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28 B. D W O R K

INTRODUCTION

In previous articles we studied the zeta function of a hypersurface defined over
a finite field by choosing a lifting and associating certain spaces with the lifting. The
basic idea of the present article is to replace a particular lifting by the set of all liftings.
In this direction we consider a one-parameter family of non-singular hypersurfaces, and
use the classical identification of homology classes of cycles of each fiber with period
vectors relative to a fixed cohomology basis. The differential equations satisfied by
these period vectors may be viewed j^-adically and the space of local solutions (i.e. solutions
holomorphic at all parameter values in characteristic zero with a given reduction) may
be used as a model for the homology of the reduced fiber. In particular the cc Frobenius "
operates on the local solutions and the eigenvalues are the roots of the zeta function of
the reduced fiber, if the latter is non-singular.

However the Frobenius also operates on the local solutions in the case of singular
reduction and in this way the classical vanishing cycles appear in our theory. In certain
cases the vanishing cycles can be prolonged j^-adically. This phenomenon is used to
explain a formula of Tate ([3], § 5) (also see equation (6.29) below) which gives for
an algebraic family of elliptic curves the unit root of the zeta function of the reduced
curves in terms of a classical formula for the period of the differential of the first kind.
This is a more subtle type of result than the results ofKatz and of the author ([4], [8], [17])
which give a connection between period matrices and holomorphic matrix functions
which specialize to matrices whose characteristic polynomial give the zeta function.
The formula of Tate may be viewed as a more precise form (in this special case) of results
of Manin [n] which give a similar formula modulo p.

Very little is known as to whether a given locally presented function has an analytic
continuation in the sense ofKrasner [9]. In §§ i, 2, 3, we find a narrow class of functions
which have such continuations. This provides the function theoretic basis for our
examples.

Although the question is still open, we do not make a precise conjecture as to
whether vanishing cycles can " generally 5? be prolonged. In the elliptic case it is
shown that there is j&-adically just one vanishing cycle and that it is the only cycle that
can be prolonged. For families of curves of higher genus we expect (following Manin)
that there is a subspace (prolongable as a subspace) of dimension equal to the stable
rank of the Hasse-Witt matrix of the reduction of the generic curve of the family.

It seems unlikely that the theory should be dominated by the Hasse-Witt matrix
in the case of dimension greater than one. For surfaces we see that algebraic solutions
also appear (§ 6j below) and for dimension greater than two we may expect new
phenomena.

Let us understand a j^-adic Zariski open subset of the parameter space to mean the
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p-ADIC CYCLES 29

lifting to characteristic zero of a Zariski open subset of the parameter space. We can
formulate the general questions:

1. Can the local solution spaces of the Fuchs-Picard differential equation be
filtered in a cc globally uniform way 5? by means of systems of differential equations
of lower " ranks 3? with coefficients holomorphic in a j^-adic Zariski open subset of the
parameter space ? (Of course the filtration is to be stable under the Frobenius mapping.)

2. Can this filtration be characterized locally by j&-adic analytic properties such
as growth conditions, boundedness, etc?

In this article we give an initial discussion of these questions. The elliptic case
is discussed at some length in §§ 4, 7, 8. We are led to a ^-adic analogue of ^(==^nT)
which no doubt is the same as an unpublished one proposed by Serre and Tate. We use
this analogue to give (§ 7) a new proof of a conjecture of Tate along lines proposed by Katz.
The main purpose of §§ 7, 8, aside from demonstrating the usefulness of this definition
of q, is to investigate cycles of elliptic curves in the case of supersingular reduction. We
find some evidence to support Washnitzer's suggestion that a j^-adic monodromy theory
depends upon behavior near supersingular moduli. Finally we note that in the elliptic
case the eigenvectors themselves are found to have arithmetic significance. This seems
to be a new phenomenon and its investigation in other situations should prove interesting.

The help received from N. Katz will be obvious to the reader. I am also indebted
to L. Ehrenpreis, P. Griffiths and G. Washnitzer for numerous discussions of these
questions.

§ o. Theory of Krasner.

For ease of reference we recall [9] some facts and definitions from Krasner's
theory of uniform analytic functions. For simplicity we restrict our attention to a field Q.,
of characteristic zero, complete under a non-archimedean valuation having countable
value group and countable residue class field.

1. A set 1) in O.u {00} is said to be ultra open about aeQ if for each ^e2), the
distance | x — a assumes only a finite set of values less than | ^ — a | as x runs through
the complement of 1).

2. The set 2) is said to be quasi connected if it is ultra open about each aG2)nf2.
3. A family ^ of subsets of Q.U {00} is said to be chained if for each A, Be^",

there exist elements Co, C^, . . ., C^ in y such that A==C(), B==C^ and C,nC^4=0
for i == o, i, . . ., m — i.

4. If 2) is a quasi connected set, an analytic element f of support 2) is a mapping
of 2) into 0. which lies in the closure under the topology of uniform convergence on 2)
of the set of all rational functions having no pole in 2).

5. (Uniqueness Theorem). — If f,f* are analytic elements with non-disjoint
supports 2), 2)* then f and /* coincide on 2) n 2)* if they coincide on a subset which has
a limit point in 2)n2)*.
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30 B. D W O R K

6. Two analytic elements/,/* of supports 2), 2)* are said to be equivalent if there
exists a sequence/,/, ...,/„ of analytic elements such that /o=/ /*=/,, such that
the intersection of the supports of/,/.^ is non-empty for i==o, i, . . ., m—i and such
that/ coincides with/_^ on the intersection of their supports.

7. Let F be an equivalence class of analytic elements, and let D(F) be the union
of the supports of the elements of the class. If A:e2)(F) then/(^) is independent of/
as / ranges over all elements of F such that x lies in support of/ Thus F is a single
valued function on D(F), which is called a uniform analytic function of support D(F).

Examples. — a) Let 2) == ^5, the maximal ideal of the ring of integers 0 of Q.
00

Let f[x)= S OjX3, lim.sup|aj=i. Clearly/ converges on ^ but need not converge
3—0 j->oo

uniformly. Thus / need not be an analytic element of support ^P. However by using
an infinite sequence (72=2, 3, . . .)

35^=={A:[ \x\<,i—n~1}

of open disks which form a chained family and letting / be the restriction of/ to 2)^
we see that {/J^g ^es ln an equivalence class of analytic elements so that/is a uniform
analytic function of support ^5.

b) The union, I), of the disjoint sets ^}, i — ^ is quasi connected. We may
define a function / on 2) by setting

00

f(x)=^{x(i-x)Y

and let us again assume that lim.sup |^.[=i. The restriction of/to either ^} or 1—^3 is
j-> oo

by the above remarks a uniform analytic function but these restrictions need not be
equivalent.

§ i. Binomial type numbers.

