(A' o h) - 6(e o s) = 6(A') + Q(h) - 6(e) - 6(s)

whence 6(^o/) = 6(A') -e(s) + 6(A) -e(s') = 6(/) + 6(5). •

Theorem (7.9). — The torsion homomorphism s : K(^) -> K^(A)/a is an isomorphism.

Proof. — If x e K^(A)/a is represented by an isomorphism /: AP —>A\ we have
e(6(/)) = T(/) mod a ^ x = s(6(/))

and e is surjective.
Now let 6 be an element of Ker s, represented by a complex G e i^'. Since

s (6) vanishes, r(G ®A) is in a and r(C®A) is the torsion of a complex G'®A where
C' is a A-acyclic complex in IT. Then 6 is represented by G © SG' and the torsion
of (C©SG')®A vanishes. Since I T ' is splittable, we can "split95 G©SG' into
complexes G^-G^' of length 2. And we have

6 = S6(Cy and ST(G, ® A) = o.
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On the other hand, the suspension S2 does not change the invariants 6 and T.
So we may as well suppose that the complexes G, are i or 2-dimensional.

Then there exist two i-dimensional complexes in ̂

X =(...-> o -> A^ -^ A5 -> o ->...)

Y = ( . . . -^o-^A^-^A^->o->. . . )
such that 6 = 6(X) — 6(Y) and r(X ® A) = r(Y ® A).

But the image of r(X®A) = r(/®A) under the boundary K.i(A)-i Ko(Z) is
?"~^ [9]- Then, after stabilization on X and Y, we may suppose

?==?' and ?==?'•

Let y e GL^(A) be the map for (/® A) o (^ ® A) -1. Since r(/® A) — r(^ ® A)
is zero, the class of 9 in K^(A) is in the image of Ki(Z) -> Ki(A). Then, after a per-
mutation on the basis of A3 (in X) and after stabilization on X and Y, we may suppose
that <p lies in the commutator subgroup of GL (A):

y^Dpt^i]-
And we have

6 = 6(X) - 6(Y) = 6(/) - Q{g) == 6(/® A) - Q{g ® A) = 6(9)

whence 6 = £(6(9,) + O(^) - 6(9,) - 6(^)) = o.

This completes the proof.

Corollary (7.10). — The class of A-acyclic complexes in H^ is the class of A-acyclic
complexes G such that the torsion of G®A is in a.

Now we prove lemmas (4.3) and (4.6).
Lemma (4.6) is actually the corollary (7.10).
Let reKi(A). By theorem (7.9), there exists a complex Ge^' such that T

is the torsion of G®A. Since G is splittable ((7.1)), we can split G into A-acyclic
complexes G, of length two and we have T == ST(C, ® A). If G, is (n, + i)-dimensional
and the differential of C, is u^ we have:

T=S(-I)n*T(^®A)

and lemma (4.3) follows.

8. The isomorphism theorem

Suppose now that A is a ring with involution and IT is an exact symmetric class
in ^(A). The ^-localization of A is (A, a) and A->A is a morphism of rings with
involution.
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The class of A-acyclic complexes in ^(A) is denoted by ̂ ' and the class of acyclic
complexes in ^(A) is denoted by ') .̂

We have a canonical map
e: r^A,^')^rjA,^)^L^(A).

In this section, we will prove that s is an isomorphism.

Lemma (8.1). — Let G (respectively S) be a p-dimensional and (p—^-connected complex
in ^(A) (respectively ^(A)) and y: S ->- C®A 6^ a map. Then there exist a p-dimensional
complex S' e ̂ (A), a homotopy equivalence e : S' ® A -> S fl^rf a w^ ^ : S' -> G JwA that
fo s z'j homotopic to g ® A.

Proof. — Let us consider the modules Sy, S ^ as ̂ -dimensional complexes Gy®A,
Gy_i®A. The differential d on S is a map from Cp® A to Gp_i®A. Then, by
theorem (6.12), there exist a ^-dimensional complex Ge^(A), a ^'-equivalence
£ : G ->Gp and a morphism g : C —^C' -^ such that g® A is homotopic to do (£®A).

Let M be the mapping cone of g. The ^'-equivalence £ induces a homotopy
equivalence £ ' :M®A->S. Moreover M is ^-dimensional and C®A is {p—2)-
connected. Then by (6.12), there exist a ^-dimensional complex S'G^(A), a
^'-equivalence £" : S' -^ M and a morphism g : S' -^ C such that /o £' o (£" ® A)
is homotopic to g ® A. The result follows.

