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I. _ INTRODUCTION AND STATEMENT OF THE RESULTS

1. Introduction.

The main aim of this paper is to classify codimension two singularities of vector
fields (i.e. those singularities which generically occur in 2 parameter families of vector
fields) and to show that, in a certain sense, such a classification is impossible for codimension
three singularities (at least in the dimensions ^5). A more precise statement of the
results is given in § 3 of this chapter.

This study was mainly motivated by the desire to extend the Thom-Mather
catastrophy theory [19; see also the appendix by J. Mather in the English translation]
to systems which are not c < regulated 33 by a potential function (or rather by its gradient
flow) but which are regulated by an arbitrary (but generic) flow. For such an extension
of the Thom-Mather theory, the next thing to be done is to study the " unfoldings5?

of the codimension 2 singularities which are classified in this paper. I hope to deal
with these unfoldings in future publications.

I want to thank R. Thorn for the many stimulating discussions, related with the
topic of this paper, I had with him. I also want to thank M. Shub and C. G. Pugh
for introducing me to their techniques on invariant manifolds which were essential in
chapter IV. Finally, I want to thank the Institute de Matematica Pura e Aplicada
(I.M.P.A.) for the hospitality they offered me in the time I prepared this paper.

2. Definitions.

We shall study germs of singularities of C°°, or CY, vector fields on jy1 in o.

Definition (1.1). — A germ of a singularity of a C°°- (or G^-) vector field on R^ in o
is an equivalence class in the set of all G00- (or G^-) vector fields X on K1 with X(o) == o;
X-^ and X^ are (germ-) equivalent if there is a neighbourhood U of oeR" such that
X^\V=X^U. ^n (or gF^) denotes the set of all these C00- (or (Y-) germs.

Definition (1.2). — Let Z^, X^e^ (or ̂ \ t>K). Then X^ and X^ are k-jet
equivalent if all the partial derivatives up to, and including, order k of the component
functions of X^ in o coincide with those of X^. The equivalence classes are called k-jets.
There is a natural i-i correspondence between ^-jets of singularities of vector fields
on jy1 and vector fields X on R71 with X[o) = o and with component functions poly-
nomials of degree <^. The setj^ of^-jets of singularities of vector fields on Rn is a vector

48



SINGULARITIES OF VECTOR FIELDS 49

space (and hence it has the structure of an algebraic manifold) $ ^ : ̂ n ->J^ are the
induced projections; also the natural projections J?—^J^, ^^k, are denoted by T^;. We
take on ^n the topology induced by {7^°^; i.e. if Xe^y then a basis of neighbourhoods
of X is obtained by taking {TI^U^ ̂ J^^i, where, for each k, {U^J^i is a basis of
neighbourhoods of ^(JT) in J^. A (smooth or algebraic) submanifold Wc^" is a
subspace which is, for some k, of the form W^TT^W^), where W^ is some (smooth
or algebraic) submanifold ofj^; (semi-) algebraic subsets of ^n are similarly defined.

Definition (1.3). — X^, X^e^'^ are G^-equivalent if for some (and hence all)
representatives X^y X^ of X-^ and X^ there are neighbourhoods U\, Ug of o in R71 and
a G^homeomorphism 9 : Ui-^Ug which maps integral curves of X^ to integral curves
of X^ preserving the (< sense " but not necessarily the precise parametrization; more
precisely: if ^eU\ and ^^(j&, [o,^i])cU\, ^>o, then there is some ^^>0 such that
^2(^)5 [°? ^])=<p(^zi(A [°5 ^]))- (As usual, .̂ : ̂ xR-^^ denotes the integral

of Z,, i.e. ^.(Ao)=^ and ^(^,(A ^))=^(^(A ^)).)

Definition (1.4). — Let X be a vector field on K1 with ^(o)==o and let U be
some bounded neighbourhood ofo in R^ Then L^ ^ y(^), the co-limit of p with respect
to U, for peV, is 0 if the positive integral curve of X, starting at p, leaves U
and otherwise is the set of those qeU for which there is a sequence ^, t^ . . . ->+oo
with lm^(^)=<7.

La x u(^) ls defined analogously, i.e. by replacing <c positive integral curve " and
(< ^i, ^, . . . -> + °o " by cc negative integral curve " and (< ^, ^, . . . -> —oo ".

Definition (1.5). — ^i, X^e^1 are weakly-G'-equivalent if for some (and hence
all) representatives X^y X^ of ^3 and -Zg, there are two bounded neighbourhoods U^
and Ug of o in Rn and a G^-homeomorphism <p : Ui-^Ug such that for any VcU,
with oeV, and any pe'V:

^X^^MP))-^^^?)) and L^^^(v)(9(^))=9(L^^^(^)).

Definition (1.5) has the advantage that it is clear that "being weakly-
G^-equivalent " does not depend on the choice of the representatives X-^y X^. In the
following lemma we shall give a useful criterium for y to realize a weak-G^-equivalence.

Lemma (1.6). — Let X^ and X^ be two vector fields on R71 with X-^{o)==X^{o)=o.
Let 9 : U^-^Ug be a G-homeomorphism; Ui, Ug are bounded neighbourhoods ofo in R^ Let
K^ be the set of those points peV^ for which L^^^^.(^) or L^^^^.(^) is non-empty. Then
cp realizes a weak-0-equivalence between the germs of X^ and X^ if and only if:

1) <p(K,)=K^
2) <p [ KI maps integral curves of X^ (< sense " preserving^ to integral curves of X^.
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50 F L O R I S T A K E N S

Proof. — It is clear that if 9 satisfies i) and 2) then 9 realizes a weak-G^equivalence.
Also if 9 does not satisfy i) then 9 does not realize a weak-G^-equivalence.

We suppose now that 9 does not satisfy 2) (but satisfies i)). We then can find
two points p-^, j^eK-i such that p^ lies on the positive X^ integral curve (in U\) starting
in p^ but 9(^2) n0^ on ^e positive X^ integral curve (in Ug) starting in 9(^1). If
L^.ui(A)+0. resp. L^u^)+0, we take V,=Ui\{^}, resp. V,=Ui\{^}. We
then see that L^z^Vo/Ai.)^^ resp. La.zi.VaC^a)^^? but, if 9 realizes a weak-
G^-equivalence, L^^v^(9(^))+0, resp. L^^^{^p^)^=0. By the definition
ofK^, we have L^^^Q&i)=|=0 or L^^^(j^)4=0; this shows that 9 does not realize
a weak-C^equivalence.

Remark (1.7). — If X^, X^e^ are G^-equivalent, then it is clear that they are
also weakly-G^-equivalent. The converse is not true; for example, if X^ and X^ are
germs of non-degenerate singularities on R2 of saddle type, then X^ and X^ are weakly-
G ""-equivalent (the equivalence is realized by a diffeomorphism 9 with 9(W^)=W^
and 9(Wy==W^; W^., resp. W^, is the unstable-, resp. stable", manifold of X^

a a
in o) but in general not G-equivalent (take for example X^==2X^——x^— and

a a , a a oxl ux2

X2=2X1^~X2^+X2^+2X1X2^ seealso [I7])-

Definitional^).—Let Kc^ and XeK. We say that X is K- (weakly) -C'-stable
if there is a neighbourhood U of X in <&n such that every .Y'eKnU is (weakly)-
G^equivalent with X.

3. Statement of the results.

In this paper we shall prove the following two theorems:
Theorem 1. — There are, for each n, closed semi-algebraic subsets ViDVgD^^ in ^n

of co dimension i, 2 and 3 respectively, such that, with Vo^S^, i=i, 2, 3, each JCeV^_i\V^
is ^/^_^-weakly-C°-stable', moreover, each V^_i\V^ is a non-singular open codimension {i—i)-
manifold.

Theorem 2. — If n>_^, then there is no sequence V^DV^V^DV^ of closed semi-algebraic
subsets of ̂ n as in theorem 1.

Remark (1.9). — We shall take V^ to be the set of germs of those vector fields
n r\

X== S X^— on K1 which have at least one eigenvalue on the imaginary axis (these
1=1 sxi /ax.\ \

eigenvalues are the eigenvalues of the matrix (—t- j j . The fact that each Xe ̂ ^V^
\ ^jAjv

is ^-weakly-C^stable, even ^-G^stable, is a reformulation of the theorem of Hartman
and Grobman ([5], [4]).
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SINGULARITIES OF VECTOR FIELDS 51

The singularities occurring for ZeV^Vg are described by Sotomayor in [16]
where they were proved to be V^-CP-stable and where their unfoldings were studied.

In the proof of theorem i we shall also give a complete classification of the
singularities occurring for XeV^\y^.

Remark (1.10). — From [18] it follows that there is some positive k such that
there is no sequence Vi3V2D. . .DV^ of closed semi-algebraic subsets of ^4 as in
theorem i; I do not know what the lowest such k is. On the other hand it seems reasonable
to conjecture that in ^2 there is an infinite sequence V^DVgDV^ . . . as in theorem i.
I have no idea about the situation in ^3.

It seems likely that theorem i remains true if we replace weakly-G°-stable by
G°-stable; however, I do not see how to prove that without having to go through very
long computations.

4. Reduction to the completely non-hyperbolic case.

We first restate two theorems which we then shall use to prove that it is enough,
in order to prove theorems i and 2, to prove certain theorems, namely (1.15), ( i . i6)

n r,

and (1.19), concerning germs of vector fields X== S X^-— for which all the eigenvalues

(^XA t = = l ()xi
of —— | are on the imaginary axis.

^•Aj
n o

Theorem ( 1 . 1 1 ) ([6], [8]). — Let X== S X,— be a C^-vector field on ̂  such that
[8X-\ i=l '

c eigenvalues of ——) are on the imaginary axis and let f be some positive integer. Then there
\^A',j

is a Cf-c-dimensional manifold W^, containing the origin., and a neighbourhood U of oeR" such
c ^

that for any j^eW^nU, X{p) is tangent to W^, and such that^ if X== S X^— is the restriction
i=i ^

/^5c\
of X to W^ fj/i, . . .,ĵ , coordinates on Wjg-J, then all the eigenvalues of (——^ are on the
imaginary axis. v •/j /iJ

Remark (1.12). — It should be noted that Wjg- in theorem (1.11), the so-called
center-manifold of X, is not unique. However, the ^-jet of the restriction of X to W^
is unique in the following sense:

Let A:i, . . ., x^ be coordinate functions on TK1 such that x-^y .. ., x^ restricted to
W^, form, near the origin, a coordinate system on W^; let W^ be another G^-center-

C r\ C r\

manifold of X and let X== S X,— and J?'== 2 X,7 — be the restrictions of X to Wy
i=i 8x, z=i " 8x, x

and W^ respectively expressed in the coordinates ^, . . . , ^restricted to W^, resp. W^.
Then the /'-jets of X^ and X[ are equal for i==i, . . ., c.
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52 F L O R I S T A K E N S
c ^

Theorem (1.13) ([6], [14]). — Let X, c, Wj: and X== SX^i, . . .,j^)— ^ as
z=l ^

ZTZ theorem ( 1 . 1 1 ) . Then there is an m, with o<^m<_n—c, such that the germ of:
C Q C + W, r\ n r\

Y= SX,(^, ...^)—+ 2 u—- S j/.—
^ zU-l. ' — — ^ ^ c + l ^ ^ z=c+m+l-a^

z.y C(^equivalent to the germ of X.

Definition (1.14). — W^, W^, . . . ,W^ are the following semi-algebraic subsets
n ^

of ^n (or g^): W^ is the set of those germs of vector fields Z= S; X,— on R1 for
( O x . \ j=l ^

which all the eigenvalues of —— have non-zero real parts except:
^-^j'hj'

i == i : one eigenvalue is zero;
i=2 : two non-zero (complex conjugate) eigenvalues are on the imaginary axis;
z=3 : two eigenvalues are zero;
i=4 : one eigenvalue is zero and two other non-zero (complex conjugate) eigen-

values are on the imaginary axis;
i==^ : four non-zero eigenvalues are on the imaginary axis.

In chapter VI we shall prove the following two theorems, using the theory developed
in the chapters II, III and IV.

Theorem (1 .15) . — There are closed semi-algebraic subsets W^==Vi i^V^ g3^ 3 and
Wj^V^DV^DV^ of W^and Wj such that each ZeV^\V^+i is ^[^weakly-C^stable,
for z=i, 2, ^==i, 2; V .̂ has co dimension j in ^\

This holds also if we consider W^ and Wj as subspaces of ^n'c for t sufficiently
large. The sets V^ j, resp. Vgj, have also the property that for any XeV^ ,, resp. Vg ^
and any G^-diffeomorphism <p : (R, o)-^(R, o), resp. 9 : (R2, o)->(R2, o), ^{X)eV^ .,
resp. eV^j.

Theorem (1 .16 ) .— There are closed semi-algebraic sets Wj^Vg g^V^ 3, Wi=V4 ^'3'V^ 3
and W^==V5^DV^3 such that each JTeV^ g\V^ 3 is V^-weakly-C°-stable, ^=3,4,5;
V^ , has co dimension j in ^-1.

As in theorem (1.15) this also holds in ^n^ for i sufficiently large and the sets V, 3
are also invariant under the action of diffeomorphisms.

Remark (i .17). — The number of different (non-weakly-G°-equivalent) singularities
in each of the above V .̂ j\V^ j.^ is as follows:

Vi,i\V^:i V^\V^:2
Vl,2\V:,3:2 V^\V2,3:2

V3, 2\V3. 3 : 1 V^ ̂ 4. 3 : 5 V^ ,\V,, 3 : 10
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SINGULARITIES OF VECTOR FIELDS 53

We now give the
Proof of theorem 1 assuming theorems (1.15) and (1.16).
As in remark (1.9) we define Vi to be the set of germs of those vector fields Ze^"

(^)Y \
such that ——\ has at least one eigenvalue on the imaginary axis. V^cV^_i,

^jAj
i=2, 3, is the closure of the subset of those germs X in V^_^ such that X, restricted to
a center-manifold, is not in y^_i\y^, j== i, 2 if i==2 and j=i, 2, 3, 4, 5 if 2=3.
V^ is the union ofV^' and the set of those points in V^_^ where V^_i is not a non-singular
codimension (z—i)-manifold. Note that V^==V^.

We first prove that V^, Vg and V3 are closed and semi-algebraic sets. We recall
that a set is semi-algebraic if it is the union of a finite number of sets which can be defined
by polynomial equalities and polynomial inequalities. Our proof will be based on a
corollary [9], due to Thorn, of the Seidenberg-Tarski theorem [15] which, restated in
a form which is convenient for our purposes, reads as follows:

Proposition (1 .18) . — Let K be a semi-algebraic subset ofj^, then the set:

K' = {ocej^ | there is a k-jet of a diffeomorphism 9 : (R^ o) -> (R", o) such that 9^(0) eK}
is also semi-algebraic.

