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THE ABUNDANCE OF WILD HYPERBOLIC SETS
AND NON-SMOOTH STABLE SETS FOR DIFFEOMORPHISMS

by SHELDON E. NEWHOUSE (1)

i. A fundamental problem in dynamical systems is to describe the orbit structures
of a large set of diffeomorphisms of a compact manifold M. We write DifP M for the
space ofCY diffeomorphisms ofM with the uniform €7 topology and we assume dim M> i.
The largest open set in DifP M whose orbit structures are well understood in the set
of Q-stable diffeomorphisms. For f in DifP M, a point x in M is non-wandering if for
every neighborhood U of x in M, there is an integer TZ>O so that fn(U)r>^U^0.
The set of non-wandering points off is denoted ^(/), and one says that f is tl-stableif
whenever g is close to f in DifPM, there is a homeomorphism h: O.(f)—^0.{g) so
that gh==hf. One would like to know how the set of ^-stable diffeomorphisms sits
in DifT M.

In an earlier paper [14], we described an open set ofnon fl-stable diffeomorphisms
of the two-dimensional sphere. Later [i6], we showed how to use these mappings
to give diffeomorphisms of any compact manifold with infinitely many periodic sinks.
In fact, we gave residual subsets of open sets of diffeomorphisms each of whose elements
has infinitely many sinks. For each of these diffeomorphisms the closure of the set of
sinks is quite complicated, containing many different closed invariant infinite sets with
dense orbits. The general structure of these sets remains to be described.

The most important property shared by these diffeomorphisms is the persistent
presence of tangencies between the stable and unstable manifolds of an invariant hyper-
bolic set. We will call such a hyperbolic set wild (this will be made precise later). The
main point of this paper is to show that wild hyperbolic sets occur quite frequently, and
hence, that understanding them is of basic importance in the theory of dynamical systems.

Theorem 2. — Let M2 be a compact G00 two-dimensional manifold, and let r^2. Assume
yeDifP M2 has a hyperbolic basic set whose stable and unstable manifolds are tangent at some
point x. Then f may be Cr perturbed into an open set U C DifP M2 so that each g in U has
a wild hyperbolic set near the orbit of x.

Tangencies of the stable and unstable manifolds of hyperbolic basic sets as in
theorem i occur quite naturally in isotopies passing from one diffeomorphism to another.

(1) This research at the IHES was partially supported by the Volkswagen Foundation.
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102 S H E L D O N E . N E W H O U S E

For general examples, we refer to [19], [24], and [20]. More specifically, we note
that recent numerical studies of Lienard's equations with periodic forcing terms show
that such tangencies occur there [12]. Thus, the results of this paper describe some
of the motions governed by those equations.

Theorem i has several interesting ramifications. While it was previously known
that the set ^ of iQ-stable diffeomorphisms was not dense in DifP M, it seemed for a
long time that rather strong conditions were needed to give open sets in DifT M—J^.
In addition to the examples in [14], such open sets were given by Abraham and Smale [i],
Shub [n], and Simon [21]. In each case one began with a special diffeomorphism
in ^ and carefully modified it to move into the complement of the closure of s/.
Theorem i shows that at least on surfaces very mild conditions yield such open sets
after small perturbation.

In another direction, recall that in [i8], [19], a general bifurcation theory is
described for arcs of diffeomorphisms {/}, o<_t<_i, with /o Morse-Smale. Under
the assumptions that at the first bifurcation point b, the limit set of/;, consists of finitely
many orbits and has an equidimensional cycle, it is shown [Theorem (4.1)5 19] that,
generically, given e > o, there exist 8 > o and a set B§ C [b, b + 8) whose Lebesgue
measure is less than so, such that / is structurally stable for t in [b, b +S)—'B^. Also,
it was conjectured that the set of^'s in [b, b + 8) with/ not structurally stable has measure
zero. It follows from theorem i that this conjecture is false. In fact, a generic arc
of C2 diffeomorphisms {/}, o^^i, of M2 containing an equidimensional cycle at
t==to in (o, i) will have the property that there are open intervals (a,, (B,) C (o, i) such
that ^<oc,<(^, P,-^o as ^->005 and/is not ^-stable for a,<^<(B,. This, together
with examples in [19], shows that open sets of non-^-stable diffeomorphisms occur even
near the boundary of the Morse-Smale diffeomorphisms.

Since wild hyperbolic sets occur in many instances, it is important to develop a
structure theory for diffeomorphisms containing them. The first remark in this direction,
which follows from [16] (see [16 a] also), is that there is a residual set ^CDiff^M2)
such that if f^SS and A is a wild hyperbolic set for/ then each point of A is a limit
of infinitely many sinks or sources. In a subsequent paper we will develop a stable
manifold theory and symbolic dynamics for certain non-hyperbolic invariant sets near
wild hyperbolic sets. Here we will be content with showing that wild hyperbolic sets
give rise to non-smooth stable sets.

Recall that if xeM. and d is a topological distance on M, one defines the stable
set of A;, W'M^W^,/), to be the set of points^ in M such that ^(/^/^—o as
n->oo. The unstable set W^,/) is defined to be W8^,/-1).

These sets play a fundamental role in the orbit structure of/ When/satisfies
Axiom A it is known that each stable set is an injectively immersed submanifold of M
which is diffeomorphic to a Euclidean space [9]. This led S. Smale to ask if the stable
sets were smooth manifolds for a residual set of/'s [25]. Our second theorem answers
this question negatively.
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THE ABUNDANCE OF WILD HYPERBOLIC SETS 103

Theorem 2, — Suppose U is an open set in DifT M2, r^2, so that each f in U has a
wild hyperbolic set. Then there is a dense open set U^ C U so that each f in U\ has a point whose
stable set is locally the product of a Cantor set and an interval.

One may ask if there are large sets of diffeomorphisms on any manifold whose
stable sets are locally the product of a Cantor set and a disk whenever they fail to be
smooth manifolds. In particular, is this true for a residual set or a set of full measure [i 7]?
It is also interesting to ask whether the stable set of a point has positive measure if and
only if it contains a periodic sink.

The main results of this paper deal with diffeomorphisms of 2-manifolds. It
seems to us that theorems i and 2 are valid in higher dimensions, if one makes the obvious
change in theorem 2 that the stable sets be locally the product of a Cantor set and a
disk. However, the proofs involve several technical complications and will not be
given here. On the other hand, the reader should notice that the standard method of
embedding a two-disk normally hyperbolically in an n-disk (see [16]) enables one to
get open sets of diffeomorphism with wild hyperbolic sets in any dimension greater than i.

2. In this section and the next one we will prove theorem i. First we give some
definitions.

Recall that if f: M->M is a C^ diffeomorphism of a compact manifold M, r^i,
then a compact /-invariant set A is called hyperbolic if there are a continuous splitting
T^M ̂ E^E^ a Riemann norm | . | on TM, and a constant o<X< i so that for xeA
(1) T,/(E^E;,, T,/(E^)=E^
(2) TJ1E;|<X, |T,/-i|E^|<a.

Here T^./: T^M->T^M is the derivative of/at x. The hyperbolic set is called
a hyperbolic basic set if there is a compact neighborhood U o f A i n M such that fl /^U) ==A

w £ Z

and/1 A has a dense orbit. It can be proved ([2], [15], [4]) that for such a A, the periodic
points of/| A are dense in A. Also, for each xeA, the stable set W5^,/) is a copy
of a Euclidean space Gr injectively immersed in M and tangent to E^ at x [9]. A similar
statement holds for W^,/). For s>o, let

W^)=W^,/)=={^eM: d^xj^e for 7^0},
and let W^)==W^,/)=={^eM : d^xj^)^ for n<,o}.

If £ is small, then W^) and W^A:) are embedded disks in M as defined in the next
paragraph with W^) C W^) and W^) C W5^). We set

W-(A) ̂ W^A,/) = ̂ W^,/),

W^A^W^A./^U^W^,/),

W:(A)-W:(A,/)=^W:(V),

and W^(A)=W^(A,/)=^W^,/).

The symbol 0{x)==0{x,f) will denote the orbit of x.
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104 S H E L D O N E . N E W H O U S E

Given a positive integer cr, let B° be the closed unit ball in the Euclidean space R°.
A CV embedding 9 : B°-^M will be called a Gr a-disk or just a cy-disk. A disk in M
is a (T-disk for some c or a C7 embedding 9 : B8 X B^M where s+u== dim M. Some-
times we will speak of a disk D or (D, 9) in M where D is the set (p(B0) or ^(B'xB^ ;
i.e. the image of 9. Given the disk (p^xB^—M, D^B'xB^, define

B,D = 9(B8 X BB^) and ^D = ^( BB8 x B^)

where ^B° is the boundary of B°. Also, for 9 : B°-.M, y(B°)=D, set aD=9(BB0).
Let (D^ 9") and (D8, cp8) be a G2 z/-disk and a G2 ^-disk in M with s+u=dim M.

Suppose ^(D^-- W) n (D8— @D8). We say that D8 and D" have a non-degenerate tangency
at z if there are C2 coordinates {x,y)={x^, . . ., x^y^ . . .,j^J near ^ with

D 8 ={(^^) :^=o}

and a curve t\->^{t) for ^ in an interval I about o such that:

(1) y(o)=.;
(2) vW6^ for t in I;
(3) o=hy'(o) and T^nTgD" is the one-dimensional subspace of TgM spanned by Y'(°)^
(4) Y"(O)+O and ^'(o^T^nT^.

Here y^o) and Y"(°) are the ^rst an(^ second derivatives of y at o.
A non-degenerate tangency is a point of order one contact of D8 and D" which

is not of order two contact. It is the special case of a quasi-transversal intersection [19]
of two submanifolds with complementary dimensions.

If z is a non-degenerate tangency of D8 and D", then the coordinates

{x,y)={x^ ...,^^, ...,^J

above may actually be chosen so that Y(^)=(^i(^), ' - ' ^ s W ^ i W ? —'^VuW where
x^{t)=t, y^t)==o=Xj{t) for 2^2 and j>,2 and J^)=^2 with a+o. From this
one sees that if D8 and D^ are G2 disks which are C2 near D8 and D" respectively, then
near z, D^nD^ is either empty, a single non-degenerate tangency, or two transversal
intersections.

If NI and N3 are manifolds with dim N^+dim N3== dim M, and 91: Ni->M,
92: Ng-^M are injective immersions, let us agree that 9i(Ni) and 9a(N2) have a non-
degenerate tangency at 2'(=9i(Ni) n 9a(N2) if there are disks D^ C 9i(Ni) and Dg C 92(N)
with such a tangency at z.

Let A be a hyperbolic basis set for a Cr diffeomorphism /: M->M with r>_2
fixed and let U be a compact neighborhood of A with fT/^U) = A. For g Gr near /,
A(^) ==1^1^(11) is a hyperbolic basic set for g and there is a homeomorphism

u
h: A(/)->A(^) with gh==hf. A non-degenerate tangency z ofW^,/} and W8^,/)
for x,yeA will be called a non-degenerate homoclinic tangency for A or f. We will say that
A is a wild hyperbolic set if each g C7' near/has the property that A{g) has a non-degenerate
homoclinic tangency.
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THE ABUNDANCE OF WILD HYPERBOLIC SETS 105

In the remainder of this section and the next section, we assume M == M2 is a
compact two-dimensional manifold. Our goal is to prove theorem i. We will actually
prove a stronger result in the context of one-parameter families.

Let {/Jo^f^i be a C1 curve of CY diffeomorphisms of M, 7-^3. Suppose A^ is
a hyperbolic basic set for/^ varying continuously with t. We say that {/J creates a non-
degenerate tangency of ^(A;) and W^A^) at (to, x) if there are CT curves Y^W^)
and ^CW(At) and a number £o>o so that:

(1) Y?, has a non-degenerate tangency with y^ at x;
(2) for ^-^<^ y?nY^=0;
(3) for ^o<^<^o+£05 T? has two transverse intersections with y^;
(4) yf and y^ vary differentiably with t.

Theorem 3. — With the above notation, suppose {/J creates a non-degenerate tangency
o/W^A^) and W^A^) at (^ ^o) ^/(o ̂  ^ periodic point pe\ of period n^ such that
^^pf?^1' Then, given £>o, there is a ^ with \t^—to <s JMCA ^/< contains a wild
hyperbolic set near the orbit of XQ .

Theorem 3 implies theorem i since any / satisfying the hypothesis of theorem i
can, after approximation, be embedded in a curve {/J which satisfies the hypothesis
of theorem 3 and creates a non-degenerate tangency near the original tangency for /.

Remarks. — i. In a recent paper [8], M. Henon studies numerically the polynomial
mapping f^x^)-=(^+t— ax2, bx) of R2 with ^=1.4, &==o.3, t=i, and finds what
appears to be a strange attractor. The actual existence of that attractor has not been
proved. For certain values of the parameter t, one can verify that the curve {/J has
a hyperbolic saddle fixed point whose stable and unstable manifolds create a non-
degenerate tangency. Thus, there are fs for which /; has infinitely many periodic
sinks, and it may be the case that Henon has merely found a long periodic orbit.

2. In [7], Fatou proved that every rational function on CP^S2 has only finitely
many periodic sinks. Using the mapping in remark i or the related mapping

ft{x,y)={y, —a^—bx+t) with a>o, o<b<i,

one can give real polynomial mappings in two variables with infinitely many sinks.
Having found a ^ where ft^,y) creates a non-degenerate tangency, it is clear that

/^(j^? —ciy^—bx—^-^-t), also creates one for some t near ^ if c>o is small. Thus,
for some ^3, f^==(y, —ay^—bx—^+t^) has infinitely many sinks as a map from R2

Y Zto R2, and, hence, also as a map from C2 to C2. Setting _ ==x, — =y, we can projec-
tivize^ to the map

/(X, Y, Z)=(X2, XZ, -a^-bXY-^+t^X2)

which is a degree 2 polynomial mapping from CP2 to CP2 with infinitely many sinks.
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3. It is frequently expressed that observable physical objects correspond to invariant
sets of positive Lebesgue measure for their dynamical equations. Bowen and Ruelle
have proved that zero-dimensional hyperbolic sets for G2 diffeomorphisms have measure
zero [4] (this is false for C1 diffeomorphisms [5]). Using theorem i and [i6], one
could make even a hyperbolic set A of measure zero " observable " by creating a non-
degenerate tangency of its stable and unstable manifolds. For then, one would get A
as a limit of sinks (assuming A has a periodic point with determinant less than one)
each of which would carry an open set of points permanently near A.

4. It is likely that theorem 3 holds with r==2. However, our proof makes use
of a C1 linearization of/^° near p which is G2 off W^) (resp. W^)) if det Ty/^°<i
(resp. detTp/^°>i) for some small s>o. This uses the assumption that r^g.

Before going to the proof of theorem 3, we need some preliminaries concerning
Cantor sets.