Lemma (8.2). — £^ G ̂  a finite A-complex such that H^G, A) vanishes for i> p
and let <peB(G®A) be a bilinear form such that

^°<p^—2p 4- I? fi?9 = o.

TA^ ^r^ î̂ ^ a complex C' e ̂ (A) w^A dim G' == dim G, a if^'-equivalence z: G' -> G
anrf a bilinear form <p'eB(C') J^A ^A^ (/(p' = o fl̂ rf £*(y)"—y'®A ^ a boundary.

Proof. — By theorem (6.12), there exist a complex G' e ̂ (A) with dim G' == dim G,
a ^'-equivalence £ : G' -> G and a morphism g : G' -> G such that <p o (£ ® A) is
homotopic to A® g. Then 9' == sg is the desired form. •

Lemma (8.3). — Let C be a finite A-complex such that H^G, A) vanishes for i> p
and let <peB(G) be a bilinear form such that

()°(f><—2p, flf(p==0.

Then, if 9 ® A ^ a boundary, there exist a complex G' e ̂ (A) wi^A dim G' = dim G and
a i^'-equivalence £ : G' ->C JT^A ^Aa^ s*(9) is a boundary.

Proof. — If 9 00 A is a boundary, < p ® A is null homotopic and, by (6.12)3 there
exist a complex G' e ̂ (A) with dim G' == dim G and a ^'-equivalence £ : G' -> G
such that 9 o £ is null homotopic. Then £*(y) = = £ o c p o £ is a boundary. •
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Theorem (8.4). — The morphism e : r^(A,^r') -^L^(A) is an isomorphism.

Proof. — Suppose n = — 2p or n = — 2^ + i, and let cr e L^(A).
By lemma (3.6), cr is represented by a ̂ -non singular quadratic Tz-complex (G, q)

where G is concentrated in dimension p (and p— i if n is odd).
By lemma (8.1), there exist a ̂ -dimensional complex G' e ̂ (A) and a homotopy

equivalence from G'®A to G. Then cr is represented by (C'®A, /). Since G' is
^-dimensional, y' is the class of CQ ® <po 4- e^ ® <pi and we have

^Po + Pi — 9i = o, fl?9i == o.

By lemma (8.2), we may suppose that <pi has the form ^®A, ^eB(C') and
d^ is zero. Then (^i—$i) ®A is a boundary and, by lemma (8.3), we may suppose
that ^ — ^i ls a boundary fifi;.

Now, cpo+S®A is a cycle and, by (8.2), we may suppose that
<po + S ® A = 9' ® A + df\

where y' is a cycle in B(C') and 73eB(C'®A). Then, we have

CQ ® yo + e! 0 Pi = (^o 0 (?' — S) + ̂  ® k) ® A + af(^ ® 73).

Moreover ^ ® (q/ — ^) + ̂  ® ̂  is a cycle and represents a ̂ '-non singular quadratic
w-form over G'. Then the morphism s is surjective.

Now let <7'er^(A,^') be an element in Ker s. By lemma (3.6), or' is repre-
sented by a ̂ '-non singular quadratic ^-complex (G, q) where C is a complex in ^(A)
concentrated in dimension p (and p— i if n is odd).

Since so-' is zero, (G®A, q®A) is cobordant to zero and, by lemmas (3.7) and
(3.8), there exists a'^-non singular quadratic {n + i)-pair (S -> G®A, u) such that
q is the boundary of u and 5^ vanishes for i 4= p, p — i.

By lemma (8. i), we may suppose that the morphism S -> C ® A is the morphism
^ ® A : S ' ® A - ^ C ® A , where S' is a ^-dimensional complex in ^(A). The quadratic
form ^ is represented by

Co® ^o + ̂ i® +1 + ̂ ® ̂  +i ̂  B(S'),
and we have

^o+^l—^i^g^og®^
— ̂ l + +2 + $2 = g^g ® A

^a==°

where ^o ® 9o + ^i ̂  91 represents y.
By lemma (8.2), we may suppose that

^=^®A+^i , ^2=0

and, after adding to CQ ® ^o + ̂ i0 +1 + ^a ® ^a t^le boundary of ^ ® ̂ , we have
^=^®A, ^=0-

-3^
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Then (g^g—^—^) ®A is a boundary and, by lemma (8.3), we may suppose that

iPi^^+^+^r

Since ^+7]i®A is a cycle, we may suppose, by lemma (8.2), that
^ + ̂ i®A = +;®A + ̂ o, ^ = o,

and, after adding to <?o 0 +o + <?! ® +i + ^2 0 +2 ^e boundary of — ^3. ® So 5 we may
suppose that

+1 + 7]i®A = ^®A, ^ = o.