We recall that in the theory of hypergeometric series it is customary to write for
arbitrary 6 and each non-negative integer, n,

i for n = o
(6)^= ^-i

I! (6+v) for n>o.
v=0

In this section we shall assume that p is a fixed prime number and that 6 is a rational
number, which is a j^-adic integer but is neither zero nor a negative rational integer.
Thus (6)^ is never zero. For convenience of typography we will write G^n) for (6)^
and will investigate certain congruence properties of these numbers. We define 9' to
be that unique rational number, integral at p, such that pQ'—Q is an ordinary integer
in [0,^—1]. (Thusfor 6=i,6 '=i; for 6=1/2, 6'=i/2 ( p ^ 2 ) whilefor 6=1/3(^+3),
6' =1/3 (resp. 2/3) if p=i (resp. — i ) modulo 3.)
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p-ADIC CYCLES 31

For each real x put

pW=
o if x<^o
i if x> o

Lemma 1. — If a, [L, s are non-negative ordinary integers^ o^a<p then

C^a+^p+mp8^) CVm^Ge(a+^)/ mp8 \P^-^')
{ I f I ) C^+mp-) = CM) C.^-r^+e7^) modi+^-

(a multiplicative congruence). Furthermore

Ce(mj&84-1)
( 1 . 2 ) ^^ =((-^^r modI+^+l

wA^r^ u^ == +1 MTZ^JJ ^A j& = 2, J' == i, in which case u^ = — i. Finally

CQ(a+u.p)
(i-3) ord^ ^^(i+ord^+e^p^+e-^).

^e'^J

Proo/. — From the definition
a + (Ap — 1

Ge^+^+^+l)/Ce(^s+l)= n (e+m^^^^)
v==0

and hence
a+(xp-l / w^^^

( 1 . 4 ) Ce(a+^+m^+l)/(Ce(^8+l)Ce^+^))= n i+——.
v=o ^ 0+ v /

To compute this modulo p^1 we need all v such that

(i) o<^<a+[Lp—i

(ii) 6+v=o mod^.

The second condition implies that v==Q&6'—6)+j^, teZ and the first condition implies
that t> o,

(iii) ^-^^e'-e)--^-!).
This last condition holds for (Ji>^ while for (JL==^ this holds only if a>pW— 6. Thus
modulo i +ps+l, the right side of (i .4) isn^+^u+^r6^<-o^ r<+e7 \ ' t^+e' /
Since (1.4) is also valid for all positive values of a, we have

v--i f my \
(i-5) C^V•+mps)|{C,,{mps)C^)= II i+——— .

v=o ^ 0 4-vy

33.?



32 B. D W O R K

Comparing this with our evaluation of the right side of (1.4), gives ( i . i).
If we put a==o, ^==p8 in (1.1), (since p(8—^6')==o), we obtain

GeOm+i)^1) Cp^4-1) W^)
^'^ G^m+W = W) W) -d^1

and hence the proof of (1 .2) may be reduced to the case m==i which we now consider.
Let ^ +1 = Ce [p8 +1) /Ce- (p8). We must show

(1.7) ^+i=(^)^ mod I+J&84-1.

Case 1 (^==0). — Ge(j&) is a product ofj& factors which give a full set of representatives
of the residue classes of Z modulo j&. The product of the representatives of the non-zero
classes is congruent modulo^ to — i while the representative of the zero class is
Q+(pQf-Q)=pQ\ Hence

^{P) = (—^)6 ' modulo i +p.

Since CQ,{I)==Q\ it is clear that (1.7) holds for s==o.
Case2{s^i).—For o<^^<ps'}~l we may write v uniquely as j + bp8 with o^j<p8,

o<^b<p and hence

Ge(^+l)-p^lp^l(e+J+^s).
j=0 &=0

We partition the range of j into integers congruent to — 6 mod p and into integers
not congruent to — 6 mod p, so that

(1.8) CeO^1)^!!' "n (e+^+w/n1' ̂ (e+j+w
j = 0 6 = 0 j = = 0 6 = = 0

where, in 11', j is restricted so that j+6==omodj&, and in IP',^ is restricted so that
J+9^o.

The first product on the right side of (1.8) may be evaluated by noting that
j = — Q mod p, j^p8 — i is equivalent to the conditions j == {pW — 6) -\-pt, o<_ t^p8 ~1 — i.
Thus the product in question is

'n ' n \pQf+pt+bps)=p^c^ps).
6=0 (=0

For the second factor on the right side of (i .8), we note that if x is aj&-adic integer then
p-i
^(;c+^s)== II {x—up8) mod^4-1

b==0 <o^==(o

where the right hand product is over the roots of xp—x==o in 0, and hence is equal
to xp—{ps)p~lx. This is congruent modp8'^1 to

( i if p =(= 2
A ^ . ' p8

;'+^ i f^2-
332



/i-ADIC CYCLES 33

We may thus deduce from (1.8) that modulo i+j^'1'1

I 1 if ^ + 2

^ -^=^:(9+^•p^'l'(.+^ if,^
[ , » o ^ ^Q+J; ' '

In the same way the product formula for CgQi»8) can be decomposed

(1 .10) Ce(^)=p^lo•+9).p^l'o•+e)
j = 0 j = 0

and the evaluation of the first product of the right hand side of (i .8) may be applied
to the product II' in (1.10) to give p1'5'1 C^^p8-1) and hence

C1-") ^-^n^O+j).

Comparing (1.9) with ( i . 11), we see that modulo i +ps+l

I ^ 4 = 2

C 1 - ^ ) ^ /^=_ 1 , / 2s \
II I+o7-• P ^ 2 '^o ^ Q + j ]

Now for p=2, the product II" on the right side of (1 .12) is congruent mod28 + l to
2^ i

I +2 S S / / ——., where S" denotes again that 6 +j^=o mod 2. This means thatj'==o y+j
6 +J ̂  i mod 2 for eachj in the range of summation and that there are 2s"1 terms in the
sum. Thus the sum is congruent to 2s"1 mod 2. If j^2, the right side of (1 .12)
{p=2) reduces to i mod^84"1, while for s=i, we obtain 1 + 2 = — i mod 22. Thus
we have shown for J^i,

vs+l=i^u, modi+j^1.

Equation (1.7) now follows easily from the case s==o.
We now consider the proof of (1.3). We write

(1 .13) e'-i= S (v8
s =0

where for each j, o^p^j^—i. We choose a ,o^a^^—i such that

6 — i = a mod p
and conclude that

00

(i.i4) e-i=a+S(3^+1

8 ==0

333
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34 B. D W O R K

since ( ^ — i ) — a lies in [o, j&—i], is an ordinary integer and is congruent to
— 6 modulo p. For each integer r>_2 let

O^i+a+^EV^1

r-1

6;=i+ S p^5.
s=0

We first note that there exists no integer t such that (B,==^—i for all s>_t, as otherwise

e'-i- s p^-^^-i^s^^s1^-1-^
S — U J == 0 8=0

a strictly negative integer and hence 6' is an ordinary integer, O^o, and thus the
same holds for 6==^6 '—(^—i—a) , contrary to hypothesis.