By a Cantor set in R we mean a compact perfect totally disconnected subset F
of R. Given such an F, let Fg be the smallest closed interval containing F. Then

30

we may write F o — F = U U, where cl U,nd U,==0 if i+j and each U,is a bounded
open interval. Let U_2 and U_i be the unbounded components of R—F. We call
the U/s, i^—2, the gaps of F, or, simply, F-gaps. For z^i, set F^==FQ— U. U-.
Thus, FpDFiDFg . . ., each F, is a union of closed intervals, and D F,==F. Call the
sequence {FJ^>o a defining sequence for F. It is determined merely by giving some
enumeration Ug, Ui, . . ., of the bounded gaps ofF. For i^o, ifF^ is the component
of F^ containing U^, then F^°—U^ is the union of two closed intervals c{ and c\ which
lie adjacent to U^- as in figure (2.1).

/"'^

Other components of Fy

FIG. 2. I

In other words, c[ and c\ are the components of F^^ which meet the closure of U^.
We write c{ for the component to the left of U^ and c\ for the component to the right

(f f ^ f r \ \
ofU,. If I is an interval, let { ( I ) be its length. Set r({FJ)=inf min -^,-^)

and set r(F)=sup{r({FJ) : {FJ is a defining sequence for F}. We call r(F) the
thickness of F.

Observe that o^r(F)<oo, and it is an indicator of how thick F is. As an example,
consider the middle a-set F(oc). In this set one starts with a closed interval Fg and
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THE ABUNDANCE OF WILD HYPERBOLIC SETS 107

deletes its middle open interval of length oc.^(Fo) to obtain F^. Having defined F^,
delete the middle open interval of length a.^(c) from each component c of F^ to define
F^i. Let F= n F^. Of course, with this definition, {FJ is not a defining sequence

for F(a) since F^—F^i consists of2^ components for i^ i. That is unimportant. One
T _____ M

easily shows that r(F)==———. Let H(F) be the Hausdorff dimension of a set F. Then,
—I 2a

H(F(a))=—— o g 2- , and hence, T(F(oc))-T(F((B)) if and only if H(F(a))-H(F(p)).
, / l — a \[^Also, for any Cantor set F with r(F)>o, if a is such that r(F)==T(F(a)), then

—lofiT 2
H(F)^H(F(a)). From this we obtain the inequality H(F)^——,——-———.- for any"-(^
such Cantor set F. Thus, H(F)—^i as T(F)->OO. On the other hand, it is easy to
construct examples of Cantor sets F with H(F)==i and r(F) arbitrarily small.

We caution the reader that inclusion of Cantor sets F C G does not necessarily
imply that T(F)^r(G). For example, let n be a positive integer and let

F(^,a)=F(a)u(7z+F(a))

where F(a) is the middle a-set constructed from the unit interval and
n+'F{(x)={n+x: ^eF(a)}.

Then r(F(n, a))==min r(F(a)), —t- . If --^-<T(F(a)), we have F(a)CF(72,a) and
/TV \\-^ fvr \\ n—I n—IT(F(a))>T(F(/z, a)). ^ !

The following simple lemma generalizes lemma (3.5) of [14].

Lemma 4. — Let F and G be Cantor sets in R with F in no G-gap closure and G in no
7-gap closure. If T(F).T(G)>I, then FnG+0. In fact, if {FJ and {GJ are defining
sequences for F and G, respectively, such that T({F^}) .r({GJ)>i, then, for each ^o,
int (F,nG,)=f=0.

Remarks. — i. The gap conditions in lemma 4 are fulfilled if F() and Go properly
overlap that is, ^FoUint Go+0 and BGoUint Fo+0.

2. The word (( closure " in the statement of lemma 4 could be deleted, and one
would still get FnG+0, but the last statement would not necessarily hold. For the
proof of theorem 2, it is this last statement which is important (see section 4).

The main part of the proof of lemma 4 is the

Gap Lemma. — Let F and G be Cantor sets in R with defining sequences {FJ and {GJ.
Suppose that G is in no 7-gap closure, r({FJ) .r({GJ)>i, and c is a component of F, in no
G-gap closure. Then one of the components of ^-nF^i is in no G-gap closure.
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io8 S H E L D O N E . N E W H O U S E

Proof of Gap lemma, — Let U^, U\, . . . be the bounded F-gaps determining the
sequence {FJ and let U^, U^, . . . be the bounded G-gaps determining {GJ.

If ^CF^i, the result is trivial, so we can assume c •==¥'[ is the component of F^
containing the z-th F-gap U,. Let / be the left component of cr\V^^ and ^ be the
right component of <:nF^i. We have

c<- Uy c<-

FIG. 2 . i bis

Assume, by way of contradiction, that / and ^ are in G-gap closures. Let
ULa? U1-! be the unbounded G-gaps. Thus, /CclU^ and ^CclU^ for some
72, m^—2. We may suppose n^m, as the other case is similar.

If n = m, then all of c lies in cl U^ contrary to the hypothesis that c is in no G-gap
closure. Therefore, n<m.

Case 1. n=—2, m==—i. In this case / and c1' are in different unbounded
G-gap closures. This means that GCclU^ contrary to the assumption that G is in
no F-gap closure.

Case 2. n<m, m^o. In this case c7' is in a bounded G-gap closure U^. Since
n<m, the interior of the component G^ of G^ containing U^ misses c1'. Also, int G^
is entirely to the right of/. If G^ is the component of G^—U^ to the left of U^,
then G^ C cl U^. Then we have something like figure 2 .2

i—^-—"-—^—,
I j 1 C^ 1 1 1
^n i i ^AT? » ^wV I m t m \

FIG. 2 . 2

^ ^
But then r({FJ) . r({GJ)<—.—^^i which is a contradiction and the Gap lemma
. i C \-) „ t LJ»-,is proved.

We can now prove lemma 4. Since neither F nor G is in a gap closure of the
other, we have int (FonGo)=t=0. By the gap lemma with c==Fo, we can find a compo-
nent ^ of <:nFi in no G-gap closure. Repeating the process inductively gives us a
decreasing sequence ^, ^, 6:3, . . . of closed intervals so that each ^ is a component
of F^n^_i and ^ is in no G-gap closure. But this means that int^nint G^=t=0 for
all 7%>o. In particular, 0=(=int ^nint G^Cint (F^nGJ as required.

^•56



THE ABUNDANCE OF WILD HYPERBOLIC SETS 109

We will use the notion of thickness of Cantor sets to define some invariants of
a zero-dimensional hyperbolic basic set A for a G2 diffeomorphism f: M^—^M2. Let
A be such a set. All estimates will be with respect to the distance and length functions
induced by a fixed Riemann metric on M adapted to A.

There is a S>o so that each x in A has a neighborhood U in M==M2 so that
UnA is homeomorphic to (W^,/) nA)x(W^,/)nA) ([4] or [23]). It follows that
W^(A,/) is locally the product of a Cantor set and an interval. Let y : ( — i , i)->M
be a C1 curve meeting Vfu{A,f) transversely at a point y=^(o)' Choose an integer
n>o so that j^y^W^A^). Then for s>o small, y is contained in a Cantor set in
(ImageYK-^n/^W^A,/). See figure 2.3.

Image y

FIG. 2.3

Define T^^A)^ inf{supr(F) : F is a Cantor set in (Image yK-s, ̂ ^/^'W^A,/)}.
Clearly, r^jy, y, A) does not depend on the n chosen so that je/^W^A, f).

Proposition 5. — Suppose y and y ^^ ^ above, y^ is another point in W^A,/) and
Yi: (—i, i)->M z'j- ^ G1 wy^ meeting W^A,/) transversely at y\==^\{o)' TA^TZ

^T^-T^YI.A).

Furthermore, ^\y, y, A) ^ independent of the Riemann metric on M.

Proo/'. — Let E^E^^T^M be the continuous splitting given by the definition
of hyperbolicity. Since^is C2 and dim E8 = dim E1* = dim M— i == i, E" and E8 extend
to G1 Ty-invariant line fields E" and E8 on a neighborhood U of A [Theorem (6.4) by 9].
Integrating E^ and E8 locally, we obtain two G1 foliations ^u and ^s on a neighbor-
hood Ui of A such that, for xeU^f^V^fU^ f^^^ and /(^8) C^. Also,
the leaves of ^rM and ^s are G2 curves which vary continuously on compact sets in the
C2 topology.

Let y, Y) J^i? Yi be as in the statement of proposition 5. First suppose that
j^eW^,/). Choose an integer N>o so that y"1^4'1^^!] Cint (UinW^(A,/)) where
D^i]ls t^e interval in 'WU{y,f) fromj^ toj^i. Let V be a neighborhood of [j^i] in^Ui
on which the foliation ̂ ^'^ is trivial. Then there is a G1 diffeomorphism 9 : Y~^YI
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no S H E L D O N E . N E W H O U S E

defined by following the leaves of/^e^, where y is the component ofy in V containing y^
and YI is the component of y^ in V containing y^. Clearly, 9 carries Cantor sets F in
yn^W^A,/) into Cantor sets q)F in YI^W^A,/), and r(F) is near T(<pF) for F
small, by the mean-value theorem and the continuity of the derivative of 9. Thus

(1) <^Y,A)=T(^,^,A) for ^eW^,/).

A second application of the mean-value theorem to/[y shows that

(2) ^Y.A)==T(^,/Y,A).

Now, suppose y, Y?^!? Yi are as above with J^W^,/). It is known (see Smale [23]
or Bowen [4]) that

W^jQ C Gl W^O^)) and W1^) C Gl W^C^j))

where 0(y) and O(j^) denote the orbits ofy andj^i. Choose a sequence of integers
n^<n^<... and a sequence of points ^eW^/^^Oyn/^W^A,/) such that T],->^
as i—>oo.

By (i) and (2), we have T^T],, y, A)==TM(^l, yi, A) for all z. Thus,

T'O^A^T^Y^A).

Reversing the roles ofy andj^i, we conclude that ^(j^, y, A)==T"(^, yi? A).
To begin the proof of the second statement of proposition 5, let y and y be as in

the definition of T^J/, y, A), and let g^ and g^ be two Riemann metrics on M.
Let

^W-^YW^'W)^
and ^^)=^(Y'^,y'(^))*

^Ybe the associated length functions of y '(^=—(^). Then (X.M) and aJ^) are nowhere
at

zero differentiable functions of t (we assume ^ is close to o). Given a G1 curve p, let
^(p) and /g(p) denotes the lengths of p induced by g-^ and ^3, respectively. For e>o
small, and —£<a<^i<&<£, we have

^(y I [^ ^]) ==f1 ai(f) A = a )̂ (^- a),

^(Yl^i, ̂ )=ai(^)^-^), ^(Ylk ^])=a2(^(^-a),

and ^(Tl^i^])-^^)^-^)

where ^ and ^ are in (a, ^), and ^ and t'^ are in (&^, &).
Thus,

W\b^b'\) ̂ Wb-b^

^i(Yl[a,^i]) ai(fi)(^-<z)
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is near

^(Y|[^])^a^^-^)
^(rik^]) a^)(^-^)

r 1 1 • ^(^ anf^')
for c small, since ̂  and ̂  are near i. Now the definition of T«(^ y, A) implies

that it is the same for g^ and g^.

In view of proposition 5, we may define T"(A)=T"(A,/)=T''(J>', y, A) for anyy
mW»(A,/) and any Ci curve y: (-1, i)->M meeting W"(A,/) transversely at y=v(o)
Similarly, we set ^(A)=^(A,f)=^A,f-^. We call

T"(A) the unstable thickness of A, and

T^A) the stable thickness of A.

Observe that if A^ and Ag are two hyperbolic zero-dimensional basic sets for
/:M2->M2, and A^A^, then ^"(A^T1^) and T-^A^T^).

Proposition 6. — i) If A is an infinite zero-dimensional hyperbolic basic set for a G2 diffeo-
morphism f: M2-^2, then O<T"(A)<OO.

2) 7/',§r ^ C2 near f, then T"(A(^)) ^ near T"(A(/)).

Proo/: — We will prove that T"(A)>O by finding a special basic set A^CA, and
a number S>o, such that T"(A^)>S.

Let? be a periodic point of A of period n^ i. Since A is infinite, p has transversal
homochmc points. By a theorem due to Smale [22], there are a disk DCM and
integers n,, n,>o such that if A,=^f-"""(D}, then^A,CA. and A, is a hyperbolic

basic set for/^ on which/"."' is topologically conjugate to a full shift automorphism
on »3 symbols. We will find a number S>o so that T"(Aa,/""'')>S. Then we set
^o^L,.,/̂ 2' and we will have T"(AI,/)>S as required.

The shift automorphism just mentioned is defined as follows. Let 2,, =={ i, ..., n ̂
be the set of mappings from the integers Z into {i, .. ., n,} with the" compact op'en
topology. Denote the elements of ̂  by a=(a^, and let <T:S,,->5^ be defined
by CT(a).=a^. The mapping a is called the full shift automorphism on ̂  symbols

Now, D may be chosen so that if (/"•».D) nD = A,u.. . uA, is the decomposition
of (/"'"' D)nD into connected components, then:

(1) r==»3;
(2) each A, is diffeomorphic to a disk and M;CW"(A2,/nln')uW8(A,> /'"'"')•
(3) the map h: S^A, defined by A(fl)=n/-^(A,') is a homeomorphism such

that h<!=fn'n'h. .ez -

We note that although Smale's original paper [22] proved this under the assumption
that /"• was linearizable near p, the result without this assumption may be obtained
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by combining the techniques of [22] with some well-known estimates as in [15], [13]?
or [16 a].

Let ^-/nln2.
We may label the A^s such that

p=fi(^a) where ^1=1 for 2-11 ^

Let Fo be the connected component ofp in W8^, g) nD. Then F = FoUA^ is a Cantor
set, and we will get a lower bound on its thickness r(F). First, we construct a defining
sequence for F. Let F1, .... F^ be the components of FoH^(D). For each F\ let
F'11, ....F1'^ be the components of F'n^D). Continuing, once F^ '^ ' - ' - 'u has been
defined with i<i^<_n^, let {F^---'^}^^ be the components of F^-'^n^^D.
Now let U\, . . ., U^ _i be the components of Fo— U F^, and once U^ ^ has

- 3

. , , . . . ,1

been defined with i^.^^—i, let U, - ^ be the components of
pii,...,^_ (J pi'i,...,^,j

l^J-^3

between F^'-'^^andF^-'1^^1. Then, U,, . . ., U^_i, U^,, U^, . . . ,U^_i , . . .
is a list of the gaps of F. We use it to get our defining sequence for F. To estimate
the thickness of this defining sequence, we let

I=U,^,^ and J=F1——^-^

where j==4 or ^ + l a n d k>_i. Let p(^), a<_s<^b, be a parametrization of .^(luj)
by arc length, where we suppose that p^)^"1^) for a<_s<_b^<b and ^{s)eg~l(l}
for b^<_s<_b.