Then, we have
^o+^^i-^i+^^A^cpo^A.

Let ^ be the form g^og—^[ + 7]i + $1—^1. The bilinear form ^ is a cycle of
degree n and 4'0 A is a boundary. Moreover, by Poincar^ duality, H^S', A) vanishes
for i>—n—p. Then lemma (8.3) holds and we may suppose that

g^og — ̂ i + ̂  + ̂  — ^i == ̂ o.

So ^ o — Y ] o ® A is a cycle and, by (8.2), we may suppose that

^o- ^o®A = ̂ ®A + ̂ -i, ^o == o.

and, after adding to ^o^^o + ^i®^i + ̂ ^^ ^ boundary of ^o^S-i? we may
suppose that

^o-^A^^A.

Now it is easy to check that

^O0 ^0 + ^l® ^1 + ^20 ^2 = [^O0 (^0 + +o) + ^l® (- Yh + +i) + ̂ 20 ̂ 1 0 A

and J[^ ® (7]o + +o) + ̂ i0 (- ̂ i + ̂ i) + ̂ 2 0 +2] = ,?*(^o ® Po + ̂ i0 <Pi)-

Then ^ ® {^Q + +o) + ̂ i0 (— ^i + +1) + ^2(x) +2 represents a ̂ '-non singular quadratic
(72 + i)-form v over S' -> C with boundary y. So CT' is zero and e is injective. •

9. Some results about A and L^(A)

Throughout this section, we assume that A -> B is a ring homomorphism and
P is a subgroup of K^(B).

The class of finite A-complexes C such that G ® B is acyclic with torsion in (B
is denoted by ̂ 3, and the ^-localization of A is denoted by (A, a).

Proposition (9.1). — Let u be a matrix with entries in A. Then, if ^®B is invertible,
u is invertible too.

Proof. — Let u be a matrix with entries in A. If we denote by A the o-dimensional
complex . . . - ^ o ~ > A - > o — ^ . . . , ^ i s a morphism A^ ® A -> A3 ® A and, by theo-

201
26



202 P I E R R E V O G E L

rem (6.12)3 there exist a o-dimensional complex Ce^A), a (^^-equivalence
e : G -> A^ and a morphism ^ : G -> A3 such that ^ ® A is homotopic to u o (e ® A).

Let K be the homotopy kernel of s. Since K is ^-splittable, there exist a
(— i) -dimensional complex K'G^3 and a (—2)-connected morphism /:K'->K.
The composite map K' -^ K -> G is (— 2)-connected. Denote by G' its mapping
cone. The complex G' lies in ̂ p and has the simple homotopy type of a complex C"
such that C^' vanishes for i 4= o, — i . Moreover e and g factorize through G" and
we get two morphisms e' : G" -> A^ and g ' : G" -^ Aq such that g ' 00 A is homotopic
to ^o(s '®A).

But u ® B is invertible, then g ' 0 B is a homotopy equivalence and the mapping
cone of g ' is B-acyclic and lies in^0. Since the length of this mapping cone is 2, g ' is
a (^^-equivalence. Then, by (7.1), g ' is a A-homology equivalence, and u is an
isomorphism. •

(9.2) Proof of theorem ( 1 . 1 3 )

If u is a matrix with entries in A, denote by M(u) the i-dimensional complex
... -^o-^A^A^-^o-^.. .

The set S is the set of matrices u such that (M(^)®SM(^))®B is acyclic with
torsion in p. But M{u) @ SM(t^) is B-acyclic if and only if M(u) is B-acyclic. Moreover
if M.{u) is B-acyclic, we have

T[M(^) 0 B ® SM(^) ® B] == o.

Then S is the set of matrices u such that u ® B is invertible and A -> A is the loca-
lization of A -> B.

Now let T be an element of K^(A). By lemma (4.3), there exists a finite
A-complex C such that G®A is acyclic with torsion T. Then, by lemma (7.10), T lies
in a if and only if G lies in ̂ p. But the torsion of C ® B is the image of T by the
morphism e : A -> B. Hence a is the inverse image of (3 under e.

Now suppose s is onto, and let Ge^3. The complex G ® B is acyclic and the
identity is a homotopy: i = = d o k - { - k o d .