We now observe that given an integer [JL, then for r large enough
r-2

( 1 - 1 5 ) [L+ S (V5^"1

since by the previous remark there exists an integer i such that pi^^ and such that
P^^—2. If we choose r^>z+ 2 then the left side of ( i . 15) is not greater than

r-2

P'+^P-l) S^-^^-1--!^-!.
s = 0

We recall the formula of Gauss

( 1 . 1 6 ) Q&—i)ord72!=n—S(7z) ,

^where for TZ=^+^+ . . . +^_^-^ o^.<^-i,
m—l

S(n)== S ff..
^•=0

Since Ce(w) is for fixed n, a continuous (/»-adic) function of 6 which never takes on the
value zero, we know that both Ce(re)/C^(ra) and Gg,(n)/Ge;(n) are units for all r large
enough. Since Ce,(n)=(e,—i+?z)!/(6,—i)!, we conclude with the aid of ( i . 16) that
for r large,

(1 .17) ^-I)(ordc^+^)-^t)=a+S(6;+(JL-I)-S(6,+a+^-I)
\ ^"e'W /

+S(9,-i)-S(6;-i).
It follows from the definitions that

(i-i8) S(6,-i)-S(6;-i)=a-p^.

Case 1 [a-\-y.<pY — In this case we write
r-2

Q,-i+a+y.p={a+^+p^+ 2 (B^5)
s==0

334



J&-ADIG CYCLES 35

and since a+oL<p, we have
r — 2

C 1 - ^ ) S{Q,-i+a+[Lp)=a+Qi+S{[L+ S (Vs).
s =0

On the other hand
r-2

(i+6;-i=(^+ S (V^+p,.^-1,
s=0

and hence if r is so large that (1.15) holds, then

(^o) so.+e;-i)=s(pL+ s (v^+p^.
s=0

It follows from equations (1.18), (1.19), (1.20) that the right side of (1.17) is
zero in this case, which coincides with (1.3) in this case.

Case 2 (<z+a>j&). — In this case we write
r-2

Q,-i+a+^p={a+ai-p)+p{i+^+ S (Vs)
s=0

and conclude
r-2

C 1 -^ ) ' S{Q,-i+a+^p)=a+o,-p+S{i+^+ S (Vs).
s==0

On the other hand
r-2

^+Qfr={I+^+^PS)+pr-l^-l

and hence if we choose r so large that ( i . 15) holds with [L replaced by (JL+I , then
r-2

(^o)' sQi+e;)=s(i+^+ ^(V^+P^.

It follows from equations (1.18), ( i . ig ) ' , (1.20)' that the right side of (1.17) is

^=j&+s(e;+^-i)-s(e;+pi).
If [L+Q^omodp then S(6; + ^—i)=S(6; + |JL)—I and hence

^=^-I=^-I)(I+ord(|l+e /)).

If on the contrary, ord(^+6')==v>o, then for r large enough,

^+e;=^(T+i),
where T is a non-negative ordinary integer, T+i ^o mod^. Thus

^+e;-i=(^-i)+^T
and hence S((JLrh6;)=S(T+i)

s(^+e;-i)=(j&-i)v+s(T).
335



36 B. D W O R K

Since T+i=t=omod^, S(T+i)=S(T)+i and hence
u=(p-l){l+ord{Qf+^).

This completes the proof of (1.3) and hence of the lemma.
Corollary 1. — Again let 6 be a rational number which is neither ^ero nor an ordinary negative

integer but is a p-adic integer. Let AQ(%)===CQ(^) \n\^ then for all n, m, s in Z^:

(i) AQ(^)/AQ,( — j is a p-adic integer;

A^n+mp^1) A^n)
(ii) ————————— == —————— mod p8 • (additive congruence).

M[M MH)

Proof, — The first assertion follows from (1.3) which shows that

ordC.(n}|C.,(\n\\>\n\ordC,(n)/C,([^|)^],

while
,/ ,, ra ,\ \n\"T^bJ^bJ-

For the second assertion, we write n=a-{-[Lp, Q^a^p—i and apply equations ( i . i),
( i . 2) to GQ and Or Since Ug is independent of 6, the left side of (ii) is congruent modulo
i+p^1 to

/ .s xp^+e -po ' )
^=(Ae(a+^)/Ae.(pi)) i+gT^-

Assertion (ii) is now clear if a^pQ'—Q (in that case the congruence is also valid multi-
plicatively) while if a^pQ'—Q, we use equation (1.3) to compute

Ae(^+(jip)
( 1 . 2 1 ) ord——————=I+ord(e /+[i).

AQ'W

In this case u—A^a+^IAQ.^^—^——————— and it follows from ( i . 21) that the
AQ'(^) 6 +-P'

right side is congruent to zero modulo ^s+l. This completes the proof.
Corollary 2. — Let 6^, . . ., Qy be rational p-adic integers, none of which are ^ero or ordinary

negative integers. For neZ.^., let

A(n)==TlA,(n), B(n)= H A,.(n).

Then

i) A(7z)/B( — ) is a p-adic integer'^

ii) A^+^^^/B^^+^-A^/B^^]) mod?

( i ) A^n}!W\n\ \ is a
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2. A Formal Congruence.

Our purpose (§ 3) is to exhibit a class of functions having a non-obvious analytic
continuation in the Krasner sense. With this object in mind we demonstrate a formal
congruence between power series. (A special case was stated in [3], equation (12).)

Theorem 2. — Let A, B == B ,̂ B ,̂ B ,̂ ... be a sequence of 0. valued functions on Z+.
Put

F(X)= S A{n)X^ G(X)= S B^X-.
n==0 n=0

To simplify the statement of our hypotheses, we write A=^~l). We assume for all n, m, s
in Z^_, z^ — i:

^{n+mp^^ ^(n)
a) —————————-=—————— mod^+1.

B<-'([I]+^) B-)([j])

b) BO^/B^^^^ILo for all i>-i,neZ^.

c) B^eO for all i^-i,neZ+.
d) B^^o) ;j a unit for all i^—i.

Then
{m+l)?1-! (m+l)p^+l-l

(2 .1) F(X) S B(J)X"=G(XP) S AO-)X^ modBM^^^^EX]].
j=mps j=mps+L --

^Vo^. — The hypotheses are not independent, in fact c ) is a consequence of the
other three.

Proof. — Let n==pN+a, o<,a<,p—i. The coefficients of X^ on the left side
of (2. i) is

(m + 1 )ps -1

.S A(n-pj)B{j),
S^mp5

while the coefficient of Xn on the right side of (2. i) is
(m+ 1)^-1

. S ^ B(N-j)A(a+A/~).
j=mp-1

Let U,(j, N)=A(a+/>(N-^))B(j)-B(N-j)A(a+^)
(W+1)^-1

H,(m,.,N)= S ^ H,(j,N).
j=wp-1

The theorem is equivalent to the assertion that

(2.2) H^^ej^B^) for ^>o ,m^o,N>o.

We may extend our functions B^) defined on Z^. to functions defined on Z by setting
B^(TZ)==O for %<o, z^-i.
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Since ae[o,p—i], it is clear that

(2.3) U,(j,N)=o for j>N

and hence

(2.4) H^(m,^N)=o for N<m^.

In preparation for the proof of (2.2) we record and prove some elementary facts.
T

(2.5) S H,(m,^,N)=o if (T+i)^>N
w=0

p-1

(2.6) H,(m,j,N)= S H,(pL+mjM-i,N) if ^i
tJi=0

(2.7) B^+mj^EEO modB^^m) if o^^^—i^^—i^^o.

To prove (2.5) we first note that the left side of (2.5) is

T (w+l^-l (T+l)^-l
S S ^ U,0,N)- S U,0,N),

m=0 j=m^ j=0

and since (T+I^—I^N, equation (2.3) shows that this last sum is the same as

SU,Q,N).
3=0

From the definition U^j, N)=-U^(N-j, N)

and hence the last mentioned sum is equal to its negative and hence is zero as
asserted.