Then

^(J) _ClTpMg(P'(J))l^_ ITpMg(P'fa))l^g"l(J))

W ~ ̂ |T^(p'M)|& - [^(^(p'^)) ^(1))

where a<^<6i and b^<s^<b.
Set ^_i==|Tp(^(p'(^))| and P^i= ^^(p'^))]. Repeating this construc-

tion for negative powers ^"'I, g~^, we get

^J)_^-l•^-2..•^(rfc+lJ)

^(i) (^.(^.•.(vor^1!)
where a,=|T^(^), iB^|T^(^)|, ^e^-U -̂̂ 1, y, is a unit vector in T^-^J,
and ^/ is a unit vector in Tg'.^"^!.

In the following, we let ^, ^39 • • • be constants independent o fz and k which are
defined by the first sentence or equation in which they appear. Occasionally we will
explicitly define them.
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Clearly, |jBj^^>o where q= inf |T^(y)|. If ^ is the infimum of the
lengths of the components of W8^, g) in ^(D)nD for zeA^, and c^ is the supremum
of the lengths of the components of W5^, g) in D—^(D) for ^eAg, then

^^\J)>f2

{{g-^i)-c,
Since A^ is hyperbolic for g, there is a constant o<X<i so that

/'(^-^luJ^X'-^-^+^luJ^^diamD for all i<^-i.

Now

I P.- ̂  I ̂  1 1 T^( '̂) | -1 T,;.̂ ) 1 1 + H T (̂..) | - T^(y.) 1 1
^(^6+cW(IuD)^1 for i^-^-i

where C4=sup|T^|, c^ is an upper bound on the curvatures of W^A^nD, and Cg
zeD

depends on the G2 size of g.

Thus, we get that k^^a-i <-C77——. Since " H x t =kYlti-^-
,-i^. i°l P. -^(i-^) -^. -i\ P.

we

have that II -*>Cs>o for all k. Thus
...i(3. 8

t^ "- T(F)>^>0•
This implies that if we put S==^2 then r^A^/pS, and hence that T"(A)>S.

^3

To prove that T^A^OO, we need to go more deeply into the structure of zero-
dimensional basic sets on 2-manifolds. From Hirsch and Pugh [9], we know that there
is an £0^° ^ch tnat f011 o<s<£o, W^(^) and W^(^) are diffeomorphic to closed
intervals, and there is a 8(e)>o so that Wg^) nW^) is a single point whenever
^^)<8(c).

Fix c = = £ o - For ^(^J;)<8(£), let [^^]=W,M(^)nW^^). By Smale [23], we
know that if xeA and s^, e^>o are positive numbers with s^8(£)/2, then the map
9^,^ (W^(^)nA)x(W^MnA)-^A denned by P^^,^^!,^)-^!.^] is a homeo-
morphism onto a neighborhood of x in A. Since A is zero-dimensional, we may find
a finite set of points ^5 . . ., x^ in A and small numbers {s^i, z^}, i^<^N, so that
if we set B, = Image cp .̂ ,̂  ^ ,^, then:

(1) each B^ is an open and closed subset of A;

(2) A=^B,;

(3) B,nB,==0 for i+j;
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(4) for x andjy in B,, the map 9^ : W^x) nB,-.W^) nB, defined by <p^(^i) = [7^]
for J^W^) nB^ is a homeomorphism varying continuously with A: and y.

Now for each i, let C, be the smallest closed interval in W^(^) containing
W^)nB, and let D, be the smallest closed interval in W^(^) containing W^)nB^.

For xeG^ let C(,?c, J^) be the smallest closed interval in ^rM containing x and
J^nW^aD,) where W^(BD,)= U W^) and let B,= U C(^^). Then each B,

is diffeomorphic to G,xD,, and B,nB^==0 for z=|=j. Also, AC U B,. Here ^ is
the foliation extending W^A) defined in the proof of proposition 5.

Now consider the Cantor set F=GinA. We know by Proposition 5 that
TM(A)==TM(A:l, GI, A). Let o<X<i be as in the definition of hyperbolicity of A, and
let £i>o be such that ^s^mm {dist(B,, B.)}. Let F1, F2, . . . be a sequence of Cantor

i4=J

sets in F such that F1-^ and T(F^) ->^(x^ G^, A) as i^oo. Let {F}}^o be a

defining sequence for F' such that T({FJ})>T(F')—— . We will find a number T>oi
such that T({F}})<T for all i. This will prove that -uu(A)=^u{x^, C^ A)<T.

Let us first prove the following auxiliary fact:
(5) Suppose G is a Cantor set whose convex hull is Go and let diam G()>V>O.

There is a number T(^, G)>o so that any Cantor set HC G with diam H.>v is such
that r(H)<T(v,G).

Choose a finite set {U\, . . .3 U^} of bounded gaps of G such that if x, jyeG, x<iy^
and y—x>v, then some U^ is in {x,y). Let

Yi= max {dist(U,, ^Gg)}, and let yg^ mln ^U,-
l^l^W 1 <t<W

If H C G is such that diamH>v, we may choose points x,j^eH with x<y and
y—x>^. Let HQ be the smallest closed interval containing H. If U^ is a gap of G
in {x,y), then there is some gap V of H such that VDU^.. Then, clearly

^ ̂ ^ ^o) . dist(U^aGo). YIT(H)^—TV—^—nj,——^
and this proves (5).

Now, for each z, let ^==inf{ j : diam^-^F^s^}. Dropping the first few F^s if
necessary and relabeling, we may assume k^i for all z. Since diam/~A;i+lF^<£l,
we have diam/'^'F'O^'"1^, so there is a j\e{i, .. ., N} such that /"^'F'CBj.. By (4)
and (5)3 there is a real number T^>o so that if G is a Cantor set in W^(A:)nB^ for
some xe^ and some i^'^N, and diamG>£i, then r(G)<Ti. Thus, for all i,
^y-^P)<T^ and hence

^/-^{F^T,.
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THE ABUNDANCE OF WILD HYPERBOLIC SETS 115

We wish to estimate T({FJ'}). For any j^i and any i, let 73 = ̂ ==F]—F\^ and
let ^^^-j be a component of FJ^i adjacent to Y]. Then let ^^/"^ and

•y]o==/~^- We may choose S and T] so that ~^<Ti since ^/-^'{F^Ti. Now
'(^o)

. ^)
-({FJ})^

and as in the proof of the fact that T^A^O, we have

^) /n ̂ ^o) , i. ,^ . r IT. .,^s^te where '^^'^l
and IPv—^l^^^ f01' ^1 v^1 where ^ is a constant depending on the diameters
of the B^, the C1 and G2 sizes of/, and on the curvatures of the curves Vf^x) for xeA.
Moreover

(6) there are constants c^, c^, c^>o, so that
00

o<c < T r ' ^ ^"(w-^)
O^^Q^ 11 Q ——I'll"

^iPv

for any sequences of numbers a^, (^ with | (Bj^ -- inf ^ | T^f(v) \ and | p^— o^ [ ̂ s^X^

Thus, T^F^^^^^^^-^Ti, and we may take T^q^^-^Ti.

We now prove Prop. (6.2).
It is clear from the preceding proof that there is a neighborhood U^ of/in Diff^M2)

so that if ^eUi, then S^^AQ^^T. We will assume S<i<T.
For g near /, all of the structures defined for / may be defined for g so that they

vary continuously with g in the natural topologies. We denote the ^-structures by
A(^), y\g\ W, etc.

Let Ug C Ui be a neighborhood of/in Diff^M2) so that for g in Ug, xe U B,(g),

(7) |T^|T^te)|<X

and
(8) X-isi<m^n{dist(B,te),B,te))}.

Let ^ be near/ and let h: A(/)->A(^) be the homeomorphism so that gh==hf.
If xeA{f) and ICW^A:,/) is a closed interval with ^ICA(/)5 then there is an
interval I{g) CW^hx, g) such that 8l{g)==h{^I).

Let o<s;4<i be arbitrary. Choose o<£2<- small enough so that

^ ^-'-^^
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Then choose an integer Vo^0 so tnat ^or any sequences 0^3 (B^ as in (6), we have

i-£,< n ^<i-\-e.'10 a) 23
^Vo(B,

(10 &) (sup|T,/-i|).^s,<X-^i.

Now, let £3>o be small enough so that

i i :i-^s.

Finally, we pick a neighborhood U^(e^) of fin Ug so that if g^U^(^), xeA(f),
X^s S

intervals in W^,/) with min(^I, fj)>_———1—'-, then
X^s S

and I and J are intervals in W^A:,/) with min^I, f])>_———l—• - , then
I + 2T 2I + 2T 2

W ^J^))|.<e3>^(j) ^(1(5))12

and

(13) for any k^o and _yeA(g), if ^ and 2g are in ^W^jy, g) and ^ and Og are unit
tangent vectors with v^sT^g^V^^^i, g) and ^eT^^W^jy, ^), then

T,,̂ ( .̂) | > ̂  ̂ mf ^ ^ | T,/(.) |, and 1 1 T^v, \ - T^v, \ \ < 2 .̂

Nowsuppose xeA(f) andF l(y), Fa(y), . . . is a sequence of Cantor sets in W^(x,y)
converging to x so that T(F'(/)) -^i:"(x, W^(^/), A(/))=T"(A(/)) as ?->oo. Let
I^(y), Ia(y), .. . and Ji(./), Jz(f), . . . be sequences of intervals in W^(x,y) so that:

(14) ]i{f) is a gap in F{f) and I,(y) is an adjacent component ofj,(y) in some
denning sequence of F{f);

(W)} T"(A(/)) as i-^oo;(15)

(16)

(17)

/(J.(/))

S<^<T ....

Suppose g^V^^), We will prove

^W}
^(I-£,)T"(A(/)).lim inf

i-> oo
Wg))

Once (17) is proved, it will follow that T"(A(^))>(i—£4)T"(A(/)) since

f{W)T"(Ate))^lim sup T(AP(/))^lim sup
Wg))
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Then, reversing the roles of f and g and repeating the argument will give that
T^AC/))^!-^)^^)) for geV^,).

But then (I—£4)TM(A(/))^TM(A(^))^(I—£4)-1TM(A(/)) , and as £4 was arbitrary, we
will have proved prop. (6.2).

We now prove (17).

I X^S }
For each i, let ^=inf j^_o : f^f"3]^/)^——^—L We assume each A^i.

I+2TJ

As before, we have

/ „ . ^w^_k'+-^~l^f) {{f-^j}
[ ' Wf)) ——o Pv(/) ' tU-^f)

and

f i8^ ^^iT10^ ^g""'1-^
1 / /(J.^) -"o W '^g-^g}'

Because of (13), the numbers <x.^(f), ̂ {f), «-v{§)i ^d Pv(^) ̂  satisfy the conditions
in (6).

By ( r o a ) , (16), ( i8a) and the fact that S3<-, we have

s /_(/^v)
^nf^M)^-

Thus, t(f-kW^3if))=f{f~kiU)+f(f~kiJif)

^(aT+i)^/-^./)^^1^
by the definition of A;, and (10 b).

This means that there is some j, such that f~k'{'iif^>Jif)^-^j•. Also

'™>-^>^
and /(/-•• V)2:S/(/-,J../)2^-.S.2 1+21 2

Since (/-<E•T./)(^=r<;•I.(,?), and {f-kiM){g)=g-ktJ^{g), (12) gives us

^(/-'•V) /Or^) < £q for each z.
^(/-'•J./) ^-\J^) I 3

^ -. /' /,\

Hence 'It(g) -^-^ n avte)

' W t{g-^g) ̂  ̂ (g)

•>f J^fW \
^-^^JJ)-'3

^(I-^)((I+^)-1^V-£3V
\ "J iJ I

36.5



n8 S H E L D O N E . N E W H O U S E

This implies that

limmf^(I-s,)((I+c,)-lTM(A(/))-s3).

By the choices of £3 and £3, we have

^l-^<^-tS<ei^A(f))
2 2

<(:l——£2-(I-^TM(A(/))
V+S2 /

T^/))-^-^^/)),
^+^

SO (I-^)TM(A(/))<——————2TM(A(/))-S3(I-S,)v1^-^/
< lim inf1-^
- ^->00 J^

which is (17).

This completes the proof of Proposition 6.

We now proceed to prove theorem 3. We begin by stating several lemmas whose
proofs will be deferred to section 5.

The first lemma is the main step in the proof of theorem 3.

Lemma 7. — Suppose {/J and p=p^ ^e as in the statement of theorem 3. Given e>o,
there is a t^ with \t^—t^\<z such thatf^ has two infinite hyperbolic basic sets Ai(^) and Ag(^)
near 0{Xo) satisfying:

(1) A^Ai(^);
(2) W^A^i)) has transverse intersections with W^Ag^i)), and W^Ag^)) has transverse

intersections with W^A^i));
(3) there is a point x^ near XQ such that [f^ creates a non-degenerate tangency of W^Ag^))

andW{A^)) at (^, ̂ );
(4) T^A^.T^A^PI.

In lemma 7, p^ refers to the unique periodic point off^ near p=pt, for ^ near ^.

Lemma 8. — Suppose A^ and Ag are two hyperbolic basic sets for f: M2->M2 such that
W"(Ai) meets WS(A2) transversely at z^ W"(A2) meets WS(Al) transversely at z^ and
{^i? -2'2}n(^LluA2)=^• Then there is a hyperbolic basic set ̂  for f such that AiUA2CA3.
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Remark, — Lemma 8 should be thought of as a two-dimensional generalization
ofSmale's homoclinic point theorem [22]. In that theorem, A^==A^ is a single hyper-
bolic periodic orbit. The lemma remains true for a C1 diffeomorphism f: M^-M,
dim M arbitrary, provided one assumes dim Ai==dim A^==o. Instead of the Markov
coverings we use in our proof of lemma 8 (which do not always exist in higher dimensions),
one uses the semi-invariant disk families of [10] in a careful way.

Lemma 9. — Suppose y^ and Ya ̂  two C2 curves having a non-degenerate tangency at a
point XQ in M. Let e^, e^g be two families of G2 curves such that:

(1 ) î and ̂  are filiations of a neighborhood of XQ ;
(2) Y^e^, y^;
(3) f^ l = l) 2, the map x^T^^ is a C1 map for x near XQ where T^J^ is the unit tangent
vector to the leaf e^p at x.

Then., ̂  and ̂  are tangent near XQ along a C1 curve yG^i? ^2) ̂ ^ ^ transverse to yi and yg
at XQ. Moreover, if ̂  and ̂  are two filiations whose unit tangent fields are C1 close to those
of ̂ i and .̂ a, respectively, then y îS e^1) is cl close to T(^L J^2)•

Proof of theorem 3. — Let ^, Ai(^) and Ag(^) be as in lemma 7. By lemma 8,
there is a hyperbolic basic set A^) so that A^) DAi^uAg^). Then, {/J creates
a non-degenerate tangency of W^Ag^)) and ^^^3^)) at (^, ^i), and

TM(A3^)).TS(A3^))>I.