But G ® A - > G ® B is onto and we can lift k in a map k' from C ® A to itself.
The morphism dok' +^' od is invertible after tensorization by B. Then, by (9.1),
d o k ' +A 'o r f is an isomorphism and G®A is acyclic. •

(9-3) Proof of Proposition (1.15)

Let Bo C BI C Bg C ... be subrings of B defined by:

(i) BQ is the image of A -> B;
(ii) for any n>_o, B^_^ is generated by B^ and the inverses of the units ofB contained

in B^.
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Denote by B' the image of A-^B. The subring B' contains A and, by (9.1),
any unit ofB contained in B' is a unit ofB'. Then B' contains all the rings B^. •

As a corollary of (9.1), we have:

Lemma (9.4). — If A -> B is onto, Ki(A) -> Ki(B) is onto.

From now on, we will suppose that A ->• B is a morphism of rings with involution
and that (3 is stable under the involution. Then-)^0 is symetric and A has an involution.
We suppose also that A -> B is onto.

Theorem (9.5). — If n is even, the morphism L^(A) -> L^(B) is epic. If n is odd,
this morphism is monic.

Proof. — By lemma (9.4), the relative group L^(A -> B) does not depend on p.
Then it suffices to prove the theorem in the case (3 = S^(B).

Let n==2p. An element Mel4y(B) is represented by a hermitian (—-1)^
form (H, X, p.) such that the induced map X : H ->• H is an isomorphism. Since H is
free over B and A --> B is epic, there exists a hermitian (— i^-form (H', X', (JL') such that

H' is free over A,
H'®B=H, X ' ® B = X , (JL'®B==(JI .

Then, by lemma (9. i), X' induces an isomorphism from H' to H' and (H', X', (JL') repre-
sents an element yel4p(A) such that e^v)==u.

Let now n==2p+i. An element ^eL^i(A) is represented by an isometry
between two standard kernel K and K'. I fy i s sent to zero in L^+i(B), K = K/ and
5®B is an element of RU^B) (with the notations of [10]).

Consider the following diagram:

i —^ UU(A) —^ TV\A) —> GL(A) —> i

b c

i —> UU(B) —> W(B) —> GL(B) —> i

By lemma (9.1), a and c are surjective. Then b is epic and the morphism
RU^A) -> RU^(B) is epic too. Hence v can be represented by an isometry / such
that/®B is the identity map.

Let H ® ft be the standard kernel K. The isometry / is defined by
f{x,y) = [x + a{x) + b{y),y + c{x) + d{y)), V x e H, y e H

and f l ® B , ^ ® B , < : ® B , f l f ® B vanish. By (9.1), i + a is invertible and, after compo-
sing/with an element of GL(A), we may as well suppose that a is zero.
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Since / is an isometry, it is easy to see that the map g defined by
g{x^)=={x^-c{x))

is an isometry leaving each element of H fixed and g lies in RU^(A). We have
gof^=^+b{^^+d{y)-cob^)).

But i -\-d—cod is invertible and there is an isometry AeRU^A) such that
hogof{x^) ={x+ a\x) + b\y),y).

It is easy to see that a' is zero and hogof lies in RU^A). Therefore V is zero. •

Theorem (9.6). — The relative group l4p+i(A->B) is the group of equivalence classes
of pairs (H, K) where H is a hermitian (— lY-form over A and K a subkernel of H ® B, subject
to the following relation'.

(H, K) is equivalent to (H', K') if there exist two A-kemels Ho and Ho with subkernels So
and So and an isometry (p:H®Ho->H'®Ho such that

cp(K®So®B)=K / ©So®B.

Proof. — By Wall ([io], p. 72)3 Li^^A -> B) is generated by such pairs. More-
over (H, K) and (H', K') represent the same element in Ltp^(A->B) if there exist
two kernels Ho and Ho with subkernels So and So and an isometry

y:H©Ho®-H'-^Ho

such that any automorphism ^ taking SQ®B to <p(K©So®B®K/) lies in RU^B).
But the map RU^A) -> RU^(B) is epic (see the proof of (9.5)). Hence we can lift ^
to an automorphism ^ on Ho.

Let So be the subkernel ^(So). We have an isometry
9 : H ® Ho ® - H' ® H' -> H' ® H^

taking K®So®B®K'©K' to K'©So®B.
On the other hand, the diagonal K is a subkernel of — H' © H' and there exists

an automorphism in RU^(B) taking K0B to K'<9K'. By lifting this automorphism
in RU\A) we get an automorphism / and/(K) is a subkernel of —-H'<9H' such
that ^/(K)®B==K'®K'. Let Ho be the kernel Ho®-H'®H' with subkernel
SO=SO©/(K). Then <p is an isometry taking K ® S Q ® B to K'©So®B. •

Now, consider the following question: Under what conditions is the map s : A -> B
an isomorphism? To study this problem, it is convenient to use the following definitions:

An A-module M is called ^-perfect if M0B is zero; it is called locally ^-perfect
if any element in M is contained in a finitely generated B-perfect submodule.