Using this proposition it is easy to show that V^ is semi-algebraic: the set K of
n o

those aej^ which can be represented by X= S A^— with A^, in Jordan normal
»,j==i 8Xj

form and with Ay having at least one eigenvalue on the imaginary axis, is clearly semi-
algebraic; from ( i . 18) it now follows that the set K' of those ocej^ which can be rep-

n n

resented by X=== S A^—, with A .̂ having at least one eigenvalue on the imaginary
i, j == 1 OX.

axis, is semi-algebraic; V^TT^^K').
Now we prove that Vg is closed and semi-algebraic; the proof for V^ goes in the

same way and is omitted. Let N be an integer, so large that each of the semi-algebraic
sets V .̂ is of the form ^^(Vy). Then we define KcJ^ to be the set of jets of vector

r\

fields X==^X,— in Vi with:
i ()X^

( f^y \
a) ——{o)\ is in Jordan normal form and has v (>o) eigenvalues on the

a^ /ij
imaginary axis; / ^

b) Xi(^, . . ., x^y o, . . ., o) •=. o for z>v, all the eigenvalues of (——^^l
are on the imaginary axis; v j h^^

v ^

c ) X= S X^, .. . , x^ o, .... o)— eV^2 for some [L.
3 — — OX.

(Note that v and [L are dependent: V = [ A if ^.^2 and v 4 - i = ^ if [L>_^ (see defi-
nition ( i . 14)).) It is easy to see that K is semi-algebraic. Let K' be again the orbit

63



54 F L O R I S T A K E N S

of K under the action of diffeomorphisms; then TC^^K^^V^ is semi-algebraic. The
set of points where V\ is not a non-singular manifold of maximal dimension is closed
and semi-algebraic. So Vg^VgUV^ is closed and semi-algebraic. (The closure of Vg
can be obtained by replacing < in defining equations everywhere by <_.)

The fact that the codimension of V^ is i follows from (1.15) and ( i . 16).
Finally we prove that each XeV^\V^^ is V,-G°-weakly-stable for i==o, i, 2.

For i==o see remark (1.9). We shall prove the stability of JTeV^Vg; the case
.X'eV'2\V3 goes in the same way. Let N be again an integer, so big that the sets V^ •
are all of the form ^N^Vij) anc! ̂ et ^YiV^- Let a be the N-jet of X, restricted to
a center-manifold; a is unique (( up to coordinate transformations ".

According to the definition ofV^ and Vg, a is a point of^C^ ^\V^ 3), i==i or 2,
which has a neighbourhood U in V^ i\V^ 3 which is a non-singular manifold. Let
U cj^r be the set of those jets of vector fields X, for which the N-jet of its restriction
to a center-manifold is in U; U is a codimension i manifold. ^(^iV^) and U coincide
locally, i.e. there is a neighbourhood U\ of n^[X) such that UinU=Uin7TN(Vi\V2).
We now assume that we have taken U so small that if X^ and X^ are G^vector fields
whose N-jets are in U, then X^ and X^ are weakly-G°-equivalent; this assumption is
justified, i fN is large enough, by theorem ( i . 15). We also assume that U\ is so small
that if X^ and X^ are vector fields whose N-jets are in U^ n ̂ (V^Vg), then the number

(QV \ f cy \

of eigenvalues with negative, or positive, real part is equal for —lt) and ( — — \ .
^ Aj \ ̂  )iJ

Now it follows from theorem ( i . 13) that any X-^, X^e^ with ^{X^eU^nn^(y'^\V^
are weakly-G°-equivalent. This proves theorem i.

As to the proof of theorem 2, we shall show that that can be reduced to proving the
following theorem (1.19), the proof of which will be given in chapter V using the theory
developed in the chapters II and III.

Theorem (1.19). — There is a submanifold WcJ| of codimension 3 which contains a
residual subset P such that for any (BeP and any (B'ejjt, A^2, with 7T:2((B')==(B, there are two
representatives X^ X^ of [B', such that for any two bounded neighbourhoods U ,̂ Ug of oeR5 the
sets Li, Lg, where L^ is the set of those points yeU^ for which both L^ ^. y.(y) and L^ ^. y.(^)
are the origin (in R5^), are not homeomorphic.

Proof of theorem 2 assuming theorem ( 1 . 1 9 ) .
Suppose there is, for some ^^5, a sequence V^ D Vg3 V3:) V"4 in ^n as in theorem i.

Because V^ has codimension 4, there must be some Xe^y XfV^ such that the 2-jet
of Xy restricted to some center-manifold, is in P; let XQ be such a germ and assume
^oeV^\V^_i, ^3. According to the assumption there must be a neighbourhood U
of XQ in V^ such that each X'eU is weakly-G°-equivalent with XQ, According to
the definition of the topology in ^n and the definition of algebraic sets in ^n there is
an integer k, such that every Z'G^, which has the same ^-jet as Zo, is in U (and hence
weakly-G°-equivalent to Xo). In order to construct a contradiction we take two
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representatives X-^y X^ of the ^-jet of XQ such that the restrictions X^ X^ to their center-
manifolds Wj^, Wjg are as in the conclusion of theorem (1.19), i.e. for any two
neighbourhoods U^, Ug of o in Wj^, W^ respectively the sets L^, Lg are topologically
different (L^ is the set of those yeU^ for which both L^.^(y) and L^j^(?) are
the origin); such a choice of X^ and JTg is possible by theorem (1.19). According to
theorem (1.13), if U is a neighbourhood of oeR" (small enough) and if qeU has
the property that both L^^u(^) and L^ xi,vW are t^ origin, then q must be a point
of the center-manifold Wj^..

The above facts, together with theorem (1.13), show that X^ and X^ are not
weakly-C°-equivalent. This is the required contradiction proving theorem 2.

II. — NORMAL FORMS

The main theorem of this chapter is very close to the formal part in [17] and
was probably known to Sternberg and others; the applications are, however, new (as
far as I know) and rather surprising. We develop the theory of normal forms in § i
in the generality we need for the final results of this paper; in appendices i and 2 we
give some extensions of the theory. Applications are given in § 2, § 3 and § 4; § 5 deals
with the geometric interpretation of the results of § 4.

i. The normal form theorem.

Let X be a C^-vector field on R" with X{o) == o. We want to put X, or rather
its ^-jet, f<_k, in a simple form by " changing the coordinates 5? in R^. For this purpose
we define X^ to be the vector field on K1 which has the same i-jet in o as X and whose
coefficient functions are linear. HP denotes the vector space of those vector fields on jy1

whose coefficient functions are homogeneous polynomials of degree A.
[^, —]^ :H/l->I-^? is the linear map which assigns to each YeH71 the Lie-

product [Zi, Y] which is again in H\ For X-^ fixed, we define a splitting H^B^+G^
such that B^^Im ([-^i, —]^) and such that G^ is some supplementary space.

Theorem (2.1). — Let X, X^ J^, G^ be as above. Then, for £<_k, there is a
G^-diffeomorphism 9 : (R", o) -> (R^ o) such that 9,(Z)==Z' is of the form:

^/=^l+<?8+..•+&+^

where gi^G\ z=2, .. .,^ and R{ is a vector field, the component functions of which have all
zero /-jet; {==k==oo is not excluded, (̂ p can be used to define new coordinates x[, ..., x^ with
respect to which X is of the form of X'.)
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Proof. — We prove the theorem by induction on /'. For i = i, the proposition is
trivially true. Suppose now we have X==X^-\-g^-{-... +^-1+^-1 as in the conclusion
of the theorem. We can then write Rf_^=g(-{-b{-\-Rfy with g^oG^y b/e^ and ^
a vector field, the component functions of which have all zero /-jet. We take YeH^ with
[ZI,Y]==^ and consider (^),Z=Z^ ((^y,<) is the diffeomorphism (R1, o)-> (R^ o)
obtained by integrating Y over time ^ (see definition (1.3))). The (/'—i)-jets of X
and Xt are equal, l>_ 2, so [Y, ZJ=—^+^,<? where 7?^ is C?""1, but for some positive A,
and all \t\<_i and all xeK1 with |H|<^I:

||^W||^A.|Hr1.

d
From differential geometry we know that ——(Ji^)=[Y,J^], so X^ has the form

at
X^X^+g^+.,.+gf+bf+tbf+R^ with R^ C? because J^=(^),Z and Qy^
is C00. It is now clear that if we take <p^==^y,-i we have ^^X)=X-^-\-g^-{-. . . +^+JR/f

as in the conclusion of the theorem. This induction proves the theorem for the case /'<oo.
Suppose now /'=oo; the above construction gives a sequence of diffeomorphisms

Y^ : (R^ o)-^, o), r=i, 2, . . ., such that Y^(Z)=Zi+<?2+. • • +gt +^. as in
the conclusion of the theorem with i ' instead of ^ and such that the (/"—i)-jets ofY^_^
and Y^ are equal (the (p^ constructed above is so that we can take Y^/ ==9^'^-i and
the (/"—i)-jet of cp^ was the (/"—i)-jet of the identity). By the theorem of E. Borel,
see [n], there is a diffeomorphism T such that for each/", the /"-jets ofY^/ and T are
equal. It then follows that ^V^X) == X^ + g^ + ̂ 3 + . . . + R^ and the theorem is proved.

0

2. The singularity c< ^ ,- ".
0X9

We apply in this paragraph theorem (2.1) to the case where X is a G^-vector
o

field on R2 which has the same i-jet as X^=x^—. The image of [A^, —]^ in H^,
or B^, is determined by the following formulas: 2

[ ri r\ 1 r\ r\

y ____ yUl yU2 ____ __ „ yHl + 1 yH2 — 1 ____ y»»l yW2 ____ C^ 1} '> f
•^l^"""? ^1-^2 ^— —^2^1 ^2 "p""^! ^2 " - v ? Ior 7^2^-I

(/^ C/̂ J OX^ OX^

r\ ^ 1 î[ r\ ^ 1 î

^—,A<m^a— =n.x!l+lx^~l—, for 7^2>I
l < - \ 3 1 ^ r \ | 4 1 <i Q -——a^a a^j a^

__ yni yna __ ^^ „ yni +1 yn2 — 1 __

and:
f a a 1 a

y _____ yHl _____ ___ y l̂ ____

F^ ' ^J 1 ^

Fl——^x?—— ==°'[^x^ 1 8x^
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0 Q

From this it is clear that H^ is spanned by B^ ̂ — and x[—. B^ has codimension 2
^1 / ^2 ^

in H^ because the kernel of [Xi, —]/> has dimension 2 (it is spanned by x{— and
a a \ ^ ax2

;v{—-{-x{~ lx^—!• From this it follows that we may take G1 to be the subspace of H^,ox^ a^/
. 8 . 8

spanned by x\— and x\—5 and we have the following:ox^ ox^

Proposition (2.2). — Z^ X be a ff-vector field on R2 whose i-jet in o equals the i-jet
r\

°f x!—• Then there is a C^-map 9 : (R2, o)->(R2, o) such that:ox^
r\ k I r\ o \

^(Z)=^—+S^—+^— +7?,,a^ ^=2^ a^ ^
w^r^ ^A^ ^-^^ of R^ is zero.

3. A single rotation.

We take X again as vector field on R2, but now so that its i-jet in o equals the
a a

i-jet of X^ == x^— —x^— . In order to determine B' and to choose G it is convenient
OXn OXi

to have a basis of eigenvectors in H^; in order to be able to make such a basis we complexity
H^ to H^®C. The elements of H^®C can be written in the form Y-^+iY^ with
YI, VaeH^; the action of [J^, —]^ on H^®C is given by:

[X^Y,+iY^=[X^Y^+i[X^Y^.

In order to construct a basis of eigenvectors in H^®C we define the following
vector fields:

Z-A+z-^- Z ==-^-i^-1 a^i 8x^ 1 a^ a^5

and the following functions:

V^(^, ̂ )^(^+^)^^+^)fc for A^o, r^o,

V'̂ ^i, ̂ )==(^+^)r(^-^2)'~' for ^o. ^o-

( ^ ^ \
It is easy to see that [Z^, Z^]==±i.Z^ and A:i—-^—Iv^^A.z.V7 '^.

(7^3 °^l/

From this it follows that {V^.Z.},.^ forms a basis of H^®C, consisting of eigen-
j^±l
2r+\k\={ , /

vectors of [J^, —]^. The eigenvalue of V^.Z^ is (^+J').z; so the kernel of:

[X^ -] : H^C->H^®C
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is o if i is even and 2-dimensional if t is odd; in that case the kernel is generated by

V2^"1^1. Z_i and V2^"^' -1. Z+i. Next we observe that:

^(vS"-l••.^„+^"-"-.^„)=^=M+.4)s"-'(«,^+«,^)

and ^(..vS"-•l.Z„-..V»"-"-.^„)=^=K+4S"-l'(„^-„^).

So the kernel of \X^ —]^, in the complexified case, for t odd, is generated by the (c real
vectors " W^ and FVf.. It is now an easy exercise in linear algebra to show that we
may take G^==o for t even and G^={the 2-dimensional vector space spanned by W^
and Wf_} for I odd; so we proved:

Proposition (2.3). — Let X be a G^vector field on R2 whose i-jet in o equals the i-jet
r\ r\

of X.=x.——x^— . Then there is a G^-diffeomorphism 9 : (R2, o) -> (R2, o) such that
c)x^ ()x^

2f<k I ^ o \ 2£<k I ^ Q\

^{X)=X,+ S a^+xiy[x ,—+x,—]+ S b^+xlV ̂  -^ +^, where
t_^l i OX-i CXc)] ~ ^L- \ OXi) OX-if

the k-jet of Rj^ is zero.
An equivalent, but more geometric form of the above proposition can be given

as follows:

Proposition (2.4). — Let X be a C^vector field on R2 whose i-jet equals the i-jet of
f\ r\

X^==x^——x^—. Let RQ : R2—^2 be the linear rotation, given by:
ox^ ox^

RQ^I, x^)={x^.cos 6—.Vg.sin 6, x^.sin 6+^2•cos ^)*

Then there is a C^-diffeomorphism 9 : (R2, o)^(R2, o) such that X'==^{X) has the property
that for each 6, the k-jets of {'R.Q^^X') and X ' are equal (or " the k-jet of X' is invariant under
the rotations RQ " ) .

4. Several rotations.

In this paragraph we generalize § 3 to the case where X is a G^-vector field on R"
m l r\ r\ \

such that the i-jet of X m o equals the i-jet of X^== S \(x^_^———x^———\ where
i=l \ 8X^ ^2i-l]

m m

2m<_n, We assume that S o^\=ho whenever a^eZ and i<_ S |aJ^^+i; this cor-
i==l i=l

responds to excluding <( strong resonances ".
As in § 3 we consider the action of [J^i, —}{ on H^®C. In order to describe a

basis of eigenvectors in H^®C we use the notation of § 3, i.e. V^^.i, x^) will have
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the same meaning as in § 3 but with x-^y x^ replaced by ^j-a? X2j:> ^±1(^-19 X2j) denotes
a . a

the vector field———±z——. As in § 3 we have that:
^._i 8x^

[X^ Z±i(^-l3 ̂ )]=^-V^4=l(^-l3 ̂ -) for J<.^

and:

(s 4^-1^ -^—n^v^-i, ̂ ^.vz.v^-i, ̂ ,).
\v=l \ ^2v ux2v-l//

With this we can give a basis of eigenvectors in H^C as the union of the following
two sets:

{V^^,, x,), . . . , V^(^-i, ̂ J .W(^+i, . . . , ̂ ) .Zi(^-i, ̂ )),

where I==±i , 70=1, 2, . .., m and where W is a homogeneous polynomial of degree
m m

1—2 S r,— S | A, [, and:
j = l J j=11 J l

f ^ 1
V^'^,, ̂ ), . . ., V-^^-i, ̂ J .W(^+l. • • •^n) . .- ,[ ox^

m m

where v^2w+i and where W is a homogeneous polynomial of degree i—2 S ^.—S [^.|.