To prove (2.6), we first note that by a change in the index of summation:

H^^^^'S'U^+^N).

If we now put j^+pL^-1, the sum may be written, for s^i, as

P-l P5-1-!

^ ^ U^+^+^-SN).

Equation (2.6) is now obvious.
For equation (2.7) , we first note that the assertion is trivial for s=o, while for

j-^i, under the hypothesis on z, [i|ps]=o and hence
S — 1

B^+m^)/^4-^)^ nB^+^^zV^+m^-^/B^4^1^^4-1]^-^-^-1).

Since [^^^[[^/AL eadl of the fractions in the product (by hypothesis b}) lies
in 0. This proves (2.7).
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We now prove (2.2) for s==o. By equation (2.4) we may assume N>m. By
hypothesis a)

A(^+j&(N-w))/B(N-w) ==A(a)/B(o) modp

A{a +pm) /B(m) == A{a) /B(o) mod p

and hence U^(m, N)/B(m)B(N—m) =EO modp

and so by hypothesis c )
U^ (m, N) = o mod pB {m).

Equation (2.2) for j==o now follows from the fact that H^(m, o, N)==U^(w, N).
We now use induction on j. We write the induction hypothesis

(a), :H^w,^ ,N)==o mod^B^m) for o^<.y, m^o, all NeZ.

Since we have checked (a)^, we may assume (a)g for fixed j>^i . The main step
is to show for o<^t<^s that

p^-i
(P)^ : H,(m, ., N+m^) = ^ ^U+mp-Wj, t, N)/B^(j) mod^4-1^^).

We first prove (P)o,s . We know that
P ' - I

H,(m, ^ N + ̂ s) = S U,(j + ̂ s, N + mp8)
j=0

and
(2.8) U,(J+m^N+^)=(A(^+J&(N-J))B(J)+^s)-B(N-J)A(a+^^^

Using hypothesis ^:

A{a+pj+mps+l)={A(a+pj)K{j+mps)|BU))+^PS+l^U+
where XjeO, so that the right side of (2.8) is

B(j+^)((U,(j, N)/B(J))-^+1X,B(N--J)).

Since U^(j, N)==H^(j, o, N), it is clear that

H,(m, s^+mp^^^BU+mp8)^^ o, N)/B(J))-^+1PS1X,BO•+^S)B(N-J).

Since XjB(N—^)eO, it follows from (2.7) (since B^B^) that the second sum is
congruent to zero modp8^ lB(8}{m). This proves (P)o s* With s fixed, s>i, t fixed,
o^t^s—i, we show that ((B)( g together with (a)g imply Wt+i s '

To do this we put j=^-\-pi in the right side of ( ( B ) ^ g and write it in the form

"S p 2 B^^+^+^S-<)H,(^+^,^N)/B^(^+^),
(j(.=0 i==o

noting that s — ^> i. By hypothesis ^ :

B{t\[L+pi+mps-t)=^t\^+pi)B{t+l}{i+mps-t-l)|B{t+i\i))+^^
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where X^eO. Thus the general term in our double sum is

(B(^)(z+^-^)H^+^ ^ N^B^^+Y,,

where the error term,

^^^P'-'^^^i+^-^^H^+p^^^lBW^+pi).

For this error term, since t<s, we may apply (a), to conclude that

Y,^o modB^+ l)(^+m^-<- l)^+ l .

We now use (2.7) (since z^-^-1) to conclude that

Y^==o modj^B^m).

Thus the right side of (p)^, is modulo p8 + ̂  (w) the same as
P-l P^-1-!

,?o A B('+1)(^+^S-<~1)H^+^ ^ N)/^^1)^).

By reversing the order of summation and using (2.6), this last sum is the same as
p5-1-1-!

^ ^^{i+mp8-1-1)^ t+i, N)/^^)^),

which proves W^i,s' In particular then we obtain (p), ,, which states

(2.9) H,(m, j, N+rn^) =B^(m)H,(o, s, N)/B^(o) mod^-^1^^).

We now consider the hypothesis {s fixed as before)

YN : H^(o, j, N) = o mod ̂ s4 \

We know YN is true for N<o. Let N' (if it exists) be the minimal value of N for which y^
fails. For m>_i, we then have by equation (2.9), since B^o) is a unit:

H,(m, s, N') =B^(m)H,(o, j, N'-^) mod^
and hence H^TTZ, j-, N') =o mod^+1 for m>o.

Applying this to equation (2.5), we see that

H,(o,^,N')=o mod^+1.

Thus YN is valid for all N, and equation (2.9) now implies (oc),^. This proves equa-
tion (2.2) and completes the proof of the theorem.

§ 3. A class of functions with j&-adic analytic continuation.

The following theorem is based on Theorem 2 but the notation is changed slightly
so that the i^-valued function A=B(--1) does not appear.

340



p-ADIC CYCLES 41

Theorem 3. — Let B ,̂ B ,̂ . . . be a sequence of ^.-valued functions on Z^_ satisfying
conditions a), b), c) of Theorem 2 {for i^>o) and the further conditions

d') B^(o)=i for i>_o,

e) B^^B^ /or all i>o and some fixed reZ+.
00

Let ^\X)== S B^X^', ^>o
j=o
^-1

F(^)(X)= S B^OW, z>o, j;>o.
j = o

Z^^ 2) be the region in 0 defined by the simultaneous conditions

(3 .1) |F^)|==i for z=o, i, ...,r-i, ^>o

(̂  the functions B^^ B ,̂ . . ., B(r~l) toA^ y^toj ZTZ a field of finite residue class degree a, then t
may be restricted to o<^t<.a).

Then F^^x) /F^A^), which is obviously a uniform analytic function on ^3, is also the
restriction to ̂  of an analytic element f of support 2):

/W=limF^)/FW(^),
S->V>

which assumes unit values on 2).
Proof. — It follows from Theorem 2 that for z^>o, s^o:

(3.2) F^(X)F^+1)(X^=F(^+1)(X^F^,(X) mod^4-^^]].

Since each F^, F^ is a unit in D[[X]], we conclude that

(3.2') F^,(X)/Fi^+l)(X^=F^(X)/F(^+^(X^ mod^^EEXJ],

a result valid in particular for s = o and hence

(3.3) F^X)^^) ^F^(X) modj^[[X]]

from which we deduce

(3.3') Fi'UX^F^^X^X) mod MX]

since the congruence certainly holds modulo ̂ [[XJ] while both sides are polynomials.
It now follows from (3.3') by induction on s, using the periodicity of the sequence
{F^}^^ that for A;e2), z'^>o, j\>o:

(3.4) I^WI-i .

For s>i, equation (3.2') gives

F^i(X)/F^(X^=Fi°)(X)/F^,(X^ mod^[[Xj]

and hence by the argument used above:

F^(X)F^(X^) =FW(X)F^(X^ mod^[X].