Theorem (9.7). — Suppose the kernel of A -> B is locally ^-perfect and B is the loca-
lization of Im(A -^ B) with respect to a multiplicative subset of the center. Then the morphism
s : A -> B is an isomorphism.
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Proof. — Let a e Ker(A -^ B) and suppose that a is contained in a finitely generated
B-perfect submodule I. Let us choose a free resolution of I

G 4- A" -> I -> o.

Since I is B-perfect, jf® B is epic and has a section s. But A ->- B is epic and we
can lift s to a morphism ^ : A91 -> GOO A. By (9. i), f®Aog is an isomorphism and
f® A is epic. Hence I is A-perfect and the composite map I -» A -> A is zero. Then
A -> B and A -> A have the same kernel K.

Now it is easy to see that the maps A/K -> B and A/K -> A have the same
universal property and c : A -> B is an isomorphism. •

This theorem is in fact a generalization of a theorem of Hausmann [3] proved
also in [6] and [8], theorem (1.4).

Finally, we will give an example of computation.
Let D^ be the dihedral group of order 2n (n odd) and let ZD^ -^ Z be the

evaluation map. The group D^ is not perfect and not nilpotent, then we cannot use
the techniques of Hausmann or Smith in order to compute the group I\(ZD^->Z).

Theorem (9.8). — We have the isomorphisms

I\(ZD,, -> Z) ̂  I\(Z[Z/2] -> Z) ̂  L;(A)

where A is the pull back of rings

A ———> Z

Z(2)[Z/2] —> Z^)

Proof. — The group D^ is generated by t and T with the following relations:
r= I , T2^!, T^^T.

Let ZD^ -> A be the localization of ZDg^ -> Z and let x and j? be the images
of t and T in A. We have

'(I +T)+I +t+ .. . +tn-l\ ( I-T)(I-^)==O.

But ——— (i + r) + i + t + ... + ̂ l-1 is sent to i in Z and
2

_____ / T -L v\ -L T J- -v -L _L -i^-l(i +j0+i +^+... +^-1

2

is invertible. This implies that
(i-^)(i-;v)=o.
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On the other hand, ZDg^ -» A is a morphism of rings with involution. So we
have:

(i -^)(i -^) = (i -^-^(i -jQ = o => (i ~^)(i -j;) = o.

And .v andj/ commute. Then:
yx =A:~1^=^ =>A:== i.

Hence t is sent to i in A and A is the localization of Z[Z/2] -^Z. But Z[Z/2] is
commutative and A is the localization S-^Z/a] where S is the set of elements
a + AT e Z[Z/2] with a+b==i. Then it is easy to see that A is the subring of Z^[Z/2]
defined by

A == {a + AT, a, i e Z^) and a + & e Z}.

REFERENCES

[i] S. CAPPELL andj. SHANESON, The codimension two placement problem and homology equivalent manifolds,
Ann. of Math. (2), 99 (i974)» PP- 277-348.

[2] P. M. COHN, Inversive localization in noetherian rings, Comm. Pure Appl. Math., 26 (1973), pp. 679-691.
[3] J. C. HAUSMANN, Homological surgery, Ann. of Math. (2), 104 (1976), pp. 573-584.
[4] J. W. MILNOR, Whitehead torsion. Bull. Amer. Math. Soc., 72 (1966), pp. 358-426.
[5] A. RANICKI, The algebraic theory of surgery I, Foundations, Proc. London Math. Soc. (3), 40 (1980), pp. 87-192.
[6] J. R. SMITH, Homology surgery and perfect groups. Topology, 16 (1977), pp. 461-463.
[7] J- R. SMITH, Acyclic localizations. Journal of Pure and Applied Algebra, 12 (1978), pp. 117-127.
[8] P. VOGEL, Un theoreme de Hurewicz homologique. Comment. Math. Helv., 52 (1977), pp. 393-413.
[9] P. VOGEL, Torsion de Whitehead generalisee, C.R.A.S., 290 (1980), pp. 491-493.

[10] C. T. C. WALL, Surgery on compact manifolds. New York and London, Academic Press, 1970.
[i i] C. T. C. WALL, On the axiomatic foundations of the theory ofhermitian forms, Proc. Camb. Phil. Soc., 67 (1970),

pp. 243-250.

University de Nantes,
Institut de Mathdmatiques et d'lnformatique,
2, chemin de la Houssiniere,
44072 Nantes Gedex (France).

Manuscrit refu Ie 20 octobre 1979,
revise Ie 25 mars 1981.

206