The corresponding eigenvalue is (Sx^.^.^+I^.? for an eigenvector of the
m

first set and S Xj.^.i for an eigenvector of the second set.

We now assume ^^k and absence of <c strong resonances " (see the beginning of
the paragraph) $ then the eigenvectors with eigenvalue zero are all of the form:

W((^+^J), ..., (4n-l+4J^2m+l. •••^J-V0^1^-!.^)-^!^-!.^)

o

and: W((^+^|), . . ., (^L-i+^J^2m+i. •••^n)^ ^2m+i,

with W an appropriate polynomial.
As in § 3 we conclude that we can choose G1 to be the subspace of H^ consisting

of those elements which can be written as:
m f r\ ^ \

.^'^((^1+^2)? • • •3 (^2^ -1+^2^1 )9^2^+13 • • - 3 ^n) (^z-lp———x^^————
»=1 ^ (9^^ î-l/

W / r\ r\ \

+S^((^+^), ..., (^L-l+^j3^2m+l3 • • • 3 ^ ) ^ - 1 . — — — — + ^ i — — — \
z=l \ ^-1 ^V

W r\

J^ • ^ ,^(?+^2)3 • • • 3 (^2M-l+^2w)3 ^2w+l3 • • • 3 ^n)^~ •» = <2»n +1 C/A^

5P



60 F L O R I S T A K E N S

So we proved:

Proposition (2.5). — Let X be a Cf-vector field on K1 which has in o the same i-jet as:
m l n n \ m

xl=Tt\{x2i-l-.-—x2i.———. ^m<n, with S oc^+o
1=1 \ ^2i ^2i-l/ ^=1

w

whenever a^eZ fl̂  i^S[aJ<^+i.
1=1

r/^ there is a C^-diffeomorphism 9 : (R^ o) -> (R^ o) such that (p»(Z)==Z' ^ of
the form:

m ( ?) f) \
^ == ^^((^1+^2)? • • • ? (^w-l+^w)) ^w+l? • • • ? ^n) 1^21-1^———^2i^————|

i-l ^ ^2^ î-l/

m / I f ) D \

+s&((^+^), ..., ^L-l+^J,^2m+l? • • • ^ J ^ z - 1 . — — — — + ^ 1 . — —
1=1 \ ^2z-l î/

w ^

+i=S,+lhi[{x21+x22)' " • 3 (^-l+^'^+l. •••^n)^+JR^

or

with /,(o, ...,o)=\, &(o, ...,o)==o, A,(o, ...,o)=o, —(o,.. . ,o)=o for a l i i
and j^2m +15 ^^ ̂  ff vector field with zero k-jet. J

Analogous to proposition (2.4) in § 3 we have here:

Proposition (2.6). — Let X, X^ be as in the assumptions of proposition (2.5); let:

R^ : (IT, o) -> (R^ o), i<_m,

he the rotation'. Re(^i, ..., ̂ n)=(^i? • • • ? ^n) wlt^ x j = x j if J=t=2z—i, 2z, and:

^i-l^^i-l cos 8—^21 sln ^5 ^t^^z-l ̂ m 6+^2t cos ^*

rA^ there is a G^-diffeomorphism 9 : (R^ o) -^ (R^ o) such that JT=9,(Z) A^
the property \

For any i<_m and 6, (R^)^(JT') ^Tzrf ^r/ have the same k-jet.

5. Jet reductions.

Definition (2.7). — Let Xbe a vector field on R" having a ̂ -jet as X' in the conclusion
of proposition (2.5). Then the reduced k-jet ofX, is the ̂ -jet of the vector field X" on jy1-"1:

m f) n f)

X"=^g^y[, "^fm^2m+l. •••5^•^^+^2S+^C^ •• •^L^m+15 • • • ̂ n) -^ •

If the germ of X is as X' in the conclusion of proposition (2.5) with Rjc=o and^,
g^y h^ G^-functions, then the reduced germ of X is defined by the Same formula which
defined the reduced jet.
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Remark (2.8). — In order to see clearly the relation between a jet (or a germ) of a
vector field and its reduction, one has to consider the multivalued <( map " O : K^—^'sy^~m

defined by:

(•^13 • • • 3 ^n) -> I1 V x! 4~ ^2 5 . . . ? =1= V A:2w -1 4" ^2w 5 ^2w + 1 5 • • • ? ^n) •

If JST is a germ on R" and X" its reduction, then 0 maps integral curves of X to integral
curves of X" \ X" then contains all the information about X except for the (< speed of
rotation 39. For jets, of course, the same type of observation holds.

Proposition (2.9). — We consider R^ with coordinates x-^y ..., ^, and K^~m, with
coordinates y-s,^ ...,j^, ^2^+1, ..., A^. The rotations R^ on JK1 are defined as in prop-
osition (2.6). T, : R^-^->R^-^ z=i, . . ., m, is defined by:

TZ^I? • • •3j^n3 X2m+l9 • • - 3 xn) == (.^13 • • • 3^-13 "~^3j^+l3 • • -iVm^ •?i:2M+l3 • • • 5 ^n)-

1) 7/' X " is a germ (or a k-jet) of a vector field on K^~m which is obtained by reducing a
germ (or a k-jet) of a vector field X on R71, then X" is invariant under the maps T^.

2) If X " is a germ (or a k-jet) of a C^-vector field on 'Sn~m which is invariant under the
maps T^, then there is a germ (or a k-jet) of a vector field X on K1, such that X " is the reduction
of X.

3) Let X be a germ (or a k-jet) of a vector field on K1 and let X " be its reduction. If
<p" : (R71""1, o) -> (Bn~m, o) is a germ (or a k-jet) of a C^-diffeomorphism, commuting with
TI, . . ., T^, then there is a germ (or a k-jet) of a diffeomorphism 9 : (R^ o) — (R", o) such
that ^ [ X " ) is the reduction of^(JT); 9 commutes with all R^.

Proof. — i) follows directly from the definitions.
We prove 2) only for the case that X" is a germ of a vector field (the case where

X" is a k-]et then follows). As X" is invariant under T^, . . ., T^, we can write X"
in the form:

m r\ n r\

^'^^C^ ..., ̂ 3^+13 •••'^y'+^^/^l? •••3^^2m+l3 • • • ' ^ ) - ^ -3

where h^ and g^ are C00-functions on R^, invariant under T^, . . ., T^. So 2) is proved
once we know that if^is some C^-function on R^1-^ invariant under T^, . . ., T^ then
there is a G°°-function f": R^^—R such that:

j(j^l3 • • - 3 j w 3 ^2W+13 • • - 3 ̂ J^Vl.^ • • -3^3 ^2^+13 • • • 3 ^n) •
*.

The existence of such an^f, up to oo-jet equivalence is easily verified (none of the ̂  can
occur in an odd power in the Tay lor expansion of/). The existence of the function f
is then proved using Malgrange's preparation theorem as in [10, see I, § 4].

To prove 3), it is enough to show that if 9" : (R^^, o) -> (R^^, o) is a germ
of a diffeomorphism, commuting with T^, . . ., T^, then there is a germ of a diffeo-
morphism 9 : (R7', o) -> (R", o), commuting with all R'Q and such that <I)9==9"0

61



62 F L O R I S T A K E N S

where $ is as in remark (2.8) (the choices of ± in the definition of O must be the same
at both sides of the = sign).

To obtain such 9, we first write 9" in the form:

9"(^l5 • • •^m? ^m+l^ • • -^J^C^ • • •^m? ^m+l? • • • ̂ n)

+(^1.^1(^1? • • •^n )? •••^m-^mC^ • • •^n)? ^m+lO^ • • •^n )? • • • ? ^n-̂  ̂  • • •^n) ) -

Because 9" commutes with all the T,, [L^, .. ., ^_^ must be invariant under T\, . . ., T^;
this means that there are functions ^ such that:

^(7L •-•^L^m+l. •••^J^zO^ •••^n)-

We can now define 9 as the map which sends (^i, . . ., x^) to:

(A:i, ...,A;J+(^l((^+^), ..., (4^-l+4n)^2m+l. •••^n).

^l((^+^). • • • . (4^-l+4j^2m+l. •••^n)^3^2((^+A:i). • • •^J.

•••^2m-^n((^+^ •••^n).iIm+l((^+^), ...^n). • • • ̂ n-m((^ + ̂ J), . . . ,^));

this 9 has the required properties.

Remark (2.10). — If X" is a ^-jet of a vector field on ̂ -^ obtained by reducing
a Vfe-jet Zon R^ then we have seen that X" is invariant under the involutions T^, ..., T^.
A consequence of this is that all the hyperplanes J^==o, z = = i , . . ., m, are kept invariant
by the flow of X" (as far as ̂ -jets go) $ hence the codimension two subspaces x^_^=x^=o,
i=i, . .., m, in R" are kept fixed by the flow of X, as far as &-jets go. It will be one
of the basic questions in the following chapters to decide whether there are really invariant
submanifolds for X, tangent in o to x^_^=x^==o, for each z=i , . . ., m.

Appendix i: On unicity.

Let X, X^ and VSh=^l-\-Gh be again as in § i. We assume that the dimensions
of G2, . . . ,G^°~ 1 are all zero. According to theorem (2.1) one can find a diffeo-
morphism 9, such that the A^-jet of 9,(Z)=Zi+^ for some gn^G^. In this appendix
we want to investigate the c< extent to which g^ is unique ".

Let ^ be the group of linear isomorphisms A : J^-^jy1 such that A^{X^=X-^.
There is a natural s/ action on H^ for each h, defined by A(h)=A^(h) for Ae^ and
AeH\

Proposition (2.11). — Let X be as above. Suppose there are two diffeomorphisms 9 and 9'
such that (f,{X)=X^+g^ and ^{X)==X^+g^ (up to h^-jets). Then there is an A in ^
(see above) so that A(^J=^mod (B^).

Proof. — Without loss of generality we may assume that 9 is the identity (i.e. that
X was already in normal form). The i-jet of 9' must obviously be an element of ̂
say A. From the proof of theorem (2.1) it follows that the (Ao-i)-jet of 9' must be
the (Ao-i)-jet of the linear map A in order to have the (Ao-i)-jet of ^{X) equal to
the (Ao-i)-jet ofZr We now observe that A»(Z)=Zi+A(^J; as G^ is in general

62



SINGULARITIES OF VECTOR FIELDS 63

not invariant under the ^ action, A(^) does not necessarily belong to G^, so we write
A(aJ==^+<? with 6eB^ and geG^. According to the proof of theorem (2. i), for
any 9', with the same (A()—i)-jet as A, we have ^{X) = X^-\- V'+ g (up to A^-jets) for
some b'eJf10; from this the proposition follows.

Appendix 2: Normal forms in case X^=o.

In the case where X^ s=o, see § i, the conclusion of theorem (2.1) is trivial. In
that case however, one can proceed as follows. Let s be the smallest integer such that
the ^-jet of X is non-zero; Xg denotes the vector field, the component functions of which
are homogeneous polynomials of degree s and which has the same j-jet as X. As in § i
we define a map:

[Z^-L: H^H7^8-1.

For h>s we get Hh=Bh+Gh with B^Im^, ~]^_s+i and G71 a supplementary
space. With these modified definitions theorem (2.1) remains true if we replace
X^X.+g.+^.+g.+R, by Z /=^+^+...+^+^.

The proof is completely analogous to the proof of theorem (2.1) and is hence
omitted.

III. — THE " BLOWING UP ?? CONSTRUCTION FOR VECTOR FIELDS

The construction to be described in § i of this chapter can also be found in [18]
for the G°°-case. The G^-case is practically the same, but, for the sake of completeness,
we repeat the construction here anyhow. Our blowing up construction can be seen
as a refinement of the method used by Gomory in [3]; also the treatment of2-dimensional
singularities in [12] suggests our blowing up construction. The examples we give
in §§ 3, 4 and 5, will all be used in the proofs of theorem (1.15) and ( i . 16); the technique
of " blowing up 3? will also be used in the proof of theorem (1.19).

i. The construction and its properties.

Proposition (3.1). — Let X be a C^-vector field on V^ with X{o)==o. Let:

<& : S^xR-^R"
n

be the map defining polar coordinates (i.e. if^, .. ., ̂ , with S x^==i, are coordinates on S^1"1

and r is the coordinate function on R, then 0(^13 . .., ̂ , r)=={rx-^, ..., r^)). Then there is

a ff-^vector field X on S^xR such that in each qeS^xR, 0,(Z(y))==Z(0(?)) (or
0,(Z)=Z).
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Proof. — On fy1 we define the following vector fields:

U V a ^ T7 I/ a ^ \7?== 2Li A:,— and F.^-Lv,——x,— ;z= i l^ y 2 \ ' ^ ^/5

note that V^=o and 1^-=—l^. From a direct calculation it follows that:

(S^).Z=<^Z>.7?+.S <^,Z>.^.i — i i, j — i

Next we define on S^^xR the vector fields R and ^ by ^{R)==R and

O^(F^) ==Vij) i.e. R=r— and I " is the vector field, the integral of which is a rotation
()r

in S^1 in (( the x^, x^ plane ". We introduce the functions a^==<7?, Z> : R^R and
n

a^.=<l^.,Z> :R^->R. It is now clear that 0,((a,0) .^+S(a,,0). ̂ ,)=(S ^2) .Z,
/ \ ^ j ^=1

or 0^ (-3 ((a,. 0). I? + S (a^.O). ̂ •)) = X\ this last equation, however, does not necessarily

make sense for r=o.
Because in oeR^ X, R and V^ are zero, <Z, 7?> and <J^, F^> have their i-jet

zero. This implies that the i-jet of a^O and a^.O is zero in each point of:

S^X^^r^}.

By the division theorem it then follows that -^(o^O) and -^(a^.O) are CJC~2 if we take
for r=o the limit.

As J. J. Duistermaat pointed out to me, this argument can be refined to obtain

-3(^0) and -3(0^0) to be G^"1 as follows:
n o n

We write X= S X^— 5 the X/s are CMunctions. a^ is then S ̂ X^(^, . . ., x^)
1=1 ^ ^ n ^ t=l

and a,.<&= S ^,.r.(X^<I)) and -«.(a^<I))= S ^.-.(X^O); so we have to divide only
i=i r i=i r

once by r and hence the resulting function -^(oc^O) is C7""1. A similar argument works

for ^(a^)-

We now have that Z==^((a^0) .^+S(a^.(I)). P .̂) is a C?" ̂ vector field; we had
r ^ j

that for r=[=o Q)^X)=X\ hence, by continuity, we have it everywhere. This proves
the proposition.

Remark (3.2). — If the vector field X in proposition (3.1) has a sufficiently
degenerate singularity in oeR^, i.e. if its i-jet is zero, then X will be identically zero
on S^^-fo}. In such cases the geometrical structure of X, or X, can be made more
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" visible " by dividing X by a sufficiently high power of r (i.e. so often that -? is not

identically zero in S—^o}). This division is possible in S^xR, loosing each time
only one degree of differentiability, because the vector field is zero on a manifold of
codimension one.

Proposition (3.3). — Let X be a vector field on S^xR which is of the form:

X=^/.g^, ..., FJ.A+S/J,^, ..., ̂ ).^,[x,, ..., x,) .K +^r.f^{x,, . . . , x^ .
& < N

where f^ and g/ are polynomials i n x ^ , . . . , x ^ R and ^ are the vector fields introduced in the
proof of proposition (3. i) and x^, ..., x^ r are the coordinate functions introduced in the statement
of proposition (3.1). T : S"-1 x R -> S»-1 x R is the involution defined by:

T(^i, ..., x^, r)=(-^, ..., -^, -r).