Let E^E^^T^^M be the continuous splitting of T^jM given in the
definition of hyperbolicity. As in the proof of proposition 5, we may use theorem (6.4 b)
of [9] to give two ^-invariant foliations ^(t), ^(t) on U which extend W"^^)),
WS(A3(^) for t near ^. Choose integers n^<o<n^ such that f^x-^eU for n<_n^,
and /^i)eU for %^^. Let ^{t)=f^nl^'UW and ^(^=/^n2^s(^• Then,
near ^i, ^1(̂ 1) and <^a(^i) satisfy the hypotheses of lemma 9. So we get a G1 curve
TG^i^i)?^^!))^^!) through x^ transverse to e^i^i) and ^2^1) along which
^1(̂ 1) and ^2(^1) are tangent. Since ^(A^)) .^^A^))>i, there are Cantor
sets FO^CW^^nY^i) and G^JCW^^nY^i) very near A:i with

T(F(^).T(G(^))>I.

Also, all of these objects are defined for t near ^ and vary nicely with t. In particular,
r(F(^)) and r(G(^)) vary continuously with t. This can be seen as follows. First
project F(^) along the leaves of^(^) into some W^(^,yi)nA3^) with z^eA^t), and
project G(^) along the leaves of ^(t) into some ^^[^f^A^t) with ^eA3^).
Gall the projected Gantor sets F(^) and G(^). Using G2 continuous dependence of
^(^?Yi) ^d W^(^,/^) on t, and the arguments in the proof of proposition 6, one
sees that r(F(^)) and r(G(^)) are continuous in t. Projecting back from F(^), G{t) to F(^),
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G(t) gives the continuity ofr(F(^)) and r(G(^)). Clearly, there are fs near ^ for which
Fo(^) and Go(^) properly overlap. Again the arguments of the proof of proposition 6
will show that such fs may be found so that r(F(^)) .T(G(^))>I. Applying lemma 4
to such a t will give that A^(t) is a wild hyperbolic set, and complete the proof of theorem 3.

There is a slight subtlety here. The sets F(^) and G(^) are very small, and a
perturbation to F(^) and G{t) sufficient to make F^) and Go{t) properly overlap might
destroy the thickness conditions. To insure this does not happen, one proceeds as
follows. Let Bg(A:i) denote the ball of radius s about ^i. Pick 8>o so that

TM(A3(^).TS(A3(^)>I+28.

Then choose 2:1 >o small enough so that
(I-^)4((i_^)4(,_^_^>^^

Now, fix integers ^, n^>o and a small z^>o so that the next property holds. If
\t—^i[<£2 ^d F ^d G are Cantor sets such that:

a) FCW^^ny^nB^),

A ) ^TM(A3(^
^ ^(^———2———.

<:; GCWS(A3(^)nY(^nB^(^) and

„ .^J^ld) r(G)>——^——,

rfF) rfG) rf f"^1^) rf f^G)
then , , —— f- .—, and —.—-— are closer to i than 2:1. Upper bars here mean

T(-r) ^(G) T(^) T(G)
projection along leaves of ^i(^) and ^a(^)- Once ^i, 723, and 2:3 are fixed, take
F^CW^^nY^nBJ^) and G(^)C WS(A3(^)ny(^nB^(^) so that:

^3(^1)) ^(A3(^i))T(F(^)>-^^, ,(G(^))>-4^,

and T(F(^)).T(G(^))>I+S.

Finally, pick ^<^ so that | ^—^i l^Ss implies

T(/,-"•F(<))•^/,n•G^)>T(y;-F(^)).T(/,n'G(^))-S,.

Then, for \t—t^\<^z^ with Fo(^) and Go(^) properly overlapping, we also have

T(F(f)).T(G(<))^(I-£l)^(/,-"lF(<))•T(/,"^G(<))

^(I-£l)4(T(/,7"lF^)).T(y;"'G(^))-^)
^(i-e^((i-s^T(F^)).T(G(^))-£i)

>(l-^((l-Si)*(l+S)-ei)>l+J.
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5. This section contains the proofs of lemmas 7, 8 and 9.

Proof of lemma 7. — Fix s>o small. Let us first show that:

(i) there are a v with Iv-^oK8 ^d an integer o<^k<rto such that {/} creates a
non-degenerate tangency of W{p,) and W^/^J at a point (v, ^) with the orbit
of x^ passing near XQ.

There is nothing to prove if \ reduces to the single orbit O(j^), so we may assume
that A( is infinite for t near IQ.

From the local product structure of/JA^ and the fact that/JA< has a dense
orbit, it follows that W^OQ^)) is dense in W^A^) and W^OQ^)) is dense in W^)
where O(^) is the orbit of A. Let x, ye\ be such that ^^(^/J^W^/J.
For ^ near ^, ^A^, let ^==A^ where ^ : A^-^A^ is the unique homeomorphism
near the inclusion such that f^h^hj^ By continuous dependence on compact sets
ofW^,/) and W8^,/) for zeAf and ^ near ^, we may choose S>o such that if
^eW|(^,/JnA^ and ^W^,/JnA^, then there are a t{z^ ^) and a point
^i, ^a) with |^i, ^a)—-^o|<£ such that {/} creates a non-degenerate tangency of
^^ft) and W8^,/) at {t{z^ ^), ^(^, ^)). Pick integers o^^<^<^ such
that W^f^f^) meets W^/J and W^/^Ao,/,) meets W^^/J. Let
^eW^/^^^^nW^^/J and let ^^W^/^^/JnW^j;,^). Since {/J creates
a non-degenerate tangency of W^,^) and W^,^) at (^,, ^), ̂ , ^)), it also
creates one of WV,-^,/,) and ^{fr^^ft) at (v, ^) with v=^i, ^) and
•̂  ̂ /v" n2 (^ (^i, ^g)). This proves (i).

To prove lemma 7, we wish to produce hyperbolic sets Ai(^), Ag(^) near O(^)
for some ^ with | ^ — v [ < £ satisfying (7.i)-(7.4).

We will assume det T^/^°<i as the other case follows replacing {/J by {/F1}9

Since there is a ^ near v for which W8^, /^) has transverse intersections with W^//^, y;)
near ^, it follows from Smale's homoclinic point theorem (or the generalization in
lemma 8 below) that for such a t there is an infinite hyperbolic basic set A^) near O(^)
with 0{pt) C Ai^). Also, we may assume A^t) small enough so that there are points ̂ , ̂
not in A^t) such that W^) meets W^A^)) transversely at ^ and W8^) meets
WM(A^(^) transversely at ^. Further, an analysis of how hyperbolic sets near 0(x)
are created as t moves near v shows that we may choose a t near v so that W8^,^)
and W^/^,/^) are tangent near ^ and/^ has an infinite hyperbolic set A^t) as just
described. (For more information on the creation of hyperbolic sets near a tangency,
see [19].) Relabeling, we assume that {/J creates a non-degenerate tangency at (v, A:J
ofW'CA,) and W^/^), and/,, has an infinite hyperbolic basic set Ai(v) so that W^A^v))
has a transverse intersection ^ with W^J, W^A^v)) has a transverse intersection ^
with W8^) and {^, ^}nAi(v)==0. For convenience of notation in case 7Zo=i below,
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we assume i<_k<_no. By proposition (6.1), T^A^v))^. Let T^ST^A^v))'"1.
We will show there are t ' s near v so that^ has a basic set Ag(^) near O(^) satisfying (7.2)
and (7.3) and having T^A^)) bigger than T. Since T^A^)) is near r^A^v)) for t
near v (Proposition (6.2)), we will thus also obtain (7.4).

Let {u, v) be coordinates on R2. Choose coordinates (U, 9) about p^ so that
9 : U—^R2 is a Gr diffeomorphism such that

and

P-^-o^CW^/J, y-^-o^CW^/J, yC^-^o),

{/vnoj^),/v-noj-^)}CU for ^o

where ^o is the period of ^. Suppose ^==(^0,0) and Vy"^^)^0? ^o)- Since the
tangency at ^ is non-degenerate, we have, for («, v) in some small neighborhood V
of (o, Vo), (pj^q)-1^, v)={g^(u, v),g^{u, v)) where ^i and g^ are G' mappings from V
to R such that ^1(0, Vo)=Uo, ^3(0, ̂ ^^ <^(°? ̂ ^^ ^(^ ^o)^0 and <?aw(°3 ^;o)=^=o•
We assume ^o<o, yo^"0? giv{°^ ^o)^0? and ^2^(0? ^o)^0? the other cases being similar.
Here and below ̂  is the partial derivative of ^ with respect to the variable CT, and
g^ is the second order partial derivative of ^ with respect to <j and T.

We have the following figure

FIG. 5.1

Since {/J creates a non-degenerate tangency of ^{f^pt) and W8^) at (v, ^)
we have that for some fs near v, W^/^) has two transverse intersections with W8^)
near ^. We may as well suppose that such fs are larger than v.
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Then we have the next figure where t is near v and ^ is near x^

Xt X^

123

^
W'(p,)

r=w

FIG. 5.2

Geometrically it is easy to motivate the construction of the required set Ag(^). Looking
at figures 5. i and 5.2, one sees that we may choose a disk D near x^, a large integer n,
and a t near v so that^" maps jD to V as a Smale horseshoe diffeomorphism. That is,
D and f^D are as in figure 5.3 with A'==/^A, B'==/^B, etc.

A-Z
J

^———————^D' C'̂

ID

-B'

D

FIG. 5.3

Thus, A^-^Hf^D will be a hyperbolic basic set. Since detTp/^°<i, for large n,
f^ contracts D horizontally much more than it expands D vertically.

So, if we arrange forf^ to map the right side of D nearly tangent to the top of D
andy^Z)—D to be small relative to the size off^D^ we have something like figure 5.4 a.

FIG. 5.40
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Hence, /,-"(£> n/;"£>) looks like figure 5.46

y/////////////////////^^
^^^%%^^^^

FIG. 5 .4&

where the non-shaded areas have small heights.
For such t, n, and D let Ao^) == ft /^'D be the largest /n invariant subset

— 00 <^ J <C 00

of D. A little thought makes it reasonable that Ag^) is hyperbolic for /n, and
TS(A2l(^))->oo as TZ^OO. We pick /z large enough to give 1:s{A^{t))>2^. We then
show that (7.2) holds for Ag^), i.e. W^A^),/^) meets W^OQ^),/) transversely
and W^A^),/") meets W^OQ^),/) transversely. Next, we decrease t slightly to ^
so that W^A^i),/^) and W^A^i),/^) become tangent at a single point ̂  near
the top of D. Then Agi^i) is no longer hyperbolic for/^, but if we let U^ be a small
neighborhood ofj^, then A22(^)=_^n ^/^'(Z)—UJ is hyperbolic for/n, satisfies
(7.2) and (7.3) for/^, and has ^{A^)>T (1). Finally, we will set

A^=^U^f^W)

and (7 . i ) - (7 .4) will be satisfied.
We proceed to the analytic details. To simplify the notation, we assume riQ=k== i,

so that/(A) =A and ^eW-^JnW^A).
Let T>o. We will produce a basic setA(^) near ^for some power ̂ n+l, t near ^,

such that T^A^^T, WM(A(^,/(n+l) has a transverse intersection with W8^), and
W"(j^) has a transverse intersection with W^A^),//14'1).

To prove hyperbolicity and to estimate the thickness T^A^)) ofA(^) we will need
to estimate the derivatives T^/^ of iterates of ft for t near v as a function of certain z ' s
nearj^. For this, our methods require that^ be linear nearj^ and that the linearizations
vary continuously with t.

Since we need something like z^T^f^ to be Lipschitz in z, C1 linearizations
(which always exist if/is G2) are not enough. Using the assumptions that/ is G3 and
det T /< i, we can produce C1 linearizations (^ for/ near p^ which are C2 off W^j^),
and this enables us to carry out the necessary estimates.

We begin with the construction of the linearization q^ for/ near ̂ . We will
let U be a neighborhood ofp^ in M which is small enough for each statement involving U
to hold. First, since W^,/) and W8^,/) are one-dimensional, we may use
Sternberg's theorem on linearizations for contractions [26] and simple extension pro-
cedures to produce a diffeomorphism 9 : U->R2 so that yQ&J^0? °) an(! ^/P"1 ls

(1) The neighborhood U^ has to be chosen, of course, so that A^{t^) is a basic set for /^n.

372



THE ABUNDANCE OF WILD HYPERBOLIC SETS 125

linear on ^(W^Q^/J uW8^,/)) near (o, o). This can be done with 9 of class (7
as long as/is Gr (^2).

Identifying f with 9/9"1 and j&^ with (o, o), we assume / is linear on
W^/JuW8^,,/) near A.

Since we will take large iterates of/ to construct A(^), we may as well assume
the eigenvalues of Ty / are both positive. We will construct the linearization using
foliations defined by Ty-invariant vector fields. Without the positivity assumption on
the eigenvalues one would have to use line fields.

Let D8 (D^ be a small neighborhood of ^ in W5^) (W^J). Let F^ be a
T/^-invariant G2 vector field on a neighborhood of D8—/^8 which is transverse to D8.
This is constructed by taking a G2 vector field X on a neighborhood U\ of ^D8, a C2 vector
field Y on a neighborhood Ug of D8—/^8, and a G00 bump function ^ which is one
on a neighborhood of c^u/SD8 and whose support is in UiU/U^. Let X be the
vector field on U^u/Ui which is equal to X on Ui and T/^oXo/"1 on/U^. Then
let F" be the vector field ^X+(i—^)Y. If X and Y are transverse to D8 and point
to the same side of D8, then F" is transverse to D8 and T/^-invariant. Iterating F"
by T/^, n>o, gives a C2 T/^-invariant vector field, also denoted F", on U—D1' for
some small neighborhood U of p^.