J47
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If we now specialize X to xeQ then the congruence holds modulo p ' O , while if xe^
then by (3.4) each factor in the congruence is a unit and hence putting

/.W-^-liW/^^),
we have /, {x) ==f, _, {x) mod p^D

for j^i, ^eD. This shows that the sequence {/jg>o converges uniformly on 2) and
equation (3.4) shows that the limit / assumes unit values. On the other hand
equation (3.2') (with i==o) can be specialized at xe^, showing that

f,{x) EEF^)/F^) mod^O.

This completes the proof of the theorem.
Corollary. — Under the hypothesis of the theorem, with D defined by (3.1), F^A^/F^A/)

(well defined on ^3) is the restriction of a uniform analytic function on 1) which takes unit values on I).
This follows immediately from the theorem since

r— l

FW{x)|VW{xpr)= Ft (F^(^)/F(j+l)(^y+l)).

In the applications, the function F^ will be of classical type (for example genera-
lized hypergeometric functions) while the function F^^) /F^^) depends formally
upon p and does not appear in classical analysis. We now exhibit j^-adic analytic
continuation of functions which formally do not depend upon p.

Lemma (3.1). — Let q be a power of p, 2) a quasi-connected domain in £) which is stable
under the q-th power map and at non-^ero distance dfrom its complement. Let 91 be a neighborhood
of the origin lying in 7) and let F be an analytic element with support^ which does not vanish at the
origin. Suppose F(^)/F(^) (obviously an analytic element with support containing a neighborhood
of the origin) is the restriction of an analytic element f of support 2), and that both f and iff are
uniformly bounded on D. Then for each successive derivative F0^ of F, the ratio F^/F is the
restriction of an analytic element T .̂ of support S). Furthermore

(3.5) Sup|^.|<(pW,

where p =Sup |/|/Infj/[,

the Sup and Inf being over 2).
Proof. — A rational function g with no pole in 3) has a Taylor series representation

at any a el) which converges in the interior of a disk of radius d about a and hence the
Cauchy inequality for power series gives

\gfW\^d-lSMp\g^

the supremum being again over D. Thus

(3.6) Supl^^Sup^l

and by taking limits, this remains valid if g is any analytic element of support 2).
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Let S be the differential operator X(af/rfX). For ^e9l, an elementary computation
gives (we may assume F has no zeros in 91)

(8///)W=(8F/F)W-^(8F/F)(^)

and hence for jj>i, ^e9l:

(3.7) ^1S^(8//J)(^)=(F'/F)M-^-1^(8F/F)(^).j==o

For A:e2), the sum on the left is bounded by p/fi?, while the general term is bounded
by (pAOl?!^ Hence the left side converges uniformly on 2) as s-^co. On the other
hand, we may suppose that F is bounded away from zero on 91 and that F' is bounded
on 91 and hence for each ^e9l, the right side of (3.7) converges to (F'/F)^) as j->oo.
This proves our assertions for 7^.

For xeVl, it is clear that

(3-8) •^+l=7]l7b•+7^

from which the lemma follows by an obvious induction argument, using (3.6), pj> i and
the fact that analyticity is preserved under addition, multiplication and differentiation.

Corollary. — The lemma remains valid if'91 is a neighborhood of any point oc which is fixed
under the q-th power map and at which F does not vanish.

This follows from the fact that we may assume 91 to be a disk of diameter less
than unity and hence stable under the q-th power map.

The main significance of the lemma is that (letting T] == T]J the equation

du
(3-9) 7--Wdx

specifies for each aet) a one dimensional space U^ of germs of functions holomorphic
at a, with the obvious consistency condition that if ueVy, and a' lies in the support of u
then ueV^,. We have assumed in the lemma that 2)c0, but this specification of U^
remains valid for each a 4=00 in the support of r^.

For each aeD, let u^eU^ be fixed by the condition

^(a)==i.

Let A^ be the intersection of I) with the (open) disk in which u^ converges.
Lemma (3.2). — Under the hypothesis of Lemma (3 .1) , let a be an element o/D lying

in a finite orbit under the q-th power map. We conclude

(i) u^ has no ^eros in A^.
(ii) If F satisfies a linear differential equation with coefficients meromorphic on 2), then u^

satisfies the same differential equation.

(iii) u^x)lu^)=f{x)lfW

for each x in A^ such that xq lies in A^.
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Proof. — The first assertion follows from equation (3.9) since Y] is analytic on I).
For the second assertion we note that the differential equation satisfied by F may by
means of (3.8) be transformed into an equivalent non-linear differential equation
(independent ofF) with coefficients meromorphic on2) and which is satisfied by 7](=F7F).
Clearly we may substitute uju^ for T] and recover the original differential equation but
now satisfied by u^. This completes the proof of (ii).

For the proof of (iii) we recall from the proof of Lemma (3.1)
(3.10) xflf^xr^-qx^W

for all xe^l and hence everywhere in 1). Since u^ and Uyq are solutions of equation (3.9),
we deduce (setting fo,{x)=u^(x) |u^(x<l) for all xe^ such that ^eA^) that

f.lf.-flf

and hence there exists a constant c such that
L-cf

on a sufficiently small neighborhood of a. Clearly f^) =l•> SLn(^ ^is permits the evalua-
tion of 6-, which completes the proof of the lemma.

We now propose to free the theory from the c( choice of zero point 5? which appears
since the <7-th power map plays so prominent a role. We may view this map on 0 as
a lifting to characteristic zero of the Frobenius map over GF[^]. Of course other
liftings exist ([18]). Let 9 be a power series converging everywhere in 0 such that
for all xeQ:
(3.11) (p(,r) == ̂  mod TrO

where n is a fixed element of ^3.
Lemma (3.3). — To the hypothesis of Lemma (3.1) we add the additional hypothesis

that^l is a neighborhood of ^ero which is stable under <p, that F is bounded away from ^ero onyi,
and that

l>e=(p|d)^\p^-l\

the quantity e being defined by this relation. We conclude that the function

/^)=F(X)/F(cpM)

defined on 91 is the restriction of an analytic element of support 2).
{Note. — In the examples provided by the Corollary of Theorem 3, p==r f= i . )
proof. — For A:eT), let T=^, T+t==^{x). For xeyi, we have

/.W=/W.(F(T)/F(T+Q).

Clearly it is enough to consider the second factor. The Taylor expansion of F in 91 gives
QO

(3. *2) F(T+f)/F(T)=2^CIW!
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The first term on the right side is i and with the aid of (3.5) we check that for xe!),j>^ i

^Wij\\^.
Since e<i this shows that the series converges uniformly on S) and assumes unit values
there. This completes the proof of the lemma.

We summarize most of our results in a form particularly adaptable to our appli-
cation in the next section. Here F^ denotes the j-th derivative of F.

Lemma (3.4). — Let B be a mapping ofZ^. into Q ,̂ such that

a) B(o)=i.
b) B(7^+^S+1)/B(^/J&]+^S)=B^)/B(^^]) modp^1 for all n,m,s in Z+.
c) B(^)/B([72/^])eO for all neZ^..

Let
00

F(X) == S B(OT)X'"
M=0

p5-!

F,(X)= S B^X^ s^o
m=0

3)={^0| F^)|=i}.
Then

(i) There exists/analytic with support 2) coinciding with F^/F^) on ^, assuming
unit values on 2) and such that uniformly on I)

(3. i3) fW ^F^,M/F^) mod^1.