V ^W^^ m T,(^)=—Z, then there is a vector field Y on R" and an integer m>_o
such that y=r'»Z, where 'Y is such that <D.(Y)=Y as in proposition (3.1). -

Proof. -^ We^ assume T,(X)=X (the case T.(^)=-Z goes in the same way).
Because T.(A)=A and T.(^)=^., the functions^ and ̂  satisfy:

Mjk{Xi, . . ., X^=(-I)kf^{-x^, ..., -^)

and: gf^l, • • - , ̂ )=(-I)/.?/(-^,..., -^).

This means that,?/ say, fovf even, can be written as g/{x^, ..., x^= S g(^, . .., x ) ,
S< So

for some S y , with ̂ , homogeneous of degree 2s. Because S x?=i, we may replace g/
by the homogeneous polynomial g/ of degree 2Sy: t l=l

g,(x,, ..., ̂ =j^(S^-8.^, ..., ̂ )

without changing the vector field X. The same holds for f^ with k even; for k and /
odd, ̂  and g{ can be replaced by homogeneous polynomials^ and g/ of odd degree.

Now we choose m so that (m + k-deg(f^)) and (m+i-deg^/)) are all
positive and even for all ;', j, k and t.

The vector field:

y=,|;,(-^+-•+•^)l'"+'-'"8"'-&(«„...,«.).^
+.S(.;^-.+<)s""-l•Elt"".^(„,...,,.).r.

k<N

will then have the required properties.

Remark (3.4). — If X is a C^-vector field on K1 with Z(o)=o and if X is the
corresponding vector field on S^xR, then X can be written in the form:
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X={ S /.^(^...^J+G).^ S /'.^,(^,...,^)+F,).^,
( _^_ fc — 1 I, J

^fc-1

where g{ and/^/ are homogeneous polynomials of degree (/'+2), resp. (/"+2), and
where the (A-i)-jet of G and Fy is zero in each point of S^^^}; the polynomials g ^ ,
fijf^ { / ^ ' ̂ k—i) determine the A-jet of X and vice versa.

2. The homogeneous case (in R2).

Let X be a vector field on R2 which is at least C^4'1 and such that the (^-—i)-jet
of X in oeR2 is zero. Let X^ denote the vector field whose component functions are
homogeneous polynomials of degree k and which has in o the same k-]et as X. We
consider the following two functions:

f I V a , a \ ^ I V 8 a \f=[x^xl^+x^] and ^=^z-' l^-^^/•
In the following we assume that o is not the only o-point of g.

Proposition (3.5). — For X, X^f and g as above, andf, g in (c general position " (i.e. for
each ^=t=o, j&eR2 with g[p}==o, we have dg{p)^o and /(j^)4=o) each Gk+^vector field Y
which has the same k-jet as X, is G°-equivalent with X (i.e. the germs of X and Y are G?-equivalent}.

Proof. — We blow up our vector field X as in § i to obtain a vector field on S1 X R.
On S^R we take coordinates 9 (mod 27r), such that ^=cos 9 and x^==sin cp, and r;
we have 0(y, r)==(r.cos 9, r.sin 9): usual polar coordinates. X then gets the form:

x=^ (te^-^ 9. ̂ ^ 9)+^+l.?'(^ ^)—+{f(r.cos 9, r.sin 9)+^+1.7(r. ̂ a-hr \ (79 or j

where f, g are homogeneous of degree k +1 in r and where f{o, 9) ==^(o, 9) = o; /and g
are at least G1. Following remark (3.2) we now define X as:

— i ^ a - 8
X == -^-^ X= (g(cos 9, sin 9) +?'(^ ?)) y + (/(cos 9, sin 9) +/(r, ?))^ •

Because/ g are in general position, ZIS^-^o} is a Morse-Smale system and
also, in each point (90, o)eS lx{o} where X is zero, X has a hyperbolic singularity.

If Y has the same Vfe-jet as X and is at least Gk+l, and if Y and Y are defined analogous
to X and X, then all the above remarks concerning X also hold for Y. This means
that, using the techniques of [i], we can make a homeomorphism A of a neighbourhood U^
of S^^} in S^^eRlr^o} onto another such neighbourhood Ug such that h maps
integral curves of X to integral curves ofY, i.e. if j^eUi and Q^p, [o, ^]), t^>o, is
contained in Ui, then there is a ^>o such that h[Q)^p, [o, t^]))=Sy{h{p), [o, ^]).

Using A, we construct a C°-equivalence between the germs by taking:

9 : (D(U^<D(U2)
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SINGULARITIES OF VECTOR FIELDS 67

defined by <p(o)=o and y(^) = <S>h<S>-\p-) for p+o, where <D-1^) has to be chosen
so that its r-coordmate is positive. The fact that y is a homeomorphism which sends X
integral curves to Y integral curves follows immediately.

In order to give an idea of what kind of singularities can occur under the
assumption of proposition (3.5), we consider a neighbourhood in S1 X {reR | r^ 0} of an
arc t in S^o} joining two succeeding points p^ p^ on S^-fo} where X is zero. At
each such point the direction of X changes; without loss of generality we may assume
that between ̂  and ̂ , X " flows " from ̂  to A. Four different situations can occur
in a neighbourhood of t, according to whether X is normally expanding or contracting
in p^ and p^:

W m
PS

(c) ( d )

FIG. i

Below we show how the integral curves of X look in the corresponding " sector "
of R2:

(a) ( b )

(c) W

FIG. 2
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Remark (3.6). — Proposition (3.5) can be somewhat sharpened in the sense that
it is sufficient to require that the (A-i)-jet ofY is zero and that the A-jet ofY is close
to the A-jet of X. The same proof applies in this case.

Remark (3.7). — For G^^-vector fields X on R" with zero (A—i)-jet we can do
also our blowing up construction and obtain a vector field on S71"1 (= S""1^^}). This
vector field may be very complicated (say non structurally stable) $ on the other hand
it is not a G°-invariant in the following sense: Let X^ and X^ be two vector fields whose
(^--i)-jets are zero. Then it is possible that the germs of X^ and X^ are C°-(but not
G^-) equivalent, without their corresponding vector fields on S71"1 being G°-€quivalent.

3, The homogeneous case with one symmetry in R2.

We consider vector fields X on R2 which are at least G3 and such that X{o)=o,
the i-jetof Zis zero in o and Ty{X)==X, where Ti : (R2, o) -> (R2, o) is defined by
Ti(^,A:a)=(-^i,A:2).

Germs and jets of vector fields as above occur as germ-, or jet-reductions of vector
fields on R3, with one eigenvalue zero and two non-zero eigenvalues on the imaginary
axis, which are in normal form (see chapter II).

In this paragraph we shall apply the method of § 2 to the above type of vector
fields under the assumption that the 2-jet is in " general form " (to be specified below).
However, as it may not always be possible to bring germs in normal form, we cannot
<( easily 59 carry over our results on vector fields on R2 invariant under T^ as above to
vector fields on R3 which have one eigenvalue zero and two non-zero eigenvalues on
the imaginary axis.

Because of the above requirements the 2-jet X^ of X must be of the form:
r\ r\

X^ = {axi + bx^ — + cx^—.
ox^ ox^

We may, and do, assume that a>_o'y because if not we replace the x^ coordinate by —x^ .

Proposition (3.8). — Let X, X^ a, b and c be as above (i.e. also a'>_o). Suppose the
following conditions are satisfied:

1. ^4=0;
2. (b—c}^Q\
3. &+o;
4. if {b—c)<o then c=^o.

{Observe that these conditions are satisfied on an open dense subset of {{a, b, ̂ eR^^o}.)
Then every C^-vector field on R2 with zero i-jet and 2-jet close enough to X^ is C^equivalent

with X.
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SINGULARITIES OF VECTOR FIELDS 60

Moreover, there are 5 topological types (i.e. ^equivalence classes) possible/or X, according
to which of the following conditions is satisfied:

I. a>o (b—c)>o b>o;
II.
III.
IV.
V.

b<o;a>o
fl>0

a>o
a^>o

{b-c)>o
{b—c)<o
{b-c)<o
{b-c)<o

6>0 C>0;

b<o c>o;
b<Q c<o.

(Observe that a>o, (b—c)<o, b>o, c<o cannot occur.)

The diagrams below show the topological types:

x!

(blown up)

II III

IV V

FIG. 3
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Proof. — According to proposition (3.5) we first have to determine the zeros of

( n ^ \
^25 ^la" ""^p" }=^+ bx^—cx^ = x^ax^ + (b —c)x^). {x^ = 0} is clearly a line of

CX^ OX^ f

zeros, and hence a line, invariant under the flow of X^ (from now on we call these lines
of zeros "invariant lines"}. As in the statement of proposition (3.8) we assume that
^o, and hence because of condition i, a>o, if {b—c)>o then x^==o is the only
invariant line (cases I and II); if {b—c)<o then we have also a pair of invariant lines

L_^
x^=± /——x^ (cases III, IV and V).

V a
I f) f) \

Because we have a>o, we always have ( Ag, x^— —x^—) positive on the posi-
\ ox^ cx! I

tive A:i-axis; it changes sign at every invariant line because the invariant lines have all
multiplicity i (because of the conditions i and 2 in the proposition).

Finally, we have to determine the sign of:

( n ^ \
f{x^ x^) == Zg(^, x^), x^— + x^ == ax\x^ + bx^ + cx[x^

OX^ OX^ j

along the invariant lines in order to determine whether the flow goes in or out along
these lines.

Along {^==0}, /equals /(o, x^)=bx^, so along {x^=o} the flow goes up, resp.
down, whenever b>o, resp. b<o (see cases I, III, resp. II, IV, V); 6=0 is excluded
by condition 3. Now we assume (b—c)<o and determine the value of/in points

fc—b
of the form x^ == + / —— . -^2:

\/ a

f( l^.x^x^Ha^+b+c/^x^'-.x^ac-ab+ab+^-b^^^x^a+c^
\/\y a j \ a a i a a

I 17=~b \
Because according to our assumptions, a>o, {c—b)>o, /I /——^3, x^ has the same

W a I
fc—b

sign as c . x^ . So the flow is going up, resp. down, along x^=-[- /—— . x ^ y whenever
^ a

c is >o, resp. <o, as in the cases III, IV, resp. V. The corresponding statements

about the invariant line x^=— /—— .^3 follow from the fact that X, and hence X^—— .x^ loilow irom me iaci mai A, ana nence Ag,
ai rr-. N a

is invariant under 1^.
From the above considerations it follows that, because of the conditions i, 2, 3 and 4

in proposition (3.8) the assumptions in proposition (3.5) are satisfied. Our proposition
follows now directly from proposition (3.5) (and remark (3.6)).
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4. The homogeneous case with 2 symmetries in R2.

We consider now vector fields X on R2 which are invariant under:
Tj (Ti(^, A:2)=(-^, ^)) and T2 (T^i, ̂ -(^i, -^))

and which have i-jet zero in the origin; throughout this paragraph X will be assumed
to be at least G4. We shall carry out, for these vector fields, a program analogous to
that of§ 3. From the above assumptions it follows that the 2-jet of X is zero; its 3-jet X^
can be written in the form:

r\ r\

X^ == x^a^ + ̂ 2) .- + x^xi + a^) — .
ox^ cx^

It will turn out that we have to distinguish between the following cases:
I. (^21-^ll)>(^22-^12)>0;

II. (a^—a^)>0>(a^—a^)',

III. 0 > (^1 - ̂ i) > (^>2 - a^) ;

IV. (^21 - ̂ n) < (^22 - ̂ 12) < 0 ;

V. (d!2i — <Zn) < 0 < (^22 — ^12) ;

VI. 0 < (^1 — ^ll) < (^22 — ^12) •

In order to reduce the number of cases we actually have to investigate, we first
notice that if we replace X^ by —^3, then cases I, II, III are changed to the cases IV,
V and VI respectively and vice versa. If we interchange the x^ and x^ coordinates,
then case I is carried over to case III and case II is carried over to itself. So by changing,
if necessary, the sign of X, and ^3, and permuting, if necessary, x^ and x^, we can always
come down to case I or case II; if we come in case II we can arrange, by permuting x^
and ^2 if necessary, that a-^>_a^.

From the above it is clear that we only have to consider the cases:
I. (^2i—^n)>(^22—^i2)>o and
II'. (^21—^ll)>0>(^22—^12). ^1^ ̂ 22-

Remark (3.9). — Replacing Xby —X may change the C°-equivalence class of the
germ of X, this must, and will, be taken into account when we list all the G°-equivalence
classes of singularities of vector fields as considered in this paragraph (with generic 3-jet).
It is clear that permuting x^ and x^ does not change the C°-equivalence class of the
singularity.

Proposition (3. lo). — Let X^ X^ and a^ be as above {such that X^ belongs to case I or II').
Then generically one of the following nine conditions ^'s satisfied (in which A==a^a^—^12^21) •'

I 0, (^i — ̂ n) > (^22 — ^12) > ° and a!! •> ^22 > ° ?

Ib — and ^ii>o>^225
Ic — and ^^^^m
I d — and o>^i, ^223
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IF a (^21 — ^ll) > 0 > (^22 — ^12) ? ^11>. ̂ 22 fl^ ^113 ^22 > °;

II1 b — and a^'>o'>a^, A>o;
II' c — and (2ii>o>^223 A<o;
II' rf — ayzrf o^ii? ^22? A>o;
IV e — and o><2n, ^229 A<o.

.For any of these nine conditions there is an X^ satisfying that condition.
For any X, such that the corresponding X^ satisfies one of the above conditions, any G^-vector

field Y, with 2-jet zero and ^-jet close enough to X^, has a germ which is G(^equivalent to the
germ of X.

Below it is indicated how the vector field X^ (or rather <( its integral ") looks if
one of the above nine conditions is satisfied (only the part in x^, x^_o is indicated,
the rest follows by symmetry).

Proof. — First we determine the zeros of:

( Q f\ \

g= x^ ^l^-^2^-)=^l^((ff21-flll)^+^22-^2)^)•

In case I ((^i — ̂ n)> (^22—^12)^°) there are only two lines of zeros, or invariant
lines, namely <[^=o} and {^2=0}. In case II there are two more, namely:

{(^21 ~ ̂ ii)^i == (^12 - ̂ )^}-

First we consider case I. — For x^x^>o, g is positive, so the flow is c< turning to
the left " (figure 4). Now we determine the sign of:

( n n \

f= X^x^ .+x^ =^4^12+^21)^1 +wi
OX^ OX^ f

on the invariant lines: on -[^=0} this sign is positive, resp. negative, if ^22 ls positive,
resp. negative (cases I a, I c, resp. I b, I d); on {^2==o} this sign is positive, resp. negative,
if a^ is positive, resp. negative (cases la, I b, resp. I c, I d ) . This proves, using prop-
osition (3.5)3 that if Zis so that X^ satisfies one of the conditions la, . . ., d, then every
G^vector field Y with 2-jet zero and 3-jet close to X^ has a germ which is G°-equivalent
to the germ of X.

The case IF. — All our considerations will be restricted to the region ^, x^>_o.
The invariant lines we have are the A^-axis, the A^-axis and one in between, which we shall
denote by i. From the formula above for g and the fact that (a^—a^>o>{a^—a-^
it follows that g is positive between the ^i-axis and t and negative between I and the
^2-a-xis (figure 4).