•FU
Let F^ =.—— be the unit field determined by F^ for zeU—D". By the X-lemma,IF

{^Jzeu-D" extends to a continuous unit vector field F^ on U where F^, ze^y is a
unit vector tangent to D" at z. Using the methods in the proof of theorem (6.3 b)
of [9], one sees that F^ is a C1 vector field on U. This is done as follows. Write f==f^
and let L : R2-^2 be the derivative of 9/9"1 at (o, o). Using a suitable G^ function
^ : 9U-^R with compact support and value one at (0,0), and replacing / by
^•Pyp^+C1—4^L, we may assume that/is a C3 diffeomorphism of R2 which is uni-
formly C1 near L. Let E be the vector bundle over R2 whose fiber at ze'R2 is the
space L(R1, R1) of linear maps from R1 to R1. Use the norm \(u, y ) [ = m a x { | ^ [ , \v\}
on R2. The line field of Fu on R2 may be thought of as a line field whose value at
ze'R2 is the graph of an element c^eL(R1, R1). Thus, we are looking for a section a
of E over R2 whose graph is T/-invariant. This a must satisfy the equation
T^/( graph oj == graph a^, -zeR2. This equation defines a C1 map G:E->E which
covers/. That is, the diagram below commutes (with TT : E->R2 the natural projection)

E — — E

I- i-
R2 _L- R2

If [L and X are the eigenvalues of L with O<[JL<I<X, then the fiber Lipschitz
constant of G is ([ji+s)(^—s)"~1 and the Lipschitz constant of/"1 is pi't+s where e is
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small. Thus, letting Lip S denote the Lipschitz constant of a map S, we have
(sup Lip GJ . 'Lipf~l< i for s small. This implies that G has a unique invariant section
which is G1.

Replacing^ by^""1, and repeating the above procedure, we may construct a
unit vector field Vs on U which contains the tangent field to D8 and whose line field is
T/"" ̂ invariant. Since f is C3 and det T f^< i, the previous method and theorem (3.2)
in [n] show that F8 is C2. Indeed, in this case, sup Lip G^<([ji~1—s)""1^""1^-^) and
Lip^'^'^X+s. Since (JiX<i, one has {[L~l—^)~l{\~l+^)(\+^)2<l for e small.
Also, the induced map G is G2 since f is C3. Thus, the invariant section is G2, and this
implies that Vs is G2.

Let y and ̂  be the foliations of U obtained by integrating F8 and P", respec-
tively. The mapping 9,: U -> D8 x D" defined by (p,(0 = (e^n D8) x (^n D^ is our
linearization which is C1 on U and C2 off D". It is clear from the construction that
9^ is defined for t near v and varies continuously in the appropriate topologies.

Now, in 9^ U, 9^971 is given by (z/i, V^)=([LU, \v) with O<[JL<I<X and [jiX<i.
Suppose that (^o, o)=9^), {o, Vo)=^f^l(x^ and for (u, v) near (o, ^),

Pv/v^v"1^ v)=={g^(u, v),g^u, v))

as before. We identify/^ with 9,/^971, U with 9,U=DsxDM, etc. We assume D'
and D" each have length two.

In what follows, a will be a small positive number chosen so that each equation
in which it appears is true for all %^o, and c-^y c^ ... will be constants independent
of n, each defined by the first equation in which it appears.

Let Y be a smooth curve through x^ transverse to W8^) and W^j&J. Choose
%i>o so that y^YnynU+O for n>_n^ Let -^./^"^y^^Y anc^ ^+i^^i be such
that y^JeU for Q<_j<^n-\-\. Assume the coordinates 9^, are chosen so that

v=—a(u—^o)2+7l(^z) represents 9vWM(^,/J near (UQ, o) where lim .—1——^==0

and a>o.
Let ^i==^(o, Vo) and set

_(^o)^
(I) £ln- < •

Then, (2) a{d^2-2\-ne^=^-n^

i / \ l̂̂ n ,̂ r^
and (3) /,,-n ..̂ .̂

[-^-^)

Writing ^n^^n^n) ln tne 9v-coordinates, let D^CD8 be the interval centered
at u^ with length 2^£^ and let D^ C D" be the interval centered at ^ with length 2X-n£^.
Then set D^=D^xD^.
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THE ABUNDANCE OF WILD HYPERBOLIC SETS 127

For t near v, let D^, D^, etc., be the structures for /, defined as for /,. Since
^({^JxD^) is a C2 curve which is nearly orthogonal to y^D^, we have that
.//^(KJxD^) is G2 near its projection on ^1D^ Therefore, the curve

^/^^(KJxD^
is C2 close to W\ptJ^ near ^. Let v{t) be the maximum value of the ^-coordinates
of this curve, and suppose this maximum is assumed at the point x(t) in U.

Let ^ be so that
.Y-^—n

(4) ^)=X-»^+£J+——S1-M.
0

We claim:

(5) for large n,
a ) A^=n/^+^D^ is a hyperbolic basic set for^+1.

b ) W^A^,/^) has a transversal intersection with W'(^) and W^A^/^)
has a transversal intersection with W^).

.; T^PJT.

In the following, we agree to take n large enough for each statement involving n
to be true. Further, we will write a w b to mean a is approximately the same as b where
we leave to the reader the task of making the precise statement. Also, in most of our
expressions, we will leave out the dependence on ^ of our structures and write D
for D^f^1 for f^\ etc. For ^=(^),^))eD,, let D^=D^x{^)} and Ie;
^==W}XD^ Thus ^TO=2^ and ^(D^)=2X-^^ for each zeD,. Also,
for zeD^ /"-^D^ is a C2 curve whose distance from x{Q is near ^(o, v^^d^, and,
if ^eD^, the endpoints of/^D^ are closer to the endpoints of/^D^, than
3&u(o^o)^i^.

Let ^ : U-^D" and n8: U-^D8 be the natural projections. For any curve y
G2 near some part o{fn+lD^ we have

^(^T^^M^^Y)^ and c^^^^c^8^

with ^>o, ^>0 B^ ^3 and ^4 near i.
By (2) and (4), for any zeD^, we have:

(6) a) ^yn+iD^j^^

and

^(/"^D^-^^^D^-DJ
A J ———————————————————-____________-__>r>T'

a^/^^^-DJ
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For (6 b) note that the first expression of the inequality is bigger than

i^-^v'2
^In—W

2C.
l^-^nY12 '

. aX-^s.
Also, we have {/^D^^^s^———ln for n large since piX<i. So /n+l^ and
D^ look as in figure 5.5

A" D' A! As c- B'
FIG. 5-5

where A'^/^A, B' -/^B, etc.
For later use let us label the two components of ^^D^nD,, by Bo and B^ and

the three components of^4'1^—^ by A^, Ag, and A3 as in the figure.
If 772 and j are integers with m>_\ and o<_j<_m— i and -2'eA^, let D^(m)

denote the largest interval about z in D^-n fl jf-^+^iD . We will need to prove:0 n o^j^w-i17 n

(7) for large n and any m>o, if ^eA^ and ^<_j<m, then/(n + lji D^(w) is C2 near
a part of the curve v==v{t^)—a{u—z/o)2.

We will defer the proof of (7).

To prove that A^ is hyperbolic we wish to apply theorem (3.1) of [18]. We
need to find a sector S^ in each T^M, zeA^, so that for some m(z)>o, T^f^+W^ maps
Shinto S^i)^, and for some ?>i, TJ^^^ and ^/-(^^^[(T.M-SJ
are p-expansions, where j;^/^4'1^^). Once this is done, a compactness argument
allows one to choose m{z) independent of z, and then (e.g. as in lemma (4.7) of [19]),
one can show that the splitting T^M^T^D'OT^D" is an almost hyperbolic splitting
for A^. By theorem (3.1) of [i8], it follows that A^ is hyperbolic.

Unfortunately, our proof that A^ is hyperbolic is rather cumbersome. It would
be good to find a simpler proof.

We proceed to find the sectors S^. For z=(u{z), v{z))e1D^fn+l(D^, and
w=f^n~~lz, the curvey^'^D^ is G2 near the curve

^ — n
,=X-"(^+sJ+-^-l-"-^-a<,)2=^J-a(u-«o)2.
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Thus, a vector v =(^, ̂ T^+iD^ satisfies

(8) l^l^^-s)^2!^)-^)!1^^! =(2-8)^1^(^-^11^|
where 8 is a small number which we specify later. We set

^(z)=(2-28)all2\v{Q-v{z)\112

and take

^={v=(vz,v^eT,M: |^1^(^|}.

Note that G2 estimates near D^ are legitimate since our linearization <p^ is C2 on a
neighborhood of D^.

Now, if v={v,,v,)eS^ ^D.n/^^.n/——^,, ^4=0, and TJ^v)^^ v,),
then

^ ̂  .̂ ̂ _^^-..r>^-,
^1 [1 ^ (JT \ 2 ln — 8l

Since ^<i, this implies that (for 72 large) TJ^^ES^I^. In other words, the
sectors {S^} are T^/^ -invariant. We now prove there is an integer m{z) so that

^V^4'1^ is a ^g) -̂ P^81011 on s^- Once this is done, a similar argument

replacing/by/-! shows that T^/-^1)^) expands TyM-S^y where j;=/(n+i)^).
In view of our previous discussion, this will prove that A^ is hyperbolic.

We use the norm |(^, y2)|=max(|^ , I ^ D -

First observe that if zeA.^ o=hy=(^ , u^)eS^, and we set

^-^^(j+^x-^,
then

IT fn+lv\ /a \l/2
(9) L-^————^>(2-28) -+? (2+a)^.

This follows from the definitions of S^, ^, and the facts that H == b, and
IT./^^I^^X-I^J.

If a^- then (9) implies that ^TJ^'v^i9} \v\ for 8 small, and we may

take m(z)==i. Henceforth, assume a<^. Set Ho={^eDn: \v{Q—v(z)\<^-n^},
4 I n 4 )

and Hi=D^—Ho. Assume first that zeH^A^ and yeS.,. Then ^+0'^^ and
2 4

again by (o), we may take m{z)==i. Now we assume zeU^nA^, so S'<^.
4

Since ^eHoHA^, and TZ is large, it is clear from figure 5.5 that /^^eH^. If
/^^eH, for j^i, then \TJ^^v\^c,{2+^\v\ for .eS^, soanm^ 'can
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easily be found. The remaining case is when Z^HQ and there is a j> i such that

/(^^eHo. Let m{z) be the least suchj. This means that v{Q—v{f{n+l}jz)>'>—£ln

for j= i , 2, . . ., m{z)—i. 4

Let z^f^^^z for i^ j^m(^)—i and write ^•==(^.,^). Let 7](-2'i) be the
expansion ofT^4-1^-^ along the curve/^^D^. If yeS^, then TJ^ +1 y is nearly
tangent to/^D^ at ^. Thus, by (9),

( \1/2
\^TJ{n+l]m{2)V\^{z,){2-2S) ^S) (2+a)1^.

We will prove:

(ry \1/2 / n \1/2

(10) ^)(2-28) j+a) (2+a)^>i.n>^

for S small and a<-.
4

The distance from z to the top of D^ is o^X"^^, so the distance from z^==fn+lz
to the bottom of D^ measured along fn+l'D^r\'B^ is nearly o^s^. This means that

i ^
[^—^o|^(i—S^^Sin* Since a /<-^ we have \u^—^ol^ ^i^n-

4 4
To estimate the expansion r^{z^), we introduce functions ^o, ̂ , . . ., ^^{z]-i

from [o, i] to R as follows. Let v{o) = v{Q, and let ̂  be the curve v == y(^) — a{u—Uo)2,
u—^ol^^i^n- ^let ^ be the curve which contains z. and is parallel to ^o. Thus,
^ has the equation v==v{j)—a(u—z/o)2, \u—^ol^^i^in? where v(j) is near y(^). Let

Tr8 be the projection ^{u, v) == u, and let z/e^D^. If ^ = — — — " , set
di^in

, /,. l^/^1^^')-^-^))2-^!^•(y = ——————,-——————T j v - ' y ./
^l^ln

for o<j<_m{z)-i. We claim ^(^^(2 +a)^-(i +a) for each j and ^^i.

Let us prove the claim. Since each .̂ is nearly horizontal and we are using the
maximum norm, the expansion T-^fn+l along .̂ at a point z=={u, v) on .̂ is nearly

syn4-i^^^_^^_^2^ ^ ^^ gy ^y^ ^g ^ nearly
fl^

S^X'1!^—^! =2^Xn^£^==2(2 +oc)^.

Q

This means that ^(Q% 2(2+00)^. For -^^^i, we may think of iL(^) as follows.

Take a point (^, ^) on .̂ with ^—z/o | ==^£^ and let ^{'Qd^e^ be the distance from
j^4'1^, y) to the line U=UQ. If z7is the ^-coordinate of the point where ^o crosses the
line y=X - nyo, then

/ a\ 1/2
,- , h+-\
d^in - v2+a/
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and (U " " ° )=o- This means that (J^MS +a)^:2-(I +"|. Similarly, each
\ < î» / \ 2; 7

^,(!:)»(2+a)^-(i+^j also.

Let w be a point where ^ meets the bottom ofHo. Write w=(u(w), v{w)) and
let Qd^ s^ == | u (w) — Uy [. Then,

l̂Sln=
/X-"^Y/2

43

so 6==
2(2+a) l/2'

Set O^o^e) and Q,=^\Qi)= ̂ W- Then,

(2+a)e^-(I+aL- '
2; 2(2+a) l /2

I a
^(a+a^+s6^———^^———.

For o<a<-, this gives ,8i<6,<.82. Also- -4 - l-

i+^+.Si I+^+.B! i+^+.sa
——8———^——^___<6j<-^___<1^2

^ , 2+a - - 2+a 2
4

so, .86<6j<.9i or •Q^^Qa^.Qy.

Let Tio be the expansion of T,f"+1 on S^. We have seen in (9) that

/a • V2

7)o^(2-2S)^+o? (2+a)l/2^2V2a/l/2

for S small.
MI — a,

Let ?:1=-^— and, for 2^j<^m(z)-i, let ^=^-_io. . .o^(^). Note that

\uj~uo\:=^jdlSln• For I^^'^OT(^)—I, let .̂ be the expansion ofT,/"-1-1 along the
curve /'"^"D^ at 2,.. Then, '

7),»2a^X"|^—Mo| =2<X"^,^=2(2 +a)^,,

so 7),» .̂( .̂) and ^w^.i.^.a.. .^. Also, since each .̂eH^ for

I<J<OT(^)—I,

(9) gives us that ^>_^/2 for 8 small.
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To prove (10), we consider three cases.

Case 1: Q<_^<,QZ.
Q

Recall that ^^i—S\ so -^^1^81 • In this case m{z)=2 and 'y](^i)^^(^i).
4

Thus, T^.Tjo^^+a^.sV^a1^
^2(2 + 00)2^2 ̂ (I-^2.

[Q "]

Since ^^^(i—^1/2 is decreasing on - , i , we have
4 J

^).^2(2+a)2V26i(l-e^

^(s+o^V^.SsK.iS)^2

^3-94-
C^ 2: 6^i<,62.