(ii) For each jeZ^, there exists T .̂ analytic with support 1), coinciding with F^/F on ^5,
mapping 2) onto 0 ^fl? such that uniformly on 1);

(3.14) T^-F^/F^ mod^84-1.

(iii) TA^r^ exists a function g defined on

(g ={(A;,J/) e0 x0 | x+^et)}

such that for {x^)e^x^:

g{x,y)=f{x+^IF^+^)

and such that uniformly on (£:

(3.15) ^^Fs+i^+jO/W+y) modp8^

(iv) For each ael), ^ solution Uy, of equation (3.9) {with initial condition ^(a)==i),
converges in a + ̂ ) ^TZfif /or ^// (a, ^) e2) X ̂ :

(3.16) /(a)^(a+Q/^(^+^)=F^,(a+^/F,(^+^) modj^1.

Proof. — Statement (i) is a direct consequence of Theorem 3. For statement (ii)
we first note that by Lemma (3.1) we need only check equation (3.14). To facilitate
computations, let us, for each function g defined on a subset S of 0., write <S>g for the
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composed function, x\->g{xv>), defined on the inverse image of S under the p-th power

map. Once again let 8 be the differential operator x—. From equation (3.13), we
obtain dx

I ^\f T /^P ^TT \
(3.13)' ^^).7(^)i^^ ^d^-

X J X V^+l-j ^ s - j l

(uniformly on 2)), while equation (3.7) may be written

(3.7)' ^=^^{PWflf).

By replacing each term in the right hand sum by the right hand side of (3.13)',
we obtain equation (3.14) with j==i. The proof of equation (3.14) for arbitrary j
is now obtained by induction with the aid of equation (3.8). This completes the proof
of (ii).

For statement (iii) we use the method of Lemma (3.3). For {x,y)e^ both x+y
and ^+y lie in 1) and hence putting ^==^+y, pT={x+yY—^ we have

Fs+i^+^/F.(^+y)=(F^,(^+^)/F,((^+^))(F,(S+^T)/F,(S)).

Equation (3.13) shows that the first factor on the right is congruent to f[x+y)
modulo J&84'1 while the second factor is

00

i+^^lf^^{pTyij[

and by equation (3.14) (since j—ordj\>i for j^i) this is congruent mod p^1 to

^+^^){pTyiji.
We define g{x,y) to be the product of this last expression with f{x-\-y) and check trivially
that for (^)e^X^, ^jO^F^+^/F^).

To prove (iv) we first observe that since 7](=^) is a limit of rational functions
with coefficients in Q^,, 73 and each of its derivatives assumes at oce2) values in K^, the
closure of Q,p(a) in £2. It follows that u^ may be represented by a power series in
^[[•^—^J and hence the disk of convergence A^ of u^ has the same radius as A^
for each conjugate (over Q ,̂) a' of a. In particular if q==p\ a^==a, then A^ is the
image of A^ under an extension to Q of the absolute Frobenius. Thus part (iii) of
Lemma (3.2) takes the form

(3.17) ^WKpW-fWIfW
for all xe^ and hence

(3-17') u^lu^^n W)lf(^ ).
j=0

Since the right hand side is analytic in a + ^3 and u^ has non-zero radius of convergence,
it follows from the radius reducing property of the q-th power map (when applied to
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disks of radius strictly less than unity and center at a) that u^ must converge in oc+^P.
Since u^ and u^ (for (Be a + ^P) differ only by a non-zero constant factor, it follows that u^
converges in (B+^P for each (BeD.

In particular this shows that equation (3.17) remains valid for all ael), A:ea+^P
(with hypothesis that 0^== a). To verify equation (3.16), we once again use the method
of Lemma (3.3), put ^=^4-^, J&T=(a+^) p —^ and write

(3.18) /(a)^(a+^)/^(^=(/(a)^(a+^)K,((a+^^))(^(S+j&T)/^^

It follows from equation (3.17) that the first factor on the right side is /(a +1) (for te^)
while the second factor is precisely as in the proof of (iii):

00I+^U^IU^^WIJL
Since u^p is a solution of equation (3.9)3 it is clear that u^pju^p is the restriction of Y^-
to a+^8 and hence by equation (3.14), the above series is congruent modp^1 (for
all te^) to

oo

i+^(F^/FJ(S)(j&T)^7j!,

which is clearly the same as Fg(^+^T)/Fg(^). The first factor on the right side
of (3.18) being y(a+^), we see by equation (3.13) that it is congruent modp8^'1

to Fg^l(a+^)/Fg((a+^)p) . The proof of equation (3.16) now follows from the definition
of S and T.

§ 4. Cycles of elliptic curves.

It is well known that the classical periods of the differential, o)==^X/2Y, of the
first kind of the elliptic curve
(4.1) Y2=X(X-I)(X-X)

satisfy the hypergeometric differential equation

(4.2) X(i-X)^'+(i-2X)^-(i/4)^=o.

Igusa {Proc, Nat. Acad. Sci. U.S.A., vol. 44 (1958), 312-314), noted that modulo p the
only power series solutions of (4.2) are

[ p~ l } 1 2 / / ^ \ I \2

(4.3) SW= ,?„ ((,)» .'

and the products ofg with power series in V3. In lectures at the Johns Hopkins University
in 1958 he gave the heuristic interpretation that in characteristic^, co has just one period
on the fiber (except in the supersingular case, when g(\) vanishes and then there is no
period).

We adopt a similar point of view in the j&-adic case and think of the cycles of the
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fiber \=\o as being given by the locally holomorphic solutions (in the parameter space)
of (4.2). Since Bco/BX is a differential of the second kind, this definition of cycle gives
a " period ?? for all differentials of the second kind.

It is natural to introduce the notion of cycle classes, that is of one dimensional
subspaces of the two dimensional space of locally holomorphic solutions of (4.2).

Let ^-{^OH^MI^I}

^^{xlx-^Dj
D ==DiUT)2.

By means of equation (3.9) we shall give a <( global 5? definition of a distinguished
cycle class. We will show that this class is characterized (locally) by being bounded in
each disk of convergence. This cycle class appears implicitly in the theorem of Tate
stated in ([2], § 5). We give a second proof of this local characterization in terms of
boundedness by showing that for each ae?), the ratio w of solutions of (4.2) may be
chosen so that

exp(^)e0[[^],

where ^ = X — a for aeS)i, t=il\ for [a |>i . This result generalizes the observation
of Tate that for | j \ > i, | q \ < i (j= invariant of (4. i), q = ̂ \ as in the Jacobi theory
of elliptic functions), the classical relations between j and q may be interpreted radically.
We do not know ifTate's theory ofj&-adic theta functions ([13], § i) may be generalized.

Having concluded these introductory remarks we proceed with our exposition.
We know

^-(^.-^MW
is the unique solution of (4.2) holomorphic at the origin. It follows from § i that F
satisfies the hypothesis of Lemma (3.4), while the coefficient ofV for {p—i)l2<j<p is
congruent to zero modulo p and hence

V^==g modp[\].