Now we determine the sign ofy on the three invariant lines. Using the above
formula for/ (see case I), we see that/has on the ^i-axis the same sign as a^ and on
the A:2-axis the same sign as a^\ this agrees with figure 4. To determine the value of/
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Ib

Id

irb

IF d

II' e

FIG. 4
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on I we substitute x\ == X. {a^ — a^) and ^2 == X. (^ — a^) in the formula for/ and
obtain:

fW = ̂ ll(^12 - ^22)2 + (̂ 12 + ̂ 2l) (^12 - ^22) (^21 - ̂ ll) + ̂ 22^21 - ̂ ll)2)

^X'.A^^-^)-^-^)),

where A (as in the proposition) is ,(^11^22—^12^21)- Because '>2>o, {a^—a^)<o and
(fl2i—^n)>o, the sign of/on I equals the sign of —A.

In case II' fl, we have a^>o and {a^—a^)>o, hence a^>a^^>o, in the same
way we have a^>a^>o; from this it follows that in case II' a, A =a^a^—a^a^<o,

This proves, according to proposition (3.5), that if X is such that X^ satisfies one
of the conditions II' a, . . ., e then every C^vector field Y, with zero 2-jet and 3-jet close
to ^3, is G°-equivalent with X.

It is immediate that if X^ belongs to one of the cases I, II', then, generically,
one of the nine conditions I <2, . . . , II' e is satisfied.

The fact that for each of the conditions la, .... a? and II' a there is an X^ satisfying it,
is also very easy to check because the conditions are all linear; for the condition II' 6, . . . , e
that fact is shown by the examples below:

^11 ^12 ^21 ^22

IV b i -1 4 -i

ir c i o 2 — i
II' d -i o o -i

II'. -i \ 4 -i .

This proves our proposition.

Remark (3.11). — If X, X^ and Z', Zg are as in proposition (3.10) and if X^,
resp. Zg, satisfies condition I rf, resp. II' d, then both X and X' are local contractions,
i.e. for any point j^eR2, close to the origin, lim^Q^)=o, resp. lun^(^, t)==o.
From this it is clear that the germs of X and X' are C°-equivalent. A same type of
remark holds for the types I a and II' a. Using this we can make a list of all different
topological types (G°-equivalence classes) of germs of vector fields X on R2 which have
zero 2-jet and the 3-jet X^ of which is invariant under T^ and Tg and satisfies the generic
non-degeneracy condition.

This generic non-degeneracy condition is satisfied whenever X^ or —X^, if
necessary after interchanging x^ and x^ satisfies one of the nine conditions la, . . . , II' e
in proposition (3.10).

In the following list of C°-types Xel b means that ^3, if necessary after inter-
changing x^ and x^, satisfies condition I b.
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Type

I
II
III
IV
V
VI
VII
VIII
IX
x

SINGULAR

Xela,
—Xela,

Xelb,
Xeic,
Xell' b

-Xell' b
Xell' c

-Xell' c
Xell' e

—Xell'e

ITIES OF VECTOR FIELDS

Occurs for

Xell'a, -Xeld, -Xell'd
—Xell'a, Xeld, Xell'd
-Xelb
-Xeic

75

As a matter of fact the last two types are G°-eqaivalent; we want to consider them,
however, as distinct types because there is no conjugacy 9, commuting with 1\ and Tg,
which carries a germ of type IX over in a germ of type X.

The fact that all the other types are different is easily checked by comparing the
sets of points in R2, which have as a- or co-limit the origin, for all the different types.

5. The singularity M x^
8x.

In this paragraph we analyse vector fields X on R2 which are at least G5 and whose
a

i-jet equals the i-jet of x^—. According to proposition (2.2) we can choose our
CXa

coordinates so that the 4-jet X^ of X takes the form:
0 Q Q

x^==xl^-+ M + ̂ 4 + ̂ 4) T~ + M + h4 + h4) ̂ - •(i) -Sx. 8x, 8x^

From now on we shall assume that Og+o. We then may also assume that a^>o^
because the case a^<o can be reduced to the former by the coordinate transformation
(^13 X2) 1->> (—^13 — X 2 ) * We shall prove the following:

Proposition (3.12). — Let X be a G0-vector field on R2 as above (i.e. also with a^>o).
r\ r»

Then the germ of X is C^equivalent to the germ of X'==x^—+^J—.
^x> ^8x.

Proof. — Let X be as in proposition (3.12); we assume that X is already in the
form (i). We shall analyse X by a sequence of three successive blow ups, which are
illustrated in the following figure.
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^f. vr^ ,
blow up A

FIG. 5

We will calculate these blowing ups below, but want first to indicate how this
sequence of blowing ups is used to determine the topological type of X.

After the last blowing up, and " dividing by r 5?, we have a situation as in prop-
osition (3.5); hence, the topological type of G is fixed. The topological type of the
other singular point in 5 c ) is also determined because the vector field in figure 5 c )
is invariant under (^, x ^ r ) -> {—x^ —x^ —r) (coordinates as in I, § i) because it
is obtained by the blowing up construction. So the topological type of the vector field
near S^^} in figure 5 c ) is as in figure 6.

&r^^ ^"•••^.^

FIG. 6 FIG. 7

From this it then follows that the topological type of the vector field near B in
figure 5 b) must be as in figure 7. Using that the vector field in figure 5 b) is also
invariant under the involution {x^ ~x^ r) -> (—^i, —x^ —r) it is easy to see that the
topological type of the vector field along S^^} in figure 5 • b ) must be as follows:
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FIG. 8

So in 5 a) we have:

FIG. 9

The lines of points in figure 9, with a-, resp. co-limit the origin, are the images,
under the three successive blowing down maps, of the unstable, resp. stable manifolds ̂ ,
resp. ^2, in figure 5 d ) . The above considerations hold for any vector field ^satisfying
the assumptions of proposition (3.12); from this it easily follows that any such vector

f\ r\

field is G°-equivalent with any other such vector field, and hence with X' =x^— -\-x^— .
We now come to the calculation of the three blow ups. 2 1

We consider the functions:

( -^ ^ \
g{x^ ^)= Z(^, xQ, ̂ ,-^,=^--^(fl2^+^+-- •)+A<l(^2+^j+• • •)ox^ cx^i

and:
/ /) f) \

/(^^)== ^l-uT+^o- =^^+^M+^^+---)+^(^^+^J+---)-
\ ^1 ^2 /

On S^R we choose coordinates r, 9 such that <I>(r,(p)==(—r sin 9, r cos 9).
From § i it then follows that the vector field X^ on S^R, obtained by blowing up
y . y ^(—rsHKp.rcoscp) B /(—rsin 9, rcos 9) B
A IS A-. = ————————n——————— — + ———————————————— — •1 r2 ^p r By-

It is easy to see that J^IS^^} has two singularities, namely B==(r==o, 9=0)
93

and (r==o, 9=77). We now determine the 3-jet \X^ of X^ in B using sin 9=9—— + • • •
92 3!

and cos 9 == i — — + • • • and obtain:
2!

0 r\

[^]3=(92-^y-^r2-fl4y3+I-^r92-^ry-^r2?) i-+(- r^-a^r2^ +b^+b^3)-.
2 ^9 or
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This terminates the first blow up; we now change the notation in the sense that we
substitute —x^for 9 and x^for r, so that we get:

E îL^ (~x2l+ ̂ 2 + a^ + a^—i- a^^—b^x^—b^x^) ̂ -
2 OX^

r\

+ (A:̂  + x^4 + b^4 + ̂ 4) ̂ - •ox^

In order to blow up this singularity we determine the 4-jet of:

gl^l. ̂ )=( X^, ̂ ), ̂ 1Q--^20-

\ ^2 ^l j

and the 3-jet of:

fi^ ^2) -j X^ x^), ̂ —-^-x^— ) $\ ox^ ox^ i

they are:

gi^i ? ̂  = —^l + 2^2 + 2b^4 — ̂ l + 2^1 ̂ J + 2 - a^x^ — a^xi
2

A^i? x^=a^x^—x^—b^x^+{a^+i)x^+b^.

We take now coordinates r, 9 in S1 X R such that 0 maps (r, 9) to (r cos 9, r sin 9);
after blowing up we then obtain (neglecting terms of order > 2 in r):

g^[r cos 9, r sin 9) 8 f^(r cos 9, r sin 9) 8
2=————r2—————^+—————r—————Br-

^I^X^} has two singularities, namely in C==(r==o, 9=0) and in (r === o, 9 = 71).
We now calculate the 2-jet [^L °f ^2 ln G ^d obtain:

r\ r\

?12 - (- W2 + 2f9) ̂  + (^r9 - r2) ̂ .

This concludes the second blow up; we now change our notation again in the sense
that we substitute x-^for r and x^for 9, so we get:

r\ r\

[X^={2x^-a^)—+{-x^+a^x^—.
CX^ €X^

To this singularity we apply the method of § 2:

( n ^ \

&(^1^2)= ?12^1 Q-~^2o- =^^(3^1-2^^)ox^ ox^i

( n n \

/2(^ ^2)= ?12^1 o-+^2 Q- =-^+^2^2+2^^-^^.
^l ^^ /
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There are three invariant lines (lines of zeros of g-^, namely {^==0}, {^==0} and
^3^ = 2a^} == i; the sign of g^ is changing at each of these lines and is positive between
the A;i-axis and i. On the ^3-, resp. A^-axis, the sign of j^ is the sign of —^i,
resp. —x^ (using a^>o). To determine the sign off^ on i we substitute (2^2 X, 3X) inj^
and obtain ^(X)=X3(—8^j+12^+36(22—27^2) =X3(4aj+9^2)^ because a^>o, this has
the same sign as X. All this agrees with figure 5 and the statements about the blow
ups made there; so our proposition is proved.

IV. — INVARIANT MANIFOLDS

In § 3 and § 4 of the proceeding chapter we studied germs of vector fields " with
symmetry 3? and it turned out that there were certain invariant curves (in the blown
up situation stable or unstable manifolds of hyperbolic singularities). Jets with symmetry
as in § 3 and § 4 occur as reductions of jets with certain rotations; the invariant curves,
found in chapter III, § 3 and 4 should correspond to certain invariant (singular) manifolds
in the non-reduced situation. It is the purpose of this chapter to show the actual existence
of such invariant (singular) manifolds. The methods we use here are rather close to
those of Hirsch and Pugh in [7].

i. The invariant manifold theorem.

We consider a torus, embedded in some manifold, with coordinate functions,
defined in a neighbourhood of that torus, x^y . . ., x^ j^, .. .,j^, z {x-^, ..., x^ are all
defined modulo some constant c); {^1== . . . ==Jn' ==z==o} is the torus in question. All
our considerations will be restricted to the set on which these coordinates are defined.
Points will be denoted by {x,jy, z)^ where x, y stand for x^ . . ., ̂ , resp. j^, . . .,j^.

n'

\\y\\ is defined to be S |j^.|. Vectors will be denoted by (X, Y, Z), where X, Y and Z

stand for SX,^, S Y,̂  and Z - ||X||, ||Y|| or ||Z|| means S|X,|, S |Y,|
. _ , i == i ox. 3 == i oy; cz »= i j = i "

or ]Z [ . ^ •/3

Let <p be a diffeomorphism of a neighbourhood of the torus to a neighbourhood
of the torus, at least of class G7"'1"1, such that the sets {jy==o} and {-2'==o} are invariant
and such that if (o, Y, o) is a vector in some point {x, o, z) then (X', Y', Z') == <p,(o, Y, o)
satisfies:

(1) llY'll^i-CJ^.IIYII

(2) HX'II+IIZ'II^I^.HYII

79



80 F L O R I S T A K E N S

and also such that if (X, o, Z) is a vector in {x, o, z) then (X', o, Z')==<p,(X, o, Z)
and (x\ o, z')=^(x, o, z) satisfy:

(3) 1^1.1|X'||+||Z'||^(I+C3|.|&)(|.[.||X||+||Z||)
(4) (i+2CJ^)| z\>.\ ̂ (i+CJ^) \z\.

G^, . . . 5 €4 above are all positive constants. In view of (3) we define a second
"norm5 9 : if (X, Y, Z) is a vector in ( ,̂ z ) , then [X, Z]= | z\. ||X|| + || Z||. The
numbers k, t and m are supposed to be positive integers. Now we suppose we also have
positive integers k' and h such that k, k\ /', h and m satisfy:

(5) h>k-£
(6) k^k+h+i

(7) k'>_l
(8) m^k+k'.

Our main purpose in this paragraph is to prove the following:

Theorem (4.1). — Assume the above situation. Let 9 be a Gm+l-d^ffeomorphism (from
a neighbourhood of the torus to a neighbourhood of the torus) such that in each point of z == o the
m-jets of 9 and 9 are the same. Then, for each positive constant A, there is an s, such that there
is a manifold Wc^e^K^? z) I llj^ll^A.] zf', \ z\<_z} of dimension %+i, which is semi-
invariant under 9, i.e. <p(W) D W, which contains the torus and which is, along the torus, tangent
to ^y==o}. The manifold W will be of the form {[x.jy, z) \ \ ̂ |^e and jy=f(x, z)} where
the function f is Lipschitz.

The theorem will follow from a sequence of lemmas. From now on we assume 9
in theorem (4.1) to be fixed.

Lemma (4.2). — For each A>o there is an s>o such that if:

{x,y, z)e^={{x^ ^HHI^A.H^ \z\^e} and ( '̂,y, ̂ ')=9(^ ̂

then \z/\^\z\ and ||j/ \\<_A. \ z^'.
Proof. — In this proof, as well as in the proofs of the following lemmas, we use

the following conventions:
DI, D2... are positive constants (each to be chosen so that the formula in which

it first occurs is right);
<_ means: the inequality holds for s sufficiently small and |^|^e;
s

W
<_ means: we use formula (i) to obtain this inequality;

(*), (*») means: we explain below how to obtain this inequality.

Let {x.jy, z) and ( x ' . y , <8:')== 9(^5.^5 z) be as in the lemma, i.e. such that:

(9) Ibll^A.I^'.
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Then we have:
(D

IIVII ̂  (I-GlM&)|H|+D,.|H|i'+D,|.[-^ („)
(9) v /

^ (I-ClM't).A.|^|&'+D3.|^|2&'+D2|^|'»+l

and:

(6)(8)/ i \

^-^l.fLA.H^A.I^',-r ^ 2 * ' ' / ' ' — — i ~ i '

(4) (2)

M ̂  (i+AI^M-C^nHI-DJIj^-D^ri („)
(9)

^ (I+CJ^&)[^|-D6|^|/+''-D,|^|2&-D,[^|OT+l
(6) (8) / T \

^(^^M^M^M.

The inequalities (*) and (**) were obtained by first replacing y by "its linear
part in (x, o, z) ", i.e. by a map y which is affine in the x,y and ^ coordinates and which
has in {x, o, z) the same i-jetasy; this gives, using (i), (2) and (4), ||y||^(i—CJ z^Wy^
and 1^(1+0,1^)1.l-G^nm. The terms D,.|lj,||2 and DJ|̂  count
for the difference between^ and <p; the terms D^z\m+l and D,\z\m+l count for the
difference between y and <p.