In this case, rn[z)>_^. Now,
7](^).7]o%73^_i...7]i.7]o

^\/2^(^).^0

^4^(^)(a)l/2

^4(2)(2+a)^(i-^)1-'2

^iGe^i-Oa)^2

^I6(.95)(.05)1/2^3.4.
c^ 3: e^r

Let 7z(/2') be the least integer j such that S^Og. Thus, ^^O^, but 82^^)-r
Since ^3.^625 one nas ^(^)^2 and m[z)'^_n[z)-\-2. Now ^)_io^)_go. . .0^1
maps the interval [i—o?, i] onto an interval containing [63, ij. Thus, for some
i-S^^i, (^)-io...o^)'(^)o:>i-6,. Set ^==^, ^=^_,o...oW) forj>2,
and T];==^(^). Then,

n{z) — 1 n{z) — 1 _ n

."w?)-,"^^-
n(z)-l n(2)-l nn(3)- l

, T-T T7 ^3 ' - ^ — 2 TT •?and 11 ^== 11 -7.^Z——— 11 4-i= i J j = = i .̂ •' a j = i .̂
n^-l^.

We will show that 11 -^.89. From this we get
^•==1 ^/

w(2) - 1 n(z) -1

n^ 7]^^,)_i.7]^)_2 n^ .̂

^.(^(^Lo
\ a /

(̂.89)̂ (̂ ).

3^
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But, i-^o^i-eg, so ^-^(i-eg)-1^ and I^^^ (i-eg)1^^)1^^.
1/2

m(z) -1

Thus, n T]̂  2 (.89)2^2 (.22)%; 1.11 which proves (10).
3=0

n(2)-l ^)-1 n{z)-l I Y/_y)\
We now show 11 -^^.89. We have n -°=exp S In i -^—' 3 . Now,

i= i .̂ j= i .̂ j = i \ .̂ ;

^n(2)-i and ^(.)-i lie m [Q^ I]- In this interval ^'(^2(2 + a) ̂ 2(2 + a) 63, so

^(?:)-^(2(2+a)6,)-^(2(2+a)(.93))-1

^.27 for all 7.

Thus |Sr-^(.27)|^i-^i|

in(2)-l
s 1^-^1^———(1-^and 1=1 I—.27

<^=.zo.
~-73

Also, 7);^;(9^2(2+a)(.93). Thus,

^^^2(2+.)|^.-^|^^,^
7)., •93

-10
Now, ln( i—A-)>——^ for o<x<.i, so

9

In i ^-^•K-10^—^>

and •'S'lnf-^S^Msi^
^^ \ 1 ] 9 \93h 3 3

/ IO\ / IOO\
^_ _ _ — — — . 1 ^-.12.

\ 9 A 9 3 /

So expSlnji—- J——^l^^"'12^; .89. This completes the proof that A^ is hyperbolic
j \ ^ /

(except for (7)).

To see that A^ is actually a basic set is easy. From the definition of D^ and
figure 5.5, one has that/'14"1 maps the top and bottom of D^ below D^ and/"^"1 maps
the sides of D^ away from D^. Hence A^CintD^. Evidently/n+l maps D^ to its
image as the familiar Smale horseshoe diffeomorphism in [22]. So, if G=={o, i}32
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and a: C—C is the usual shift map defined by cr(^)(z ' )=^(z+i) , aeC, then the map
h: G->A^ defined by

h{a)^^f-^^

is a homeomorphism and ha =fn+lh. Since cr has a dense orbit, so does/"4'11 A^. This
proves (5^).

To prove (5^), first notice, from figure 5.5, thatj^4'1 will have a fixed point q in B()
with T /n+l having positive eigenvalues. Let ^ be the curve in W"(y) joining y to the
bottom of D^. Then /n+l^^ and extends at least a fixed distance ((B—i)^ below ^
with jB>i . The same statement holds if we replace ^ by /n+l^ and successive iterates
unless some part of the iterate crosses W8^).

But this means that, indeed, iteration of S; by powers of /n+l eventually makes
it cross W^Q^ ) transversely. Similarly, W8^) meets W"(j^) transversely.

We now estimate T^AJ to prove (5^) . For convenience of notation, let us
write / for f^ and g for f^ +1.

Fix ^eD^==D^ and let y^^- Consider the Cantor set F:^^^6^)?^.
Let Fo be the smallest closed interval in y which contains F. Let F^ be Fg minus the
component ofy—F which meets g~lA^. Thus, F^ is a union of two closed intervals F^,
F^sothat FnC^~ lBo and Fl3C^-lBl. Let Fg be F^ minus the union of the components
of Y—F which meet y—g~ 2 A^, Then Fg is the union of four closed intervals F^, Fgg,
Fg3, Fg4 such that F^.C^^B^n^^B^ with ^=oor i and ^==0 or i. Continuing,
by induction, if F,==F,iU. . .uF^- has been defined, let F^^ be F, minus the union
of the components of y—F which meet g~{^+l)A^. Then, for each z, F^ is a union of
2' components each of which lies in exactly one ^"^B^n^^B^n. . . r\g~'B^ with
^ ==o or i for i^j^i1.

We will show that /; large implies that the thickness of the defining sequence Fg,
FU? F^g, Fgi, Fga, F^, . . . for F is bigger than T. This will complete the proof of (5 c)
and hence of lemma 7.

Let I be some Fy, and let J be the interval in F^_i—F^ adjacent to I. Then
g\]) is a curve meeting Ag (in fact in the component of^(DJ —W^AJ which contains Ag)
whose length is less than twice the diameter ofAg (a small and n large), and g ' { I ) C B^uBi.

Also, ^1 is near diamBo. Let lQ=gil=f^-r^iI and Jo^U^/^^J-
As in the proof of proposition 6, we write

t\ ̂  o^^-i^-i • . . î̂ î o

^"PAPz-iPz-r.-PiMJo

where a^lT^-^,!, ^.=|T^./-^J , a^ ̂ .f-1^ ̂ =\^f-\v^ with ..e -̂̂ Io,

^e/-1^4-1!^ ^•'e^4'1^, ^e/"1^'4'1^? ^d ̂ , v^ v^ , v\ are unit vectors tangent to
r^W1^1^ ^-^Uo, and/-1^4-1^ respectively.

3^
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We assert that:

^5

;n) there is a constant c^>o such that IIal 'n°^>c^
i ^ i ^

Let us show that (5 c) follows from (n). In the notation of the proof of (5 a),
if ^eA^nHo and m[z) is the least integer^ such that f^^^zeH^ then m{z) is inde-
pendent of n (for large yz). This implies that:

(12) there are constants c^>o and ^>i independent of n such that T./^^IS^

and TJ^-"-^'|T,M-S^ are ^-expansions for ^e (1 ./(n+l)t^ and o^j<oo.
~-3^<.r

From (12), we have that

^(Jo)^ diarn- Aa + ̂ n1^ Xf^" max(diam Ai, diam Ag)j'=o

^^(aX-"^)1/2^————')
l-X,-1

_ „ / ̂ •\—n. \1/2—^(aA s^J

and ^(to)^ ^^i^n—^ii1.^ X^ max(diam Ai, diam Ag, diam A3)

^An-^^-^2.

If oc is small enough, then ^^J-T, so (n) implies W > 3 T which, in turn,
implies (5^). 'uo) 2^0 ^(J) 2

We proceed to prove (n). We have

l^-P^JIT^-^.l-lT^-^-jii+iiT^./-1^!-!^/-^!!
^(K^+K^-^^uL))

where Kg, is bounded by sup |T,/-1), Kg, is bounded by the curvature of g"^1^-^]^,
and K^. is bounded by the G2 size of/-1. By (7) the Kg/s are uniformly bounded,
and, by (12), ^-^U^Jo^^n^r^^Io^Jo). Thus, S a,-8.|^^X-», and,
we have

n^n(z-^-Lexpfcin(i-^
jP, ^ P, / \ - \ [3, //

^exp(—^7X' -n)>- I for 72 large.

The estimate for II -1 is similar once one proves:
3 Pj

(13) there are constants o<c^<c^ such that c^<_ IT./^Z;)]^^ if v is a unit vector
tangent to the curve g'^^Jo) wl11 I<j<^ and

(14) .̂  \v•j—Pil^.^20 ^or some constant C»Q>O.j^i

3^
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Indeed, (13) implies that the ^ are uniformly bounded below, and with (14),

this gives a lower bound for II-J. Let us prove (13) and (14).
j (B,

By (7), if z=={u, ̂ eg'^lQUjo), i^j'^i, and v is a unit vector tangent to that

curve, we have \T^fn(v)\w2a>n\u—UQ\. But '———— is bounded above and below as
X- dlzln

is —. This gives (13). For (14) we write
-̂In

|a,-P,|=|T,/-».,|-iT,/-».;

Let y^ ==f~nzj ^d y\ ==f~nzj and let ^ be the ^-coordinate of j^ and u'. be the
^-coordinate ofj^'. Since ^ and ĵ ' are on the curve g~~:)(louJo), (?) gives us
QLJ WK 2a\Uy—UQ\ ana p^ ^A2^ |^ -—z/o l * inus,lw'>n2a\Uj—UQ and (̂ . ^X^^)^—UQ\. Thus,

^.-p^x-^)-1!!^-^!-1-!^-^!-1!
-x-^)-1^-^)-2!^-^!

where u„ is some number between u. and z/'. Since |z7—^ol^ ls bounded above and
below, we get

l^-Pj^iWte-^Io^Jo)).

By (12), we have ^te-^Io^Jo))^^1^^^^^)^^^^"'- Thus, l^.-^.l^^^^
and (14) follows.

We now prove (7).
It suffices to show that if ^ is a piece of the curve v=—'a/{u—u^-^-V with

\7—^(d^"^""^? ^near a, and ^CD^, then^^ approaches its projection on (^==0)
~4

in the C2 topology. We will, in fact, show that this G2 convergence is faster than
((Ji+sO^X+e)^"1^ where s is small.

Pick an honest C2 coordinate system ^ on the neighborhood U in which we have
^/y"1^)^/!^ v),fz[u,v)) with /ijo,o)=[i, /^(o,o)=o=/Jo, o), and
/^(o, o)=X. As before, we identify D8, D", etc. with y"^8, ^~1DU, etc.

Write S as the graph of a function s : D^—^D8 with D^ an interval in D". Then,
/(^) is the graph of the function I^(J) defined by Tf^)=fio{s, i)o(f^o{s, i))~1 where
(^ i ) (y)==(^(y)^ y). Here we use the graph transform notation ofHirsch and Pugh [9],
although our coordinates are interchanged from theirs. Since/^ is the graph of r^(J), it
suffices to show that F^) is C2 closer to its projection on (u ==o) than ((Ji+s^X+s)^'"'^2.

We will use s\v) and s'^v) to denote the first and second derivative o f ^ a t y and
we will use similar notations for the corresponding derivatives of other functions. Also,
we write s " ( v ) {w)2==sr/[w)2 for the second derivative of a function s at v on the pair [w, w).
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THE ABUNDANCE OF WILD HYPERBOLIC SETS 13^

Since ^CD^ we have that if {u, u) is a point in S, then l^-yi^X-^. This
implies that 4

.'(.) =^-^\ .-y -i/.< ̂ --^-"J^ i- ^ y\»
2 -2 U l"/ -^(2+a);^ A -

To estimate the first and second derivatives of r;(j) we first need to make the
second derivatives of/small on U. This is done with a scale change u=w^, v=sv,_
where s is a small number. Note that in the (^, ̂ -coordinates ^, X, and (A remain

the same. Also, ^ has the equation u^=^-3e^-u^, so \s'(^)\-1 I^^^Y1121

But I^-^Y^, so i^L-Y^_L. This gives 2 V as ' "'
4 <2s 4 3s2

l^^l^^^-^f^-cj"
2 \4 /

i / /a \-l/2
^2-» X-.,,

which is the same upper bound we had for s ' in the (a, ^-coordinates.
Let us use s to denote various small, possibly different, numbers which come up

in the equations below.

We dispense with the subscripts and assume ^ has the form v=D'—ys(u—u)2

, , v-yy12
or SW=\—^- +"o with a-near a. Then,

\—ae

c'^s.\s'(v)\^c^ and s"(v)\<^3\3n
gl/2'

where (-33 is a constant independent of n and e.

Let W=W=(f,o(s,i))-^v). Then. ^=(/^("), ̂ 'M+A(^), v)-\
Since/leaves (v=o) invariant, f^(u, o) =o, so

\AMv), »)| = |/J )̂, v)-f^s(v}, o)|^e|oj^gX-"

where we use the fact that the second derivatives of/ are small on U. This gives
\M5{v),v}s'{v)\<_^ and ^'{v) |^(X-e)-i. Strictly speaking this estimate only has
been proved for {u, v)eD,, since we used \v\^c\-" and \s'(v)\^c^". The estimates
for (a,^;)e/JD„ are similar, i<_j<_n.

Now, if +(y)=(/2o(j-, i ))(&), we have

WW)^, ^'(^))o^'(y)=Id,
and V'm)^'W + y{W o ?:"(,) = o.

Thus, ^"W=-^(^))-1^^W)(^:'(^'))2

=-^'{vW'm)^(v))2.

Also r,(,)'=(/,o(., i))'°^(^)=(/^o.'+/Jo^(.)
and r^)"=/"((,, i )'o ?:'(,) )2+//o(,, i)"(^(,))2+y^^ i)'o^'(.).

3S5
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Using these formulas, and setting 7|o to be the G° size of a function ^ one can
calculate that

TO | <.c^+er\s\,

IWI^^+W-.)-^' +^|r^)|o,
and |^^)' / |^7(^+^n^-s) -2nl^l+^8l^^)'|+^9 TOlo.
The easy way to do this is to let Jo, J\, Jg be the spaces of zero, one, and two-jets of
functions s from intervals in D" to D5. Then, 1̂  induces mappings H^: J^->Ji and
H^ is a fiber contraction over H^_i in the sense of Hirsch and Pugh [9]. The Lipschitz
constant of Ho == 1̂ . is [L + £ and the fiber Lipschitz constants of Hi and Hg are
( ( JL+£) (X—£)~ 1 and ((JL+£)(^—s) 2? respectively. Then the above estimates follow
since the attractive fixed point of the map Hg is the 2-jet of the zero function from D1^ to D5.

In any event, using the estimates l^'l^as^ ^d \srf\<:_c23^~112'>3n9 one sees ^at
|r^)|, IF^) ' , and |r^)"| are all bounded by c^([L+^)n(\+^n^~1112 with £ small.

We have thus proved (5).
The set A^ plays the role of A^{t) in the motivating discussion near figure 5.4.

Recall that^4"1 has a fixed point q(t^) in Bo(^) so that T^/^4'1 has positive eigen-
values. Let ^ be the largest number less than ^ for which W^^),/^4"1) is tangent
to W'^O,/^4'1) near the top of DJ^). Let the point of tangency be y[Q. If U^ is
a small neighborhood ofj^(^), then estimates similar to those in the proof of (5) show
that A^O-n^^D^O-UJ satisfies (5^) and (56) for f^ and T^A^ORT.
Also, {/r4-1} creates a non-degenerate tangency of W^A^),/;14-1) and W^A^^),/^4-1)
at (^(0,0. Then, taking t,=t, and

^(^l)- U fl{\2W).
-v 1/ O^j^n+1 - lv v 1 / /

we have (7 . i ) - (7 .4) . This completes the proof of lemma 7.