Thus T]=F'/F and/^^F^/F^) can be extended to analytic elements of support^.
Equation (3.2) (with s=o) now takes the form

F(X)=F(X^(X) modp[[\]]

and hence as noted before g satisfies equation (4.2) modulo p. It is well known that g
is the unique polynomial [modp) of degree strictly less thanj& which satisfies (4.2) mod p.
Since the differential equation is stable under Xl-^ i—X, it follows that

(4.4) ^-^(-i)^"1^) mod?
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and similarly

(4.5) gW^-^M mod?
_i

follows from the fact that if u is a solution of (4.2) then so is X ^(i/X).
Thus I\ == i —I)i, and 3)̂  has the same intersection with the group of units as £).^.

This shows that T](X) and 7] ( i—X) are both denned on 2)^. For XeDg, let

(4.6) ^(x^X)--^-2^-1),

so that ^ is an analytic element of support Dg.
We claim that

(4.7) 7](X)+7)(i--X)==o for XeDi

(4.8) 7]==S on 2\nT)2.

To prove these relations, for each aeD^, let U^ be the space of functions holomorphic
at a defined by equation (3.9). By part (ii) of Lemma (3.2)5 U^ is a subspace of V^,
the germs of holomorphic solutions at a of equation (4.2). For a==o, i the dimension
of V^ is unity and hence U^=Va for a==o, i. In particular, U^ is spanned by F ( i — X )
and hence equation (3.9) shows that for X near i,

F(i-X)^-F'(i-X).

This proves equation (4.7) for X close to i and hence by uniqueness, for all Xe^.
_i

To prove (4.8) we consider the classical solution X ^(i/X) near infinity of (4.2).
This is clearly a solution of

du
(4.9) ,̂

an equation which is non-singular at each finite point ofDg. Precisely as in the proof
of part (ii) of Lemma (3.2), this equation defines for each finite a in T^ a one-dimensional
subspace U^ of V^. Again for a==i we have U^==Va and thus for X close to i,
F ( i — X ) is a solution of equation (4.9) which shows that

^)=-^(i-X)

in a neighborhood of i. Equation (4.8) now follows with the aid of equation (4.7).
Thus T] may be extended to a uniform analytic function of support 2) and we have

shown

(4.7)' 73(i-X)=——7](X)
(4.8)' X-^X-^I/^-^M+I^)

and finally we observe that equation (3.9) now defines a one-dimensional subspace
U^ of V^ for each finite a in T). This is the distinguished cycle class mentioned in our
introductory remarks. Classically it is the vanishing cycle at X = o, but in the j&-adic
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theory (contrary to the classical case) it may be identified with the vanishing cycles
at X = = i and X==oo.

Before proving the boundedness characterization of U^ we need a preliminary
result.

Lemma (4. i). — For each integer r;>i, let N.^O^—I)/^—!; and let

G,(X)=I/(X(I-X)^).

where g is the polynomial defined by equation (4.3).
We assert the existence of a rational function R, having poles precisely at the ^eros of g

such that uniformly on T^,,

(4.10) G,(X) = ̂ (i-X))-^—— modp
d\

(4-") ^"'RJ^i.

Proof. — We recall that each zero p of g must be a simple zero modulo p as
otherwise (since P^o, i) equation (4.2) would show that all derivatives of g vanish
modulo p at p and since the degree of g is strictly less than p, this would imply the
triviality modp of g.

We now consider r== i . We assert that

(4-12) G^^i-X))-^:^)/^-^)2 mod A

the sum being over all roots of g and each B((B) is a unit. Clearly G^ has simple poles
at X=o, i and by (4.4), the principal parts are (x ( i—X)) - 1 . Thus we need only
consider the principal part at (B. Putting ^ = = X — p , we have

^)/te'(P)) = i +^7^')(P) mod ^
and hence, from the definition of G^ we obtain

^2(P(I-(a)(^(P))2G,)-l=(I+(^/p))(I-(^(I-p)))(I+^-/^)(p)) mod^2.

With the aid of equation (4.2; we readily see that the right side is congruent
to i mod(^2). This proves equation (4.12) and for r=i , equations (4.10), (4.11)
follow trivially.

We now use induction on r and suppose these equations valid for a fixed value
of r>i . We note that

^ (R./^) -s-2^ - - ̂ R^/^ \
and by (4.11) the right side is congruent to zero modp. Since G, + ^ = G, /^2pr, we
now conclude from (4.10) that

(4.i3) Gv+l-^(I-^2pr)-l=^(Is/^r) modp.

We write ^(i-^V'-^i-X))^-^
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and by equation (4 .12) the right side is the same modp as

(X(I-X))-l+SB(^r(X(I-X))^-l/(X-p)2<

Since 2{pr—l)<l2pr-\-l, it is clear that

^(i-X)^-1/^-^^^^/^-^--^^^^

where each C- is a polynomial in (B with integral coefficients. Thus

|^C,/(j-i)[<i,

since j—I<2pr and hence cannot be divisible by j^4'1. The lemma now follows
from (4.13) with the aid of (4.11).

Lemma (4.2). — U^ is the space of all germs of holomorphic solutions at a of equation (4.2)
which are bounded in their disk of convergence.

i
Proof. — For a+o, X 2 u^{i f\) lies in U^- Thus we may restrict our attention

to ae1\.
We note that if Uy^ were not bounded in A^ (cf. Lemma (3.2)) then the Newton

polygon ofz/a (as power series in X — a) shows that u^ must have one (and in fact infinitely
many) zero(s) in the disk, contradicting part (i) of Lemma (3.2).

If a == o, i then uniqueness is clear as there is no other single valued solution
of (4.2). If ae^}, a=(=o then an explicit solution (independent of z^==F) is of the
form ( ^ = = X — a )

(4.14) G+Flog(i-X)-Flog(i+Wa)),
oo / / \ / \ 2 / i \

G=2S (('- A! S 1 ^ .^iVW^ / \r==i r )

The first two terms converge in ^5 while the third term converges in the strictly smaller
disk | ^ | < | a | < i , and is unbounded in that disk. By the transformation \\->i—\,
a similar result holds for a—ie^3.

We may now assume that neither a nor i — a lie in ^3. By Lemma (3.4) (iv),
Uy^ converges in a+^P and hence we may assume that a^a for some ^^j^. We
assert that u^ cannot converge in the (c closed }? disk of radius one about a (i.e. in 0)
since otherwise equation (3.17)' would be valid in a neighborhood of zero, while in
such a neighborhood, we may represent the right side by F(X)/F(X9) (since putting X=o,
the constant factor must be unity). Thus

(uJF)W={uJ¥)W

in a neighborhood of zero, from which we deduce u^ == F, and hence F converges in
the closed unit disk, clearly a contradiction. Thus A^==a-4-^P. We now show that
there exists a solution of (4.2) holomorphic at a which converges in A^ and is inde-
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pendent of u^. For this, using a standard procedure, let weQ^,(a) [[^—aj] be chosen
such that

^=(X(i-X)^)-1.

Since the right side converges in a +^P? and this is not effected by term by term
integration, the same holds for w. Since u^ wu^ span the space of locally holomorphic
solutions of (4.2), we conclude that all such solutions converge in a+^B.

Equation (3.13) shows that for XeD^,

fW-=gW mod^.