^ Lemma (4.3). — Let A ^ a^am as in lemma (4.2). r^re exists an s>o such that
if (X, Y, Z) ^ a vector in {x,y,z)<=^ with ||Y||^A.| 2|". [X, Z] then:

(X', Y', Z') = y.(X, Y, Z) aW {x',y, z') = ̂ x,y, z)
satisfy:

[X',Z']^[X,Z]

I 2 ' ' 1^1^ I (see lemma (4.2))
and: ||Y/||^A.[^|'t.[X,Z],
and hence: |jY' ||^A.| z'^. [X', Z'].

Proof. — We assume:

(Io) IIYII^A.M'^Z]

and also (9), i.e. [b|[^A.[ z^'. We then have:
->. (i) _^

1|Y' | | ^ (I-CJ^)||Y|[+D,(|H|+|,|-)([|X||+[|Y||+[|Z||) (^)
(9)

^ (i-Gil^RllYll+D.d.l^'+l^l^dlYII+l^-^KZ])
(8)(10)

^ (I-Gll^l&)•A.|^^[X,Z]+D3.|^|t'.(A.[^|A+[^|-l).[X,Z]

(6) / I \

^ ^-^il^ll^-l^l'.KZj^A.l^i^Ex.z],

^
11
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and:
-^ -> WW -^ -„ , -^

[X',Z'] > (i+Csl^KZl-C^niYII
-D4(|b||+M'")(||X||+||Y||+||Z||) (**)

WW -> -^ ->. -^
^ (I+C3|^|&)[X,Z]-D5|^|/+'•[X,Z]

-D,[\z\k'+\z\m){\z\h[X,Z]+\z\-liX,Z-\)
(8) _^ _^
^ {(I+C,\z\k)-D,\z\{+h-D,\z\k'.\z\-l)[X,Z•]

S

(5 ) (6 ) / I \ -> -> -> -^
^ I+-C3|^|& [X,Z]>[X,Z].

6 \ 2 /
The inequalities (*) and (**) were obtained by first using (^9)^0,0 instead of

Wx,y,z^ this g1^^ ^̂ S ( I )? (2) and (S^

IIY'll^i-CJ^I^HYll

and: [^^^(i+Cel^^Kq-C.l^niYll, for \z\^i.

Then we added terms of the form (const.). ||^[|. (length of (X,Y,Z)), resp.
const. | z^. (length of (X, Y, Z)), counting for the difference between (^9)^0,2 and

Wx,y,z. ^sp. W^y^ and (^9)^,,.

Lemma (4.4). — Let A be again as in lemma (4.2). For any B>o, there is an s>o
such that if (o, Y, o) is a vector in {x,y, z)e^^ then (X', Y', Z')=^(o, Y, o) satisfies:

IIY'll^^-^CJ.I^IIYII

and: IIX'II+IIZ'II^B.I.MIYII.

Proof. — The lemma follows from the following computations (the inequalities (*)
and (**) below are obtained just as in the proof of lemma (4.3)):

^ (^ -^ -^
HY'H ̂  {I-G,\z\k)\\Y\\+D,{\\y\\+\z\m)\\Y\\ (*)

(9) (8) ^
^ (i-GJ.RIlYll+D.l.niYII

(6) / i \ ^
^z-^M^||Y||,

||X'||+||Z'|| § C.I.^IIYII+DsdIjII+l^nilYll (**)
(9) (8) ^ ^
^Cy^llYll+Dj.niYH

JBI.I^^IYII.
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We now choose the B in lemma (4.4) so small that {I+2C^h.A.'S<_-C^ and
4

take o<s<i so small that the conclusions of lemmas (4.2), (4.3) and (4.4) are valid.

Definition (4.5). — Let A and s be as above, y is the set of C^mappings
/(A'1, . .., x^ z), defined for | z\<_e, with values in (j^i, . . .,j^J such that:

1. II/^II^A.I^ and
2. If(X, Y, Z) is a vector, tangent to {[x,y, z) \ \ z\<^e,jy==f{x, z)} in {x,f{x, z), z),

then ||Y||^A.|^.[X,Z].
The metric p on ^ is defined by:

,(/,,A)= »p 11^ -)-^)11.
(a;, z) | Z |

0<|2|^_e

^ denotes the completion of <^ with respect to the metric p.

Remark (4.6). — It follows from the lemmas (4.2) and (4.3) that if f^^y then
there is an fe^ such that:

^{(x,f{x, z), ̂ |M^})n{M<Q={(^./'(^ 0, z)\\z\^}.

Thisy is of course unique; we define F : ̂  ->y to be the map which associates
to each f the f as above.

Remark (4.7). — For any two f^f^^^ there is a point {x, z), \ z\<_s, such that:

/ . ., ||/l(^)-/2(^)||
9UiU2)==————r~\jr———^I I

this follows from the fact that k'>k (6) and hence:

lin.l̂ '̂-^ '̂̂ lin.̂ ^o.
\z\-^0 \z^ —\^\->0 \Z\^

Lemma (4.8). - If AJ^ and pQAJ^+o, then p(r(/,), r(y,))<p(/^/,).
Proq/'. — We take some point {x, o, z), o<[ -2'|^s, and two elements f^f^S^ and

consider the following five points:
{x,f^{x, z), z), {x,f^x, z), z), 9(^/i(^ ^). ^==,(^i.r(/i)(^i. ^i). ^i).

?(^/2(^ ^. ̂ "-"(^^ r(/2)(A:2, ^)/^) and (A-i, F(/2)(^, ^i), ^i);
we assume that all these points are in ^g, except perhaps 9(^/2(^5 z)^ z) {m which
case (< ==(^23 ^{f2){x29 Z2)9 Z2) " does not make sense).

From lemma (4.4) it follows that:

l|r(/i)(^, ̂ i)-r(/,)(^, ̂ II^-^GM^II/^, z)-f^, z)\\

and: ll^i-^ll +k-^B.H/-l.||,A(^)--/^)||

(in case 9(^,^2(^3 ;^:)^ ^O^^e? ^^(Y^)^? ^2) has to be replaced by ( (the jy-coordinate " of
9(^/2^ z).z))'
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From (4) and definition (4.5) we have, using the above formulas:

(i+2CV.A.B^Gi and [X, Z]^||X|[ + ||Z||,
4

mf,)(x^z,)-^{f,){x^z,)\\^{{l+2C,\z\k)\z\)\^.\z\f^^^
(5) I

^-c^ni/^)-/^)!!.
4

So, using:
1|IW(^, ̂ )-iW(^, ^) H ^ l l r(/,)(^, ̂ )-rW(^, ̂ )||

+l|r(/2)(^,^)-r(/2)(^^i)ll,
we obtain:

lir^^^^-r^^.^ll^fi-^cj.l^ll/^
\ 4 /

Now we choose {x, z) so that (^i, ^) becomes a point where:

l|r(A)(^^x)-r(A)(^^i)||
——————————|fc————————==9{1- Ui)^ L U2))'

I "i I

We then have, because | z^ | ̂  | z \:

^.f,)^''-''^''-''^^,—-——,-.r(r(A), r(/,))>p(r(/,), r(/,)).
I" (-^.I'l')

This proves the lemma.

Remark (4.9). — Because F is a contraction with respect to p, it is continuous
in the topology defined by p and it has a unique continuous extension to y\ this extension
is also denoted by F.

Lemma (4.10). — (̂ , p) is a compact metric space.
Proof. — Let f^f^ 3 .. . e^ be an infinite sequence. It is enough to show that,

forany 8 >o, there is an infinite subsequence^, f^ ... such that for any j y j ' y ^{fi^fi^^S.
We fix such 8 and choose 8^ such that 2. A. 8^'< 8.8^; then for any f^f^^ and (^ z)
with o<|^|<8i, one has:

||/^,^-/^,^)||^2.A.|^|fc^2.A.8^,

——^k—^-iTr-^-r-^
So we only have to find a subsequence {j^.}^Li such that for anyj.j' we have:

„„ IIA(^(^)11<»;
.,§^. ll'll

the existence of such a subsequence follows from Ascoli's theorem [2].
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Lemma (4.11). — F has a unique fixed point in ̂ .
Proof. — Let Kc^' be the set of all co-limit points of F, i.e.:

K={/e^|3/oe^^,^,...-^+oo with U^rVo)-/}.

K is clearly invariant and contains all the fixed points of F; because y is compact,
K, the closure of K, is non-empty and compact. Let po= sup {f^f^\ because K

- „ _ - - fi^eK _
is compact there are f^^f^eYL with ^{fnf2)==9o9 From the definition of K it follows
that there are gi, g^K with r(^)==/^; by the definition of po we have p(^, gz)^^
using lemma (4.8) this means that po==o. Hence K is one point: the unique fixed point.

Remark (4.12). — All the elements of y are clearly Lipschitz functions. If^o
is the unique fixed point ofF, then clearly W =={(;»?, j^, z) |j^==/o(A:, -2'), | ^|^e} is a semi-
invariant manifold, so theorem (4.1) is proved. In the following we give two extensions
of theorem (4.1).

Proposition (4.13). — Suppose/or some 8>o we have', if (o, Y, o) is a vector in (x^y^ z)
and if IHI, | z\<S, (X', Y', Z')=y,(o, Y, o) and (^,y, ̂ ')=<p(^ ̂  then:

(i') IIY'll^i-CJ^IIYII,

(2') iix'ii+iiz'ii^G^niYii,
(4') ^Jr^\z\k)\z\>.\zt\>.{I+C,\z\u)\z\.

{Suppose furthermore that all the assumptions in theorem (4.1) are satisfied.)
Then there is a y>o, 8'<s such that the invariant manifold W in the conclusion of

theorem (4.1) is such that ^W r^Vy=={qe{Vy}\{\2\==o}\^~n{q>)e'Us. for V^o}, where
Uy=={{x,jy, z)\ \\^—fo(x, z)\\<y and \z\<_y} and fo is such that:

w={(^^)b=/o^^)J^^4
proof\ — F^st of all we take 8' so small that 8'+|[/o(^ ^)11^8 for a11 x and

(^ |^<8 ' (below we give more conditions on the smallness of 8'). Let {x,y, z) be some
point of Uy and (-^y^ ^^^P^^? z)9 ^or ^f small enough we have, if |-2''|^8',

||y—/o(^ ^ll^l1—^0!!^^)-!!^—^^ ^ l l ; this inequality follows by the same
\ 4 /

methods as we used in the proofs of lemma (4.4) and lemma (4.8). From the above
inequality and (4') one easily obtains, for 8' small enough:

(i^Gj^M^M^ (i-^M')^ I\ <J /

and: lb-/o(^ ^\^+l-C,\z'\1:\\\y-Mx', z')\\.
\ 3 )
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Now we choose two positive integers a^ and ag such that for any | z ' \ <_ 8':

^-^z'^.ii+'C^z'A^i;
\ ^ /

it then follows that:

M^-lb-./o^ ̂ llo[^Mal•lly-^(^ ^ll01'.
This expression can be interpreted as follows:
Define the function L:U^^R by L(A:,^, 2:)== | ^|al.||^—/o(^J/)llaI• Then if

peVy and ip^Q^eUs. it follows that Hcp"1^))^:!.^) (so L is a sort of a weak Liapunov
function). Now assume that j^WnU^ and j&^{ | -2'] =o}, we have to show that there
is some positive i such that (jr'^^U^. We assume that ip'^eUs, for all positive i
and derive a contradiction. Let ^=L(j&); from the assumptions it follows that ^>o.
Let Ji=y--/o(A;^ ^)? where (^,y, ̂ ^y"^); from our previous inequalities it
follows that J^J0, J°=t=o because ^WnUg,. Let ^>o be such that L(^, z)<^o
whenever ||j—/o(^ ^ll^' an^ I ^l^o (from the definition ofL it is clear that such
a positive ZQ exists). From the fact that L^"'"''1^))^^^"1^)) we conclude that each

\zi\>ZQ. This implies that, for all positive z, 11 J1 +1 \ \ >. ( i + ̂  C^) 11 ̂  \ \ and hence

( \i \ 5 /

HJ^1!!^ i+-Gi^) H^0!!; however, this becomes, for large i, greater than 8'. This is
5 /

the required contradiction and the proposition is proved.

Corollary (4.14). — Under the assumptions of proposition (4.13), the semi-invariant
manifold W is unique.

Proposition (4.15). — We make the same assumptions as in proposition (4.13) but instead
of <p and 9 we assume we have vector fields X and X such that for some t^>o, 2^ ̂  satisfies the
assumptions for <p, such that {||j/||=o} and [\z\==o} are invariant under each Q^t, and such
that the m-jets of X and X are the same in each point of {| z\ ==o}. Then we obtain a semi-
invariant manifold W/or Z, i.e. such that, for all t>o, ^((W)DW, as in theorem (4.1)
and proposition (4.13).

proof. — We take y = Q^ , and 9 = Q^ ̂  - Let W be an invariant manifold
for 9 as in theorem (4.1) and let 8' be as in the conclusion of proposition (4.13). Take
some 8">o such that for any te{o, ^), ^^(Ug,.) cU^. It is clear that:

WnU^={yeU8A{|^|=o}|9-t(?)eU^ for Vz^o}

=={q€U,,\{\z\==o}\^-i{q)eV^ for Vz^o}.

From this it follows that:
WnU^={^UsA{|^|=o}|^<(y)eU^, for V^o}.

From this last formula it follows that WnU^ is semi-invariant for X.
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2. Applications.

Let JC be a vector field on R4 which is at least G9 and which has a i-jet ^i of
the form:

Z1==X1(;'1^-^^)+X2(J'3^-^^;) with a^+a^2+o

whenever a,eZ and i^ | a^ | + | a^ |.^9.
Modulo changes of coordinates, JCcan be decomposed as X==X^-^-Xy with X^ G00

and invariant under the rotations R^ (see proposition (2.6)) and Xy having its 8-jet
equal to zero.

We shall denote the vector fields on S^R, obtained by blowing up X, X^ and Xy,
by X, X^ and Xy. X^ denotes the vector field on R2 obtained by reducing X^ (see defi-
nition (2.7)). It is clear that the i-jet of X^ is zero and that X^ is invariant under
the involutions T\, Tg : R2—^2 (T^i, ;^)==(—^, x^); Ta(^, x^)==={x^y—x^)); hence
also the 2-jet of X^ is zero. We now also assume that the ^-jet of X^ satisfies condition II' e
of proposition (3.10). As we have seen in chapter III, there are four lines invariant
under the flow of X^ namely the ^i-axis, the A^-axis and two lines /i, i^ of the form

^{(^^l^/^i)} with^(o)=o, (-rf(/,))(o)>o, (^(/^L)^ and/, G00.
\ax^ j \ax^ j

Lemma (4.16). — In the above situation there is a (germ of a) C^-diffeomorphism
X : R2—^2, which commutes with T^ and Tg and which maps t^ and i^ to straight lines.

Proof. — Because X^ is invariant under T\ and Tg, T,(^)=^ and T,(^)==^r
Hence f2^i)=='^fi{^i) and f^[—x^) = —/i(^i) and there is a G°°-function g : R-^-R
such that ^i)=<?(--^i), <?(o)>o, f^)==x^.g{x-^ and ^(^^—^-^C^i)- Now we
define X by X(^i, ^3) =(^5 (^(•^i))"1-^) $ this has, at least locally, the required properties.

In view of proposition (2.9) sub 3, we may assume that the invariant lines at X^
are all straight, say {^i==o}, {^==0} and {x^==.±a.x^}. From this it follows that X^
has invariant varieties of the form .[j^=:j^==o}, {j^==j^==o} and {(J^+J2)=^2(72+J;2)}9
the last of them being a cone on a 2-torus. We now want to answer the following basic
question: does X have invariant varieties <( close " to the above three invariant varieties
of ^?