Before beginning the proof of lemma 8, we will construct some special coverings
of a zero-dimensional hyperbolic basic set A for a C2 diffeomorphism f: M^—^M2.

Let ^ru and ^s be the foliations on a neighborhood U of A constructed in the
proof of Proposition 5. A Markov cover of A is a finite set J^=={AI, . .., Ag} of disks
in M such that:
(1) there is a C1 diffeomorphism (p^B^B1—^! with image q^==A^ and

9,({^}xBi) C^(9^}x{o})), xeW,
P^X^}) C^^XO/})), J^BI;

s

(2) AC .U intA,;

(3) ^(.^^^^.UA-O;

(4) /-i(^UaA)n,UA,=0.

<3^
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Recall that if (p.^xB^M is a disk, then a,(image 9,)== image (9, [ (B^^B1))
and ^ (image (p,) == image (y, | (8Q1 X B1)).

Given such a Markov cover, we define diamj^== sup {diamAJ. We shall prove
l^l^S

that if f and A are as above and s>o, then there exist Markov coverings ^ of A with
diam ̂ <e.

First we recall the definition of a subshift of finite type (see [4]). Let N be an
integer greater than one, and let A be an N X N matrix whose entries are zeroes and
ones. Write the (z,j)-th entry of A as Ay. Let ^=={ae^^: A^.^. ==i for all ieZ}
and let <j : S^-^S^ be the restriction of the shift map on Z^- Here ^^^{^ • • • ? N}2^
is as in the proof of Proposition 6. The pair (cr, SJ is called a subshift of finite type.

According to Bowen and Lanford ([3], [6]), there are an integer N, a matrix A,
and a homeomorphism h: S^->A such that fh==ha. Fix s>o. Given 8>o small,
choose an integer TZ§>O so that for any sequence (6 , b_ ^.^, . . ., &o, .. ., b )

^
such that ^e{i, . . . ,N} for j ^ l ^ ^ s , diam(A{^e2^: a^==b^ for l^l^^s})^-. Let

{BI, . . ^ B g y +1} be the collection of sets h{ae^: a^b^ for l^'l^s} where the ^
run independently from i to N. Then {B^, . . . , B 2 y 4-1} forms a Markov partition

^
of A in the sense of Bowen [4], and diamB,<- for all i. Note that ^ ̂ N2^4-1.

Pick ^eB^ for each i. As in the proof of Proposition 6, let G, be the smallest
closed interval in WK^) containing W^(^)nB, and D^ be the smallest closed interval
inW^(^) containing W^,)nB,, and let B,= U C{x, ̂ M). Then B, is diffeomorphica;ec,

_ _ 2r§ +1 _

to G^xD,, B^nBj==0 for i=i=^, and AC U B, as before. Clearly, for 8 small,

diamB^8 . For each i, let ^B,= U 8C(x, ̂  and ^B,= U G(^, ^rM). From
2 .̂  G C^ a: £ &C,

the construction of the B/s we have
/(U^B,)CU^B,

and /-I(UWCUA

If we extend each B. to a disk Aj by moving c^Bj and ^gBj out slightly, then using the
facts that f expands each ^rM, contracts each <^f, and the invariance of ^s and ^rM,
one sees that {A^, . . ., A^. 4-1} is a Markov cover of A.

Proof of lemma 8. — Suppose^, Ai, Ag, z^ and z^ are as in the statement of that lemma.
For z = = i , 2, let ^M, ̂ s be they-invariant foliations on a neighborhood U, of A^

extending W^A,), W^A,). Choose U, small enough so that ^ and ^ are trivial
on each component of U, and {^, 2^}r\(V^uU^==0. Let ^=={B^, . . . ,B^.} be

81 si .
a Markov covering of A, so that .UBJCintU,, 0(^)r\UBJ==0 for z , ^ = = i , 2 .
Suppose UinU2=0.
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Choose an integer HQ>O so that, for n^n^y

{/"^/^JCmt^Bjs

and {/^/"^i^int.U^.

For a set H C M and xeH, let C{x, H) denote the connected component of A:
in H. Let Bg(^) denote the closed ball of radius c about x. Pick e>o small enough
so that

f^z^uf-^B^CmtUK^

/^B^u/^B^) Cint^.UBf, /B^)nB,(^)=0,

and /B,(^)nB^)=--0.

For ^eB,(^), let

^^G^/^^-.^nB^^)) and ^^{xJ-^n^K^).

Similarly, for xeBg(^), let

^-C^/^-^nB^)) and ^-C^/^o^^nB^^)).

For s small, ̂ s and ^rM will be transverse foliations of B^^uB^g). Extend ^rM, '̂s

to U. /^(^u U. /^'B^^) via iteration by powers of/. Define
— — ^ O ^ J ^ ^ O — — ^ Q <^J '̂ MO

^==^,.^=^ for ^6Ui-_^U^B,(^),

and ^=^,^"=^ for xeU,- _^U^S^).

Let V=UiUU2U U. /•''B,(2i)u U, f3^^. Then the tangents to y and ̂ "
—^O^J^^O —^0 <J <^Q

give a (discontinuous) splitting of TyM, say TvM=E^CE^ with E^T^8,
PM _nr- (yu
^Ix— ^x^x •

For A-eRCV, let W^, R)=C(A:, ̂ nR) and W8^, R)=C(^, ^nR). If
R is small, and x, j^eR, [x,_^] ̂ W"^, R)nW8(^, R) is at most one point.

Motivated by Bowen [4], we will call a set R C V a rectangle if:

(1) R-Cl(intR);
(2) for each xeR, the map [ , ] : W^, R)xWS(A;, R)—R is a homeomorphism,

and W^, R) and W8^, R) are homeomorphic to closed real intervals.

It follows that each rectangle R C V is a C1 disk in M. Note that each B'
in the Markov cover ^ is a rectangle. Also, each component of H P'B1

Ui^j^a J

is a rectangle, where —co<n^<n^<co, z = i , 2 . If R is a rectangle we set

^ R = { ^ e R : ^intRnW^R)} and ^R-^eR: ^intRnW^, R)}.
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If R=={Ri, . . . , RJ is a collection of rectangles, define ^R^U^R, and
c^R—Uc^R^. From the definition of Markov covering, we have that

(3) yy^n U B-0 and /-^^n U R=0.
Bje^1 J BJe^1 '

We define the s-diameter of R to be o>gR=sup W\x^ R), and the u-diameter of R
to be o^R === sup AV^, R). For TZ large, set

a-eR

B^= n ^(UBJ), B^= n /'((Jan,
O^A^n 'j==l J / n -n^fc^O" ^=1 3n

B^= n /^UB2), and B^= 11 /^( U B2).
n O^fc^n- \?==1 J / ? n -n^&^O" S'-l J

Then B^4 and B^" are finite unions of rectangles whose ^-diameters go to zero as n->co
while B^ and B^8 are finite unions of rectangles whose ^-diameters go to zero as n->co.

Set C(^,/no(B^n/-n"-nB^)==R„„ and C(^,/n»B^n/-n"-nB^=R,„. Then
R^ „ is a rectangle in Bg(^) and R^^ is a rectangle in Bg^g) for % large. Also,
^eint Rg^n and ^eint Rg^.

Modifying ^(1 and ^2 slightly if necessary, we may assume for n large that

(4) /^B^nR^^O, /^B^nR^=0,
y-n-n,^B^R^^0 ^d f-n-no8ue2unR^^=0.

Finally, let
V„=B2Mu( U /^R, JuB^u( U /^R, J

n n '-no^j^no+n 2 ' n '-no^j^no+n17 ^'^

and A3,- 11 /^V^
"'n -oo<A;<oo t / n

We claim that for n large, A3 ^ is our required basic set. We agree to take n large
in the following without further mention.

Clearly, A3 , is a closed /-invariant set containing A^uA^U-j^, z^}. The splitting
E^QE^ ofTy^M is an almost hyperbolic splitting for f on V^ in the sense of [18]. Thus,
Ag ^ is hyperbolic by theorem (3.1) in [18]. Moreover, V^ is a union of rectangles R
such that ^R is in the forward orbit of B^u^2 and B'R is in the backward orbit
of a^ua8^2. From these facts and (3) and (4), it follows that A^^8V^==0, so
A3 ^Cint V^. To show that A^ is a hyperbolic basic set it remains to show that/|A3^
has a dense orbit.

For this it suffices to prove that:

(5) if U is any relatively open subset of A^^y then U f^U is dense in A^.
j^o

Indeed, if (5) holds, and G^, G^, . . . is a countable basis for the topology of A^^
00

then any point in D U f^i will have a dense orbit.
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Let T^^M=ES@EU be the hyperbolic splitting of TM over A^, and let
o<X<i be as in the definition of hyperbolicity. There is an CQ>O so that for o<e<^eQ
and jyeA^, W^) and W^) are closed i-disks in M, tangent at y to E^ and E'y resp.,
^W^pX-^W^), and {/-^OO^-YW^).

Fix O<Z<_ZQ and ^^3^. We will prove that \J f^A^n^x)) is dense

in A^. In fact, we will prove that if o<8<£, and x^eA^, then the forward orbit
ofW^) in V^ meets W^i). This will prove (5) and complete the proof of lemma 8.

Since AW^^pX-1^^/^) ^ J^ there are an ^>o and a B^i so that

(6) f^W D 0(^1^ B^nWV1^))).

From the definition ofV^ we have /"^(/^A:, B^nW^/^)) CV^ for o<j<n^
If % is large and j^ is in 'S^r\A^, then

(7) C^B^nW^)) is near W^, By.
Hence, we may assume that C(f^x, B^nW^/^^nW^, B^) is a unique

point for each yejy1

Since/] A^ and/| Ag have dense orbits, the forward orbit -of C^A:, B î nW^/^A:))
in V^ meets each W^j^, B^i) for ^eB^, A = i , . . . , ^ . So the forward orbit of
C^^B^nWV^)) in V^ meets each W8^, R,^J and W8^, R^J as well, and
hence meets each W8^, By for i== i, 2 and ^== i, ..., ̂ . To sum up, if

^^U^R^MR^J,

then the forward orbit of W^A:) in V^ meets W'(^, B) for each ^ in B and B in .̂
Similarly, the backward orbit of WK^) in V^ meets each W"(^, B) and by (7) it meets
C^^.B^nW^/^)). But then (6) shows that the forward orbit of Vf^x) in V,
meets WK^) as required.

Proof of lemma 9. — In the notation of the statement of that lemma, pick G2

coordinates (^i, ^3) near ^o, so that x^{xo)-==x^Xo)=o and (^2=0) Cy^. Let v^==T^^
and v^==T^^ be the C1 unit tangent fields with x={x^,x^). In the (^,^2) coor-
dinates we have

8 c
^x = ^l(^l. ^2) = ̂ l(^l5 ^2) .- + ̂ [X^ X^) ——

cx^ cx^

r\ r>

and v^= ̂ 2(^1, ^2)= ^1(^1, ^2) .— + ^2(^15 ̂  G
ox^ ox^

where ^(o, o) = i == &i(o, o) and ^2(0? o) ==o= 63(0, o).

Consider the C1 function 9 : x\->det{v^, v^)=a^.b^—a^.b^. If we show that
9^(0,0)4=0, then the implicit function theorem will produce the curve y as the
set {{g{x^)y x^)} where g is a C3 real-valued function defined for x^ near o.
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Now ^=a^.b^+a^.b^—a^b^—a^.b^ which at (0,0) is a^b^—a^.b^
Since y^C (^==0), fl2(^,o)==o for all ^, so ^(o,o)==o. Thus,

9^(0, o)=^(o, o).&ajo, o)=^(o, o).

For (A:i, A:a) near o, let/(;q, x^) be the real number so that (^i,/(^i, A^e^o,^)-
Then the mapping A:iH>(^i,/(^, ^2)) ls a G2 parametrization ofJ^o^ and the tangent
map (^i,^)^1?/^!?^)) is cl- Also?

A / \ ^^1? ^2)
^o(^i , A:o) = , —== .

Vi+(A(^,^))2

Since y^ and y2 have a non-degenerate tangency at XQ, /^^(o, o)=[=o. But one easily
computes that

9^(0, o)=&2^(o, o)==/^^(o, o)+o.

The C1 continuous dependence of y on ̂  and e^ also follows from the implicit
fonction theorem.

6. In this section we will prove theorem 2. Before doing this it seems worthwhile
to give some conditions on /: M->M insuring that some stable set W8^,/) is not a
manifold where M is any manifold with dimM>i.

If E and F are normed linear spaces, SCE and X>i , a linear map A: E-^F
is called a ^-expansion on S is |Ay|^X|y| for all v in S. If E^E^OEg and s>o,
the ^.-sector about Ei relative to Ea is the set ^(E^=={{v^, v^)e'E^@^: \v^<_e\v^\}.
The set S^Eg) is defined similarly. In the next definition <p,: B'xB^D, will be a
disk in M with s+u=dimM. For a point ^=^{x,y}e'D^ with xeK8, yeW, denote
the ^-sector about rT^i{{x}x'BU) relative to T^B^^}) by S^.D^.

Consider a sequence D^, Dg, . . . of disjoint disks in M (the images ofembeddings
9,: B^B^M). The sequence (D,, 9,) is called f-controlled if there are a constant
X>i , integers o==Ho<n^<n^<. . ., and real numbers s,>o (i== i, 2, . . .) such that
for each x in B8, ̂  in B", and i^:i, if we put z=^{x,y) and w^f^'^^z, then the
following conditions are satisfied:

(1) /^"^^(^({•^xB^^D^i consists of two connected components each of which
projects diffeomorphically onto ^-^({c^xB") via 9^ +1(^3 ^) ^9^+1(0, ^);

(2) Tj^-^-iS^.D^CS^D^i^ and the map TJ^-^-i is a X-expansion on S,̂ ,;
(3) /ni~ l --n^(?^+l(Bsx{^}))^D, consists of two components each projecting diffeo-

morphically onto 9,(B8x{o}) via 9, (^, v)}->^{u, o);
(4) T^i-i-^^n^-S^.^D^^JCT.n-S^A,. and T^-i-^- is a X-expan-

sion on TJ^+i—S^D^^;
(5) if we put r,==max{diam/fc(/^-^-lD,n^+ln/^-^lD^2) :o^<^+i-nJ,

then flj sup ^<£i

6J ^->o as i->co',

391



144 S H E L D O N E . N E W H O U S E

(6) if we define D^= H /-^'D^ for k^o and if ^eD^ and z^eM—D^ then

there is an integer n>o such that dis^/^i,/^)^^.