The answer is yes. We will only prove this for the variety { (J/i+J/2)==fl2C^2+J/2)}3
because all the complications are already available there. At the end of this paragraph
we shall give a criterium for the existence of invariant varieties in other cases, namely
in those cases where a reduced jet satisfies one of the conditions in proposition (3.8)
or (3.10).

We now want to show that the vector fields X^ and X satisfy the assumptions
in proposition (4.15), with k==2, /=2, A==i , ^'==5 and ^==7. First we have to
define suitable coordinates on S^R near the (< invariant torus ". Consider coordinate
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functions 615 O^J^ z on S^R, 6^ is only defined mod 27r, such that the c( blowing down "
map 0 : S^R—^R4 takes the form:

^(QI^^O-
(^.cos(^+jo).cos6i, ^.cos(^+j/o).sin6^ ;?.sin(j/+^o) .cos 63, z.sm{jy+jyo) .sin 63),

where j^o is such that cos2^ = a2. sin2^. (This is not yet the final coordinate system:
615 62 will be replaced by x^ x^ with c.Q^==x^ (mod 2w).) We can express X^ in these
coordinates in a neighbourhood of the torus y=z=o and we get:

z"=ff^+^+^•/l(^)^+22•/2(^)^+^3•^z)^+^2•^^)•^'
with ^(o, o)>o and A(o, o)<o. Hence the time one integral ^f^.i=9 in a neigh-
bourhood of y == z == o must be of the form:
p^i.^.^^-CQi+^+^./i^^). e^+^+^.y^^), j+^(^ O.^ ^+^.^^)),
with ,g'(o, o)>o and A(o, o)<o. Replacing 6, by x, with c^Q^x, (modern) gives then:

9(^15 ̂ J^)==
^+c.a^+c.z\f^z,y), x^+c.a^+c^J^y), y+^^{y,z)^ z+z^.g^z)).

We show first that for c small enough (3) (see theorem (4.1)) is satisfied in a
neighbourhood of {y=z=o} in {j/=o}. Let (Xi, Xg, o, Z) be a tangent vector of
{j/=o} in (^, x,, o, ^)$ let <p,(Xi, Xg, o, Z)=(X^ Xg, o, Z7) and let <p(^, ̂ , o, z) be
%, ̂ , o, ^'). Then, for |^|^s, s small enough, there is a constant D, independent
of c, (^, ^2, o, 2;) and (X^, Xg, o, Z), such that:

||X,||^||XJ|--..D.H.||Z||,
||X,||^||X,||-..D.|.|.||Z||,
||Z/[|^(I+D.|.|2)||Z||

and: \zf\^{l+D.\z\2)\z\.

Using this we obtain:
|^|.(||X,||+||X,||)+||Z'||^

(I+D.|.|2).|.|.(||XJ]+||X,||-2...D.|^|.[|Z||)+(I+D.|^|2).||_Z||^
{l+•D.\z\2)[\z\.{\\X,\\+\\X,\\)+\\7.\\•)-2.{l+D.\z\2)c.•D\z\2.\\Z\\.

For c small enough we have that:

S.^+D.I^^.D.I^^DI^I2 whenever |^|^e;

from now on we assume that c is so small that this inequality holds. We then obtain:

i^i.aixiii+iix.iD+iiz-ii^^+^D.i.i^i.iaixji+iix^
and hence condition (3) is satisfied.

The verification of the conditions (i') (2') and (4') for 9 is trivial, using the above
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explicit formula for 9. It is also clear that k==2y f==2, A==i, ^'=5 and m===j satisfy
the conditions (5)3 (6), (7) and (8). Using the results in chapter III it follows that
the 7-jets of X^ and X are equal in each point of {| z \ = 0} and that ̂  and X are G8.
So all the assumptions in proposition (4.15) are satisfied, hence X has an invariant
manifold close to [jy = 0} and X has a singular invariant manifold close to:

{(^+^)=^(^+^)}.
Thus we have proved one case of the following proposition; the other cases can be proved
by the same method (in some cases X has to be replaced by —X).

Proposition (4.17). — Let X be a vector field on R4 which is at least C9 and whose i-jet X^
is of the form:

zl==xl(71^-72^)+xa(^-^^) with alxl+a2^0

whenever a^eZ and i^lail+I^I^Q? and whose ^-jet is in normal form. Let X^ be the reduced
3-J^ °f X and let Z be some C'0-representative of X^ on R2, invariant under T\ and Tg. Let Z
be the vector field on S1 xR obtained by blowing up Z and <c dividing by r2 " {see chapter III, § 2).

If (;q==o, ^2== i, r==o)eS lxR is a hyperbolic singularity of Z with one expanding and
one contracting eigenvalue, then X has an invariant manifold which is close to {j/i ==ĵ  = o}.

If (jc^==i, x^==o, r==o)eSlX'R is a hyperbolic singularity of Z with one expanding and
one contracting eigenvalue, then X has an invariant manifold which is close to {^3 ==^4 == o}.

If (jc^==a, ^==b, r^o^S^R, a, b^=o, a2-{-b2=I, is a hyperbolic singularity of Z
with one expanding and one contracting eigenvalue, then X has an invariant variety which is close
to W+^^^+y^)}.

Modulo a few modifications (to be indicated below) the following proposition is
proved in the same way:

Proposition (4. i8). — Let X be a vector field on R3 which is at least C7 and whose i-jet X^
l a 8\

is of the form J^=X \y^——y^—), X+o, and whose 2-jet is in normal form. Let X^ be
\ ^2 ^l/ _

the reduced 2-jet of X and let Z be some 0°°'-representative of X^ on R2, invariant under T^. Let Z
be the vector field on S^R obtained by blowing up Z and dividing by r.

If (^==0, ^2=1, r=o)eS lxR is a hyperbolic fixed singularity ofZ with one expanding
and one contracting eigenvalue, then X has an invariant line close to {j/g =j/g = o}.

If ^==a, x^==b, 7•==o)eSlxR, ^4=0, d^-^-b2^!, is a hyperbolic singularity of Z
with one expanding and one contracting eigenvalue^ then X has a (singular) variety close to

W^+^)=^}.
In the proof of this last proposition one has to apply proposition (4.15) with

k==i, ^==1, h==i, k* ===4 and w===5. Also, in the application of proposition (4.15) to
the vector field X, obtained by blowing up X, on S2 X R, one has to restrict oneself to
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S^l^o, oo) or S2x{—(X), o], because if in S^l^o, oo) the flow is " going away from
S2x{o} " then in S^C—oo, o] the flow is " tending towards S^o) 5?. Also a zero-
dimensional torus has to be interpreted as one point.

V. — NON-STABILIZABLE JETS; PROOF OF THEOREM (1.19)

The non-stabilizable jets we shall construct, have a non-stability of the same sort
as in [i8J; here we also show that they occur with codimension 3.

i. A special singularity in R3.
r\ Q Q

In R3 we take the vector field X=={x^+x^—x^——2x^—+2x^— and
. . CXo uX-i <7A*3

investigate some ot its properties.

Property (5.1). — X is invariant under Ti* and Tg*; Ti(^i, x^ ^3) =(-—^5 K^ x^)
and Tg^i, x^, x^=={x^ —x^ x^) (the proof of this property is trivial).

Property (5.2). — Let Zbe the vector field on S^R obtained by blowing up X

and let X = - . Z. Then the singularities of X \ S2 X {0} are (^i == o, x^ = o, ^3 = ± i)
/ r i ,- _ i\

and pi==o, ̂ a=±-V3, x^=±- .
\ 2 2;

Proq/l — As we have seen in chapter II the singularities of X \ S^^} correspond
(in the case where the coefficient functions of X are homogeneous polynomials of degree 2)
to invariant lines in R3 or to lines where:

<^^>=o for i^j^3 with ^^H^-^j.

By a short calculation we get:
<^, 7i2>==2.^.^.A:3

<x,v^=^x^+4+4)

<Z,7,3>=^21+^-3^)•

The set of points where these functions are simultaneously zero is {^ = x^ == 0} and
{x^ == o, x^ = 3A;|}. The set of points in S2 X R which are mapped by 0 on this set is:

{x^==o, x^=o, ^3==±i, r arbitrary} u ^ i = o , x^==±-V^, x^=±-, r arbitrary .

This proves property 2.
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Property (5.3). — All the singularities of X\S2x{o} are hyperbolic; in

(^i == o, ^2= °^3 = ± J) there ^e saddles, in (^ = o, ^2 == d= -V3, ^3 = + -| there are
/- - i - - i\ v 2 v

sinks and in ^==0, x^==±-'\/^, ^3==—-) there are sources.
\ 2 2]

Proof. — First one should notice that X\{x^==o}, resp. X\[x^==o}, satisfies
condition II, resp. IV, of proposition (3.8). From this the statement about the points
(^==0, x^=o, ^==±1) follows immediately. From the fact that ^[-[^===0} satisfies
condition IV in proposition (3.8)3 it follows that for X\[x^===r==o} the points

( - i /- _ i\ /- _ i /- _ i\
x 1=0, ^=±-V35 ^3==-? resp. [x^==o, x^=±-V3, ̂ 3=—- , are sinks, resp. sources.

2 _ 2; \ _ 2 2]

The same fact for X\{r=o} instead of X\{x^=r==o} follows from the fact that in
n

each point of {^=o}\{o}, ^<X, V^>>o.

Property (5.4). — The only recurrent points of X \ S^-^} are the points in which
X is zero.

Proof. — Because of the symmetries we may restrict our attention to:

S2x{o}^{x^o}^{x^>,o}.

The boundary of this set is invariant under the flow of X and does not contain any
recurrent points of X other than the zeros of X. If S2x{o}n{x-^>o}n{x^>o}=='W
would contain any recurrent point, then, because X is nowhere zero there, it would have
to contain a closed integral curve y : S1—^ or a closed embedded curve y' : S^W
which is everywhere transversal to X [13; proposition (7.1)]. From the existence of
a closed embedded curve as y or y' it would follow that X is somewhere zero in W;
this is a contradiction and the property is proved.

Remark (5.5). — From the above properties it follows that:

X [ S2 x {0} n {x^o} n {x^o}

must be topologically equivalent to the flow indicated below.

( I /- - I\ ^»^ " "»^———————————————————————(x-,==0, Xy= 0, A".»=== i)^o,^v3,^)———//r\^\
i .- - i\ TA/ J y/-—————————————^-o)

^1=0, x^==^-\/3, X3==~^

(^1=0, ^2=0, ^ 3 = = — — i )

FIG. 10
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Remark (5.6). — Because X\{x^==o}, resp. X\{x-^==o}y satisfies condition II,
resp. IV, in proposition (3.8)3 all the points on S^^} where X is zero are hyperbolic
singularities of X (this time not restricted to S2 X {o}). In the figure below it is indicated
how the flow of X looks in {x^o, A^^o} (compare also figure 3).

{^2=——V3^}
{^2==V3^3}

FIG. II

x^ x^ and ^3 are placed at the positive side of their axis.

Remark (5.7). — Let U be some bounded open neighbourhood ofR3 containing o.
Then the set of points peU such that L^^u(j&) is the origin (see definition (1.4))
consists of two half open pieces of line:

{^==0, ^=4-^/3 .^3, x^>,o} and {^==0, x^==—V^ .^3, x^<_o}

and one open piece of {^==o}. An analogous statement holds for those points peV
with L^ ̂  u(^)= °- Tlle set ofAose points peV for which both L^ ̂  y(^) and L^ ̂  u(j^)
is the origin, is an open set of {x^ == o}, containing a non-empty neighbourhood of o
in the ^-axis.

Remark (5.8). — Given any bounded neighbourhood Uofoin R3, there is a sequence
of points {pi}i^i in U n{x^==o} converging to o and a sequence of (3-dimensional)
neighbourhoods {Uj^ of these points, i.e. AeUi3 such that:

1. U,cUn{^4=o}, U,nU^==0 for all i^j.
2. For each yeU, there are positive real numbers t^ and ^~ such that:

^z(<3S(--^+^))cu<
00

and such that for each t>t^, resp. ^<—^~, either ^z(?,^)^.U^U, or there is a
^e(^), resp. t'e^ -^-), with ^(^^')^U.

3. For each y'eUn{^=o}, L^^u(y') and L^^u(y') are both the origin.
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The existence of sequences {A}i?i and {Uj^i as above follows easily from the
following considerations:

In the half-plane {^3 == o, x^o} Xis non-zero, except in the origin, and is pointing
in the direction of the positive ̂ -axis. Because of this, and the fact that the planes ^1=0}
and {^2 == 0} are invariant under the flow of X, an integral curve, starting in a point
of {^3=0, x^o, x^-}-x^>o}, will never come back to the half-plane {^3=0, x^o}. If
we now choose the points p^ on the positive A^-axis and the sets U^ as small flow-boxes,
it is clear that the above three conditions will be satisfied. The role played by U is
completely inessential, but introducing the U here makes the following remark easier
to formulate.

Remark (5.9). — All the properties and remarks concerning X, stated in this
paragraph, also hold for any G00-vector field X' which is invariant under T]* and Tg*,
the i-jet of which is zero in the origin and the 2-jet of which is close to the 2-jet ofJtT;
only the following modifications must be made:

a) The points (^i^o, ^2==±-V3, ^3=dL-| in property 2 and further may be
\ 2 2/

slightly different for X ' , but they will still be in x^==o.
b) Instead of the lines {^==0, ^=±V3 .^3} other lines, G^close to them, and

also lying in ^==0}, will be invariant under the flow of X' (see also chapter II).
c ) The neighbourhood U in remark (5.7) and remark (5.8) must be chosen

sufficiently small (depending on X'}.

s. The proof of theorem (i.iQ).

Proposition (5.10). — Let Y be a G'°-vector field on R5 which has a i-jet Y^ of the form

( a ()\ ( 8 ()\ '
Y^ = \ I y^ — —y^ — + ^2 L^3 — ~V^ — wl^ î 3 ^2 independent over the rationals. Let X^

\ ^2 W \ ^4 °Jz]

be the 2-jet obtained by reducing the 2-jet of Y (with respect to some coordinates in which Y is in
normal form). Let X^ he so close to the 2-jet of X in § i that for any representative X ' of X^
which is invariant under T^* and Ty, all the properties and remarks^ in § i, are valid.

Then there are two C^-vector fields Y' and Y" on R5, both having the same infinite-jet as Y,
such that their singularities in o are not weakly-G^-equivalent.

Proof. — Let the oo-jet of Y be in normal form with respect to the coor-
dinates^, .. .,^5; i.e. [Y]oo is invariant under the rotations R^ (see proposition (2.6)),
t==i , 2, 9e[o, 27r). We choose the vector field Y' so that it is invariant under these
same rotations R^; let X' be the vector field on R3 obtained by reducing Y' (this goes
in the same way as reducing a germ, see definition (2.7)). Following remarks (5.7),
(5.8) and (5.9) we can choose, for any sufficiently small neighbourhood U of oeR3,
a sequence of points {p^^i in U converging to o and neighbourhoods {Uj^ of these
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points as in remark (5.8). We want to obtain something analogous for the vector
field Y'.

First we observe that the (< map 3 ? :

^(J'1, •••^6)=(±Vj^i^,±V^4y4,j5)

maps integral curves of Y' to integral curves of X' (and hence also preserves a- and
co-limits). We take U^Y-^U), p\ is chosen so that Y(^)==j^ and U,' is a small
flow-box for the flow Y', contained in T'^U,).

The vector field Y" will be obtained by changing Y' in each of the sets U^; this
change, to be described below, can be made G00 and arbitrarily G^-small for any k so
the total change can be made so that Y" is still C00 (and hence will have the same oo-jet
as Y' and Y).

The fact that U^ is a flow-box means that there is an open (bounded) 4-dimensional
submanifold W^, containing p[ and transversal to Y', and positive numbers ^+ and ŝ "
such that U^==^y/(W^, (—s^", 4-Sz4')). For each, sufficiently small, vector field Z
with support contained in U^, there is a unique map P^ : W^->W^ such that for each
weW^, Qy^w, —s^") and ^y.(P^(w), -\-^) are on the same integral curve of
Y'+Z (in Vi)', clearly Po—id. We now take Z so that P^(W, n{j^ ==^=o}) and
W^n{j^3==j/4=o} have some isolated points of intersection (possible because dim (W^)=4
and dim(W,n{j;3=^=o})=2); we then take Y" |U,=(Y'+Z) | U,.

We now investigate what the difference is between Y' and Y". For Y' we have:
if ?eU^, then ^y'(<7, ^) leaves U for both positive and negative time if q^^y^y^o}
and 2y^q,t) stays in U and tends to the origin for both t->-{-oo and t->—oo if
^e{^3==j^4===o}; this follows from the properties of {U-^!^ in remark (5.8) and the
construction of{U^}^i. For Y" we see that the set of points q in U '̂ with:

^.y^u'^^^Y^u'^)-0

contains isolated lines (because of remark (5.8) sub 2, the changes in the different U^'s
do not interfere). Hence we have:

For any small enough bounded neighbourhood U" of o in R5, the set of points
qeV" with L^ y, u"(^)=L^ y, y,,(y)=o is an open g-manifold; the set of points yeU"
with L^ y",u7'(?)==IJa,y/',u"(?)==o contains locally isolated (i-dimensional) lines.
From this it follows that the germs of Y' and Y" are not weakly-G°-equivalent.

The proof of theorem ( 1 .19 ) . — Let W^cJl be the set of 2-jets of those vector

( ^•\r\

fields X on R5 for which the matrix —-\ has eigenvalues o, ±\i and diX^' with
O X y j

a^Xi + 03X34=0 whenever i<_\ a^ | + | ̂  |^3- ^i ls clearly an open codimension 3 sub-
manifold ofji. According to proposition (2.5) any element of W^ can be transformed
(by a diffeomorphism) into normal form. We take W2CWi to be the subset of those
oceWl whose 2-jet is in normal form and whose reduced 2-jet a' (on R3) is so close to
the 2-jet of X in § i that for any representative X' of a' which is invariant under T^c
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and T^*, all properties and remarks in § i are valid. It is clear that the set WgCjJ,
consisting of jets which can, by a diffeomorphism, be transformed into Wg, is a subset
ofW^ and contains an open subset ofWr We choose W to be an open subset ofW^,
contained in W3. The residual subset PcW3 is the set consisting of those aeWg for
which the eigenvalues of the " linear part5?, o, ±^i, ±^^ satisfy OL^-{-(X.^+ o whenever
oci, o^eZ and i<_\ oc^ | + | ocg |. It should be remarked that P consists of jets, all satisfying
the conditions imposed upon the 2-jet ofY in proposition (5.10). From this proposition
it now follows that if aeP and a'ej^, A^2, is such that 7^:2(a/)=a, then a' has two
representatives whose germs are not weakly-G°-equivalent (taking a k-]et instead of
an oo-jet does not change the situation), and the proof of proposition (5.10) shows that
it has two representatives satisfying the condition in the conclusion of theorem (1.19).
This proves the theorem.

VI. — THE PROOF OF THEOREMS (1.15) AND (1.16)

i« The proof of theorem (1.15).

Case 1: the subsets of W^. — Every germ in W^ can be represented by a vector field
of the form:

r\ r\

X= a^x2— + a^x3— + higher order terms $
ox ox

a^ and ^3 are determined already by the 3-jet. We define V\ 3, resp. V^ 3, to be the
subset of those germs a in W^ for which 713(0)= o, resp. 7T3(a)==o; V^ 3 and V^ 3 are
clearly closed (in W^==Vi ^) and (semi-) algebraic and have the right codimension.
Let now a, a' be arbitrary germs'in V^ i\V^ g. Then representatives X, X' of a, a'

r\ r\

will be of the form X=^.f[x).— and Z^A:2./'^)— with/(o) and/'(o) non-zero.
ex ox

We now prove that if/(o) and/^o) have the same sign, then the germs a and a' are
G°-equivalent. By continuity ofyandy there is an e>o such that |y(A:)|, IVMI^o

whenever | x \<^e. Then both X and X\ restricted to U == { ^eR | [ x \ < - e }, have onlyI ^ Ithree different orbits, namely: ^ -'

^l=FveR|---I£<^<o , ^2=={°} ^d ^3= A;eR|o<A:<^sl.

So the identity on U maps integral curves of X to integral curves of X'\ because /(o)
and/'(o) have the same sign the X- and Z'-orbits have the same sense. Also the germs

Q ^

of the vector fields ^— and —^— are G°-equivalent (because if <p : R-^R is defined

95



96 F L O R I S T A K E N S

( n\ ^

by 9(^)=—A:, then 9^ x2—}==—^—). Hence it follows that any two germs
oxj ox

a, a'eV^i\V^2 are G°-equivalent and hence any aeV^i\V^2 is V^ 3- (weakly-) G°-stable.
For a, a' two germs in V^g\V^3 we can proceed in the same way: let X, X' be

? s)
representatives, X=x^.f(x)— and X'^^.f'^x)—with/(o),/'(o) non-zero. As above,

ox ex
if/(o) and/'(o) have the same sign, then a and a' are G°-equivalent. On the other

0 Q

hand, ^— and —A:3— are not (weakly-) G°-equivalent, the first being a source and
ox ox

the second being a sink. If, however, a and a' are close enough they will be in the
same G°-equivalence class; hence any aeV^^V^^g is Vi 3-(weakly-) G°-stable.

The sets V^i, Vi 25 V^3 were defined in terms of 3-jets and the proof works also
for G^germs, hence V^i, Vi 2 ^d V^s "^Y be considered as subvarieties in ^lt3

(G^germs on R1).

Case 2: the subsets o/'WJ. — We first observe that if a is a germ, belonging to Wj,
then we can bring its 5-jet in normal form by a coordinate transformation. Such a
5-jet in normal form is of the following type (see proposition (2.3)):

X,={•).+a^+4)+a,{xi,+4)2)L8-x,-\
\ OK^ l̂/

+(W+^)+^(^+^)2)(^^+^i-l ^+0.
\ ^1 ^2/

From now on we shall use the following notation: if aeWJ and its 5-jet is in normal
form, then the coefficients in the above expression, which are determined by a, are
denoted by X(a), ^(a), ^(a). Note that for every oceWJ, with 5-jet in normal form,
X(a)=(=o.

We define V^g to be the set of those germs aeWJ whose 5-jet is in normal form
and for which ^(a)=o; we define V^g to be the set of those germs aeWJ whose 5-jet
is in normal form and for which 6i(a)=^(a)==o. The sets Vg^, 1=2,3, are now
defined by:

V^, == {aeWJ 13 <p : R2 -> R2 such that <p,(a) eV^ J.

Using the Seidenberg-Tarski theorem ( i . 18) as in § i it easily follows that V^ is a closed
semi-algebraic subset of Wj with the right codimension for z=i , 2, 3 (Vg^^WJ).

To show that any aeV^^V^^i, is Vg^-weakly-G^stable, it is clearly enough
to show this using Vg ,, V^i+i instead of V^, and V^i+r Let now a, a'eV^^V^ 2;
if a' is in a small neighbourhood of a, then &i(a) and ^i(a') will have the same sign and
hence a and a' are both sinks (if ^i(oc), ^(a')<o) or both sources (if &i(a), b^}>o).
Hence a and a' are (weakly-) G°-equivalent. A similar argument works when:

a,a'eV^\V,,3.
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Finally, the sets Vg ^ are defined in terms of 5-jets, and for the proof it is enough
to assume that all germs are G5, so V^ 15 Vg 3 and V^ 3 may be considered as submanifolds
of ^2t5.

2. The proof of theorem (1,16).

Case 1: the subsets ofW^. — We define Vg 3 to be the set of those aeW| for which
there is no diffeomorphism cp with the property that the 2-jet of <p»(a) is of the form

r\ r\ r\

(9,(a))g==^—+^2^—+^2^J— with ^=(=0. By the same arguments as before, Vg 3
ox^ cx^ Sx^

is a closed semi-algebraic subset of Wj; by proposition (2.2), V^3 has codimension i
in W| and by proposition (3.12)5 every a eV^ ̂ \V^ 3 is V^ 3- (weakly-) G^stable
(V^ a==WJ). The set V^ 3 is defined in terms of the 3-jet, but in the proof of prop-
osition (3.12) we need the vector field to be G5. Hence V^g, V^3 may be considered
as subsets of ^2'5.

Case 2: the subsets ofW^. — We define the subset V^3 as follows: aeV4 3 if the
reduction of the 2-jet of a (with respect to any system of coordinates which brings the
2-jet of a in normal form) does not satisfy the assumptions in proposition (3.8). As
in case i it is clear that V"4 3 is a closed semi-algebraic subset of W|=V^2 with
codimension i.

The only non-trivial thing to prove is that each aeV^2\V4 ̂ 3 is V4 g-weakly-
C°-stable. To prove this it is enough to show that if a, a'eV4 g, if the 2-jets of both a
and a' are in normal form and if the reduced 2-jets a,., (xfy satisfy both the same of the
conditions I, II, III, IV and V in proposition (3.8), then a and a' are weakly-
C°-equivalent. To prove this last statement we have to distinguish between the five cases.

Case 2, I (a^, a l̂ satisfy condition I in proposition (3.8)).

Let X and X' be representatives of a and a'. By propositions (3.8) and (4.8)
there are invariant manifolds (lines) t and V for X and X' along which the flow is
contracting at one side and expanding at the other side. Using the same reasoning
as in the proof of proposition (4.13) it follows that for sufficiently small neighbourhoods U
ofo in R3, all points qeV with L^^y(y) or L^^y(y) non-zero are on ^nU; a similar
statement holds for X' and tf. Hence a weak-G°-equivalence between X and X' only
has to map orbits of X to orbits of X' as far as they are in /', resp. /". This is easy to
construct.

Case 2, I I . — Let X and X' be again representatives of a and a'. Let a,, be the
reduced 2-jet of X and let Xy be the vector field on R2 representing a^ and having, as
coefficient functions, polynomials of degree 2.
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98 F L O R I S T A K E N S

In R2 we want to make two subsets Q^ and Q^ such that:
(i) <)Q^ is a smooth manifold and Ti(QJ=Q^ (X is also invariant under T^);
(ii) int(Q^)nint(Q^)=0;
(iii) int (Qi u 0,2)90$
(iv) in each point ?eQ^, the component of Xy(q) normal to (^Q^ has

length ̂ G.(p(<7, o))2 for some positive constant G; p(y, o) denotes the distance from q
to the origin; Xy points at BQ^ to the inside of Qi and at BQ^ to the outside of Q^-

The following figure makes clear that such Q,i and Q^g exist:

to,

i02

FIG. 12

We define ^.Q^ to be the set of points (t.x^, t.x^) wi th^ i , x^eQ^,. Now we
consider the map <D : R3-^2 defined by OO^J^J^^Vj^+J^,.^); modulo terms
of order >: 3, 0 maps X equivariantly to Xy. Hence, for t small enough, say ^^?
t. Q^ == <S>~1 {t. Q^) has the following properties:

(i') ^.QJ is smooth;
(ii') int(^Q^nint(^.Q^)=0;
(iii') int^.QiU^^BO;
(iv') in each point yea(^.QJ, the component of X{q), normal to ^.Q^) has

lengthy ̂  G. (p(^, o))2 for the same positive constant as above in (iv); X points at (){t. Q,i)

to the inside of ^.Q,i and at (^.Q^) to the outside ofLQ^.
Let t.Q^i, t<tQ be a family of subsets of R3 having the same properties with

respect to Z'. Take a t^<_t^ ^ and a homeomorphism:
? : (^i.Q.i)ua(^.Q,))^(a(^.Q:,)ua(^.Q:,));

we may, and do, assume that such a homeomorphism exists. It is now easy to see that
there is a unique extension 9 : (t.^u t.^ -> (^.Q^u (^0^) of 9 which maps
integral curves of X, parameter preserving, to integral curves of X\ (p hence realizes
a G°-equivalence between a and a'.

Case 2, I I I . — Let X and X' be again representatives of oc and oc'. By prop-
osition (4.18) X has an invariant variety W close to {(J^+J;2)=^•J;2} for some a>o.
From chapter IV, § i it follows that for r small Sy n W is Lipschitz close to:

S.n{(^+^)=^2}; S,={(^,^,^)|^+^+^=r2}.
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SINGULARITIES OF VECTOR FIELDS 99

Hence, for r small enough, S^\W consists of three components, one containing (o, o, — r)
(the closure of this component will be called Ry _) and homeomorphic with an open
disc, one containing S,. n{j^==o} homeomorphic to Slx(,o, i), and one containing
(o, o, -}-r) (the closure of this component will be called R^ ^.) homeomorphic with an
open disc. Again for r small enough X will be transversal to Sy in all points of R,. ^
and R,. _ , pointing inside Sy in the points of R^ _ and pointing outside Sy in the points
of R^+. Also for any ^(=S,.\(R^uR^_), neither the positive nor the negative
-^-orbit through q stays for all time in D,.=={(j^ ,^2^3) Ij^+J^+J^^} (^is last statement
is proved by the methods used in the proof of proposition (4.13)).

For X' we take the analogous sets Sy/, R^ .̂ and R^ _. We now take homeo-
morphisms 9^. and <p_, 9^ : Ry. ^ -^ R^ ^ and extend them to a homeomorphism
cp : Dy->D^ in such a way that for any qeR.^,, resp. ^£R_, the negative, resp. positive,
X integral curve through q is mapped, parameter preserving, to the corresponding X'
integral curve through <p^(y). Such an extension realizes a weak-G°-equivalence
between a and a'.

Cases 2, IV and V. — These cases can be handled by the same methods as were
used in the previous three cases.

Finally, the subsets V^ 3 and V^ 3 may be considered as subsets of ^3f 7 because in all
our arguments we used only differentiability up to order 7 (see also proposition (4.18)).

Case 3: the subsets o/^W^. — This is completely analogous to case 2, but based this
time on propositions (3.10) and (4.17); the sets Vg 2 and Vg 3 may be considered as
subsets of ^4'9 (see proposition (4.17)); V^g is defined by:

If aeV^2, then a^V^ 3 if and only if:
a) the eigenvalues rfcX^, rbXgZ satisfy:

TZiXi+TZgXg+O

whenever n^eZ, and i <_ \ n^ \ + [ n^ \ <_Q ;
b) a or —a has a reduced 3-jet which satisfies one of the conditions I a, .. .3 d,

II' a, . . ., e in proposition (3.10).
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