To illustrate, let us consider the geometric meaning of conditions (i)-(5) in two
dimensions. We have a sequence of disks D^ and integers n^ as in figure 6.1.

^.^^
^"2-"1D,

^ -D/+1

-fni-ni-^.

FIG. 6.1

Each D, is mapped near D^+i by /^-^'-i as in a horseshoe diffeomorphism.
Because of (i)-(5), as i increases, the vertical heights of the D/s will shrink and the two
components of the intersection /^'"^-^nD,.^ will approach each other.

Lemma 10. — Do is locally the product of a Cantor set and an s-disk. All points of Do
are in the same stable set, and if z is in D^ k^_o, then D^=W^ (z,f)r\D^.

We remind the reader that

W^(^/)={^eM: dist^,/^)^ for n>,o}.

Proof. — For each k^o, let ^: D^-xp^B^-i^o}) be the natural projection.
^y C1)^)? f^'^^^k+i^^k consists of two connected components, say G^) and G^,

each of which is a union of j-disks which project diffeomorphically onto ^(B^^})
by ^. Also, a(C^)—aj^ is a union of j-disks in /^"^D^i, for z==o, i.

Applying (i)-(4) again, one sees that
^_,-n,.,(yn,.,-n,D^^^^^_^^_,-n,^^n/^-2-^
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consists of 22 components each of which is a union ofj-disks which ^_i projects diffeo-
morphically and each of whose boundary off BJD^ is in/^-^D^i. Continuing
by induction, we get that D,=/-^D^n/-^-iD,n . . . nD^ consists of 2^ components,
say G^, . . ., C^A, with the following properties:
a ) Each C^ a union of .5-disks which n[ maps diffeomorphically onto y^B^o}).
b ) For each z, aC^-a,DlC/-n^D^.

For z==^{x^)eG^ let C^C^ncp^xB14). We call sup diam C% the
zec^

^-diameter of G^ and denote it by <(C?). We will show that ^(C^CX-^1 for
some constant C.

Thus the ^-diameters of the components of D^ will tend to zero as k approaches
infinity. This in conjunction with a) and b) will prove that D^ is locally the product
of a Cantor set and an j-disk because /-^D^nD^O for all A.

By (i) and (2), if zeC^ then diam C^X-^4-1 diam/- ̂ -iC^. However,
since f-^C^ is a CV disk in /^-^^-^D^.nD.n/^-i-^D^, whose tangent vectors
at y/cC^jO lie in ^^^{{x}x'BU) we have that

diam/-^-iG^Cdiam(/^-i-^-2D,_inD,n/^-i-^D^i)
for some constant G depending on the Riemann metric on M. From (5 a) we have
then that diam C^X-^Csi as needed.

The fact that W8^,/) =WS(^,/) for x andj; in D^ follows immediately from (5 b).
To prove the final statement of the lemma, let zeDj, with k^o. By (5 a) we

have D,CD,nW^,/). If ^eD,-D,, then for some z^, /^D,^. Since
/^eD,^, we may use (6) to find an integer n>o so that dist^^'^/^+^p^.
Thus ^W^(z,/) and lemma 10 is proved.

Notice that if zeD,, then W^y^jJ^-WI/V). Thus, W^,/) is not a
manifold. It naturally inherits a topology from U f-^^zj) making it locally the

product of a Cantor set and an j-disk. Our next lemma shows that /-controlled disks
occur under rather mild assumptions.

Lemma 11. — Suppose f: M-^M is a G2 diffeomorphism, A is a hyperbolic basic set
forf, and there are points x,y in A so that W^) and W8^) have a non-degenerate tangency at z.
Let D" and D8 be C2 disks in W^) and W'(j), respectively, containing z in their interiors. Suppose
there are disks D^CW^A) converging to D^ in the C2 topology so that z is a limit of transversal
intersections ofD^ and D8. Then z is a limit off-controlled disks. Hence, there are points near z
whose stable sets are locally the product of a Cantor set and an s-disk.

^ Proof. — Recall there are an s>o and semi-invariant disc families {W^)},
{W^)} for x in some neighborhood Ui of A, as in [10]. This means that:
a) for each x, W^) is a CV z/-disk containing x and W^) is a CT .(-disk containing .x;
b) W^) and W^) vary CV continuously with x in Ui;

393
19



146 S H E L D O N E . N E W H O U S E

c ) /W^)DW;(/A;) and /W^) C WJ!(/A;) for ^ in UiO/-1^;
^ for ;ceA, W^)=W^) and W^)==WIM;
^ for A:eintUi, U W^) and U W^(j^) are neighborhoods of A:.

ye^i[x) yew^c)

It is not known if {W^)} and {W^A:)} can always be chosen to be foliations
on a neighborhood of A, but fortunately, we do not need this.

Pick a compact neighborhood Ug of A such that UgCin tU^, ^\fn{U^)=A and
{/n^) : 7zeZ}naU2==0. Choose integers k^k^>o so that /"^Gint Ug for n>k^
f-^^V^ /^eintUg for TZ:^, and /^Ug.

Set U= U ^'(Ua) and define the families {W^)}, {W^)} for A;eU by
- î̂

iteration. We may choose U so that there is a finite set {x-^, . . ., x^}CA such that
v

U C (J int H, where
i== 1

H,=U{W:(^: ^eW^(^)}nU{W^(^) : ^eW^)}.

If the families {W^(^)} and {W^(A:)} were foliations, H^ would be like a local product
neighborhood in which the foliations were trivial.

Observe that

^eint(/(U)-U)nint(/-l(U)-U).

Let V be a small compact neighborhood of z so that dist(V, U)>o. Shrinking D8

and D" if necessary we may assume that D'uD^CintV and D'nD^-^}. Let
7^ : Vi->D8 and TT^ : Vg—^D" be tubular neighborhood retractions with V^, Vg compact
and V^u Vg C int V. Thus D8 C Vi and there is a diffeomorphism ^ : V^ ->B8 X B"
so that ^(DS)==B sx{o} and ^(^lx)==.{^{x)}xKU for xeD8. Also D^CVg and there
is a diffeomorphism ^Va-^xB8 with ^(DM)==BMx{o} and ^(7^:2-lA:)={^(^)}xB8

for xeD^
We wish to define a family of embeddings 9,: B8 x B^M so that {(9^ (B8 x B"), 9^ }

is y-controlled.
For each large z, let [i^o be small enough so that if F" is a z/-disk [L^—G^close

to D^, then F"nD8 consists of two transverse intersections. Since f\ A has a dense
orbit, W^CCI U f^ for each z. Hence there are sequences _^eD^ and n,>o

n^.0
IX'

so that dist(fni~ni-ly^y^-^)<—, f^y^eV for o<j<n^—^_i, and ^->^ as z->oo.

The disk D^ will be chosen to be the component of ^^""^(Vg) nV\ containing^.
The embedding <p,: B^B^D, is defined so that for A:eB8, <p,({^}xBM) is contained
in some fiber of TC^ and, for j^eB^ /M^-"nl-19i(Bsx{^}) is contained in some fiber of^.

A generalization of the X-lemma to basic sets (as stated in Proposition (2.3) of [19])
gives that the forward iterates of the fibers {^r^.ren' wlu ^e mapped C7' near disks
in W^(A)= U W^) and backward iterates of {n^lx}^^u will be mapped C7' near
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disks in WI(A)== U W^^). This guarantees that for large ^ conditions (i)-(5) in
the definition of an /-controlled sequence of disks may be obtained with X large and
2:1 small.

To obtain (6), we must be careful to say how small s^ must be taken. If necessary,
we will agree to increase n^ and therefore make the D/s approach D8 and their ^-diameters
get smaller without further mention._ (<-̂ / f^j

The Riemann metric on M induces one on each W^ and W^ and on D" and D5.
If F is a submanifold and ^, ^F, let us write d(F; ̂ , z^) for the distance between z^
and z^ in the induced metric on F. Let us write dist(F; A, z-^) for the induced distance
between a point z^eV and a set ACF.

Now, first pick s^>o so that:

f) if d{M',w,fz)<2e[, then dist(DS;/-lW^) nD8, ^)<^rf(DS; BD5, ^), and

g ) if d{M',w,f~lz)<2^[ and ^eW^) with d^f^w); w, w^)<2e[, then/^
/•Ow'

and/i^ lie in the same component of yW^^nVg.
We may choose U so that: /%<' /^/

h) there is a constant q>o such that for z^ z^eU, j^eW^^) and z^eW^{jy), we
have ^(M; ^, ^)^i<W(^) ;^ ^).
Now we choose £i>o such that:

i; ^<dist(M;0+(^)uA, M—U) where 0+(^)=={/^ : 7?>o},
/; ^<min(^,q£0, and
k ) if rf(M; ^, ^)<^i, and ^e/-lW:(^) with J/EU, then d{M;^fz^)<e[.

We now prove that b) can be obtained with this £i. Suppose ^i^D^ and
^^D^; for some ^>o, and suppose, by way of contradiction, that ^eW^ (^). Since
2'2^D^, there is an integer i^k so that ^'(^^D^i.

But /^'(^)eD,+i and ^(M;/^,/^)^. If there is a j with n,<j<n^^
such that y^a^U, then ^(M;/^2,/^i)>dist(M;/^i, M-U).

For the D.'s close to z.f^z-^ wdll be near AuO^(^), so dist(M;/J^, M—U)>£i
by i). Then d{M;fjz^,fjz^>£^, which contradicts z^e'Vf^(z^).

Now suppose /^eU for ^<J'<^+i. Since ^(M;/"1"^1^,/"1'4'1^)^^, there
is a ^ in W^-4-1^) such that /^(^^/"'W:^) and (by ^J) ^(M;^/^+1^)<£,.
If we assume ^(/'?i+l^,/^<^, then rf(M;^,/^)<2£^. By/;,

dist(DS;/-lW^^)nD8, ̂ ^(D8; aD5, ^.

By /J and ^, and the fact that D^i is the component of /^'""^C^nVi containing
/^•(^) (and hence/-^), any point we/-1^^) such that ^(/j~lW^^) ;/J^/^)^£;f^-'
for o<j<^i—^ must be in the component ofjy in /"^W^^nD^i. In particular
such a point w is in D^^. Thus, since /^'(^^D^i, there is a j with ^^^^+1 and

^(W^^-^-^); /^-^p^.
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But, by ( h ) , since f^^W^f3-^-1^), we have

^M;/^,,^^^^^^-^-^^^^,^-"1-^)^

which is a contradiction.
It is easy to give examples of open sets of diffeomorphisms satisfying the hypotheses

of lemma 11 on manifolds of dimension bigger than two. To give a specific example
let us consider a variation of a class of diffeomorphisms which has already been studied
by Simon [21]. Begin with a diffeomorphism f^: B2—^2 having a one-dimensional
basic set A as in Plykin [27]. Let f^: R—^R be the linear mapping y\-^ay where
<z>max(sup|TJi|2, 1)^1. Set f=f^xf^: B^R-^xR. Then A^=Ax{o} is a

a;£B2

one-dimensional basic set for f having a fixed point p such that dim W"(j&) == 2 and
dimWS(^)=I. Also, W^A^,/) fills up a two-dimensional neighborhood of A^ in
B^-j^}. Let ^eW^Ai,/)—A^. The picture is as in figure 6.2.

FIG. 6.2

With an isotopy supported off A^, move a piece of W"^,/) around to create a
non-degenerate tangency with Vf^pyf). Somewhat further in the isotopy gives the
example as is clear from figure 6.3.

FIG. 6.3
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The definition of the number a insures that for g C2 neary, W^A^)) is a G2 mani-
fold fibered by the G2 curves W8^, g), J^Ai(^). One may globalize in the usual way
by putting f in a coordinate chart in any M with dim M>2. This method produces
the conditions of lemma 11 ifA^ is any basic set such that W^) nA^ contains a C2 curve.
It probably also works whenever dimAi>o.

We now restrict to a two-dimensional manifold M2 and proceed to prove theorem 2.
Fix r'^2 and let VeDifPM2 be a diffeomorphism having an infinite zero-dimensional
hyperbolic basic set A. Suppose W^A,/) and W^A,/) have a non-degenerate tangency
at a point z. Let y : [— i, i]-^M be a C1 curve transverse to W^A,^) and Vf^Ayf)
at z such that y (—i ) and y( i ) miss W^A^W^A). For s>o small, choose N>o
so that /-^^eW^A,/) and ^-^eW^A,/). Write W^A^^/^W^A,/) and
W^A,/)^-^^,/). Then WS(A)ny and W^ny are Cantor sets in y.
Let P(v) be the smallest closed interval in y containing W$(A)ny, and let I^y) be
the smallest closed interval in y containing W^A^y.

Suppose:

(1) P(Y) and I^y) overlap in the sense that
aP(y) Hint P(Y)+0, and aP(y) nint I^+O, and

(2) T(WS(A)ny).T(W^(A)ny)>i.

By lemma 4, we know that W^(A)nYnWN(A)=t=0. Assume that:
(3) each point of W^ (A) n y n W^ (A) is a non-degenerate tangency of W^(A) and

W^(A).

By proposition 6 and the C2 continuous dependence of W^(A) and W^(A) on fy
we have that the set V of diffeomorphisms f for which there are a hyperbolic A for f
and a curve y satisfying (i), (2) and (3) is open in DifPM2.

Let UCDifPM2 be an open set of diffeomorphisms each of whose elements has
a wild hyperbolic set. By the proof of theorem i, the set Ui==UnV is dense and
open in U. To prove theorem 2, it suffices to show that each / in V satisfies the hypo-
theses of lemma 11.

Given^in V, let A be a hyperbolic set and y be a curve satisfying (i), (2) and (3).
Let {F^>o and {F|}^>() be defining sequences for W^(A)ny and W^A^y respec-
tively. By the last statement in lemma 4, we have int(F^nFf)=t=0 for all i>_o. Let
^eW^(A)nynWN(A) and let G," and Cf be components of F^ and F,8 such that
intC^nCJ+O and C^uC^z as i-^oo.

By (3) there are closed intervals DUCVfu{z) and D^W8^) containing z in
their interiors and having z as a non-degenerate tangency. To satisfy the conditions
of lemma 11, we only need to find a sequence D^ of closed intervals in W^(A) converging
to D" such that each D^ has a transverse intersection ^ with D8 and z^z as i-^oo.
Since A is an infinite basic set, D" is a C2 limit of infinitely many disks in W^(A), and
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D5 is a C2 limit of infinitely many disks in W^(A). The only way such a sequence D^
would not exist is for W^(A) to accumulate on W^) from only one side and W^(A)
to accumulate on W8^) from only the other side as in figure 6.4.

Zl
-WN<A)

FIG. 6.4

But this cannot happen since aG^CWS(A), BQCW^A), C^uGf-^, and
int (C^nCf)4=0. Thus, the hypotheses of lemma n are satisfied by f.
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