For each integer r, put 0^==^ and let Ny be as in the previous lemma. It follows
from (3.17) that

(4.15) ^WK(^) -^(^ mod A

the constant Cy being a unit in Q^,(a).
Suppose that ^ is a solution of (4.2) which is independent of u^ and bounded

in A^. Then every solution of (4.2)3 holomorphic at a, is bounded in A^. Since a
basis lies in Q,p(a)[[X—a]], we may suppose that v^ lies in this ring. Since ^(a)==i,
we may assume that y^(a)==o. Thus if we put w=v^lu^y a standard computation
using (4.2) gives
(4.16) ^(X)X(l-X)^-^2,

where c is a non-zero constant and Cy is defined by equation (4.15). Note that c depends
upon r, but that its ordinal is independent of r. We may assume (since v^ is bounded
in oc+^P) that v^ (and hence w) is normalized so that

kl==H=i.
the norm being the sup norm of a-f-^P- Clearly ^eQ^ (a), an unramified field, while

^ | ==[ w' |_< | w =i
and hence there exists r^>i such that c|pr~l is a unit. Thus multiplying w by a unit,
we may suppose that in equation (4.16) c=pr~l. We now write this equation in the
form

(4.16)' w\^(u^r)r=pr-lWl-^(u^)|u^')rrl

and deduce from equation (4.15) that in the sup norm of a +^P? the right side is
congruent modj^ to pr~lG^. Now put

W(X)=^(X)(^(^))2

then W [ = = i and clearly the left side of (4.16)' is congruent to W modp\ With
^ = = ^ — a , equation (4.10) now gives

(4.17) ^(W-^-1^)^^-1^!-^)-1 mod/.
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Since equation (4.11) holds in the sup norm of3\, it certainly holds in the norm of a+^P.
Thus we may write

W-^E^Sa,^

where each ^e0. Comparing powers of ^-1 in equation (4.17),

(4-18) ^•^-^-^((a-i^-a-^) mod^.

Clearly for j=p\ v>r , the left side is congruent to zero modulo p\ while the right
side is the product ofj^"1 with a unit. This contradiction shows the non-existence
of any solution of (4.2) independent of u^ which is holomorphic at a and bounded
in a+^p. This completes the proof of the lemma.

Before considering our strongest result in the direction of information about solutions
of (4.2) which are independent of u^, let us consider the classical solutions at X==o.
We consider the two solutions, F(X)(==^(X)) and

(4-19) yoW-FlogX-Flog^-^-G,

where G is defined by equation (4.14). If we put WQ^VQ/UQ, then precisely as in the
proof of the previous lemma,

^(i—^F2^,

where the constant c will now be determined. We put

(4.20) W--^o+logX=log(i-X)+G/F.

Then W has no singularity at the origin and since

w^-.(,-^),
it is clear that c=i.

Precisely as in the Tate theory ofj&-adic theta functions, we appeal to classical
formulae ([14], pp. 85, 171)

(4.21) I6^=X(I-X)-^-G/F

00

(4.22) X=l6<?( n (i+^)/(i+y2v-l)^
v=l

We conclude that if we choose WeQ[[X]] such that

W(o) =o

^ w'^M-——^n ui-x)F2;
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then

(4.34) expWeO[[X]],

the coefficients beings-integral rational numbers for all p^2.
Let Krp be the maximal unramified extension of Q ,̂ in ^, and let T be the absolute

Frobenius mapping of ICp over Q^,. For each oceD, which lies in a finite orbit under T,
we choose a unit Fo(oc) in Krp such that

(4.^5) W-WW.

Theorem 4. — For each ae2)i (a 4=0, i, oo), which isfixedunder an iterate ofthe p-th power
map, we fix a solution v^ holomorphic at a and independent of u^ by the conditions

^(a)==o, w^==vju^

(4-26) ^(i_^(a)2^!

^U^ ^a(a)=i.

Then exp w^ lies in ^[\\—v}}, 0^ ̂ g the ring of integers ofKy.
Proof. — Let m, s be integers, m>_ i, j> o, N == mp^1— i. We choose an integer r

such that j^N. Let t be an indeterminate and let

i fP~1

H(x, ^)=-——————————————————___________'____________
(X+^)( i -X-^(F^(X+^)) 2 ^+^)(i-X^-^)(F^,_,^+^))2

M(X)=X(i-X^)F,^(X)F,^_,^).

For fixed X not a zero of M, H is a rational function of t which is holomorphic for t near
zero. Thus H(X, ^) may be represented as a power series in t whose coefficients are
rational functions ofX with poles at the zeros of M. We assert that the coefficient h(\)
of t^ has no pole at X == o and that

(4.27) TOI^I^1

for all XeDi, X^i+^3.
This, the central point of the proof, is based upon equation (4.24), which shows

that
expW(X+^)E(Q^nO)[|X^]]

and hence putting ^.^X^^ for each j>o,

^W(^)=W(y mod MEM]

(by [i], Lemma i). Thus if L,(X)eQ^[[X]] is the coefficient of f in W{\+t) then

(4-a8) L^i_^)-L^_,(^) ==o modp^^]]

and hence the left side, viewed as a function on ^, is bounded uniformly by [j^1!.
We note that the left side of (4.28) is the coefficient of ^ in

w'(^)-w'(y^-1
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and since F^/F^) == i mod t^, the bound of the coefficient of t^ is not changed
if we multiply this difference by (F(^,)/F(}/))2. We easily compute by means of (4.23)
that

Bo=

W'^KF^^^Ao+Bo

fF^)\2!/ i i /F(^Y\
^^r); ^-^(F^C;,))2 \F^)/J

where A^J^2^ l

i //F(^)\2 / F,(y V\/ m 2 /

\\F(^o)/ \IF^)2^-^^)/ ^(^)

It is to be understood that X, <£<?, [ X|> | f|^o, so that for each fixed X both Ay and Bo
may be represented by power series in t. The last factor in the formula for Bg is a power
series in X, ( which by equation (3.15) is uniformly bounded by [p^11. Since (i—^o)
and F^^) are units, we see that by writing

i
^: =x-12:(-^,

j=o

the coefficient of/N in B() is bounded by j/f84"1/^4 '1). Likewise,

-W'^KF^/F^^A.+B,,

A -^V^ J ^(^V^i
' VF^)/ Si\(i-y(F,^_,(^))2 \F,(^)/;

B i//F(^)\2 / F,(̂ ) ^^
1 (i-yF^^AVF^)/ \F,^_^);/

and by precisely the same argument as for B(), we conclude that the coefficient of (N

in t"-1^ is also bounded by Ij!'84 '11/JX1^4-11. Thus the coefficient of t^ in Ay—A^"-1

has this bound. By an elementary computation

(4.29) Ao-A^-^F^/F^))2^, t)+E,

where

C=^————^————-.\-^i I -.}
So\(i-So)(F^,(So))2 / ^\(i-y(F,^-i(y)2

i ^\
E^^li

^/F,(^)\2/ /F^yWi ^-^
\F(XP^ ^ \F^) ] ^o ^ Iu'

In the formula for E, the first two factors are congruent modulo V s ' to a function of \
(which takes integral values in (?), while the third factor has by an easy computation
no term in t^. Thus we may discard E when computing the coefficient of t^. Likewise

355



56 B. D W O R K

the multiplier of C in equation (4.29) is congruent modulo t^ to a function of X assuming
only unit values in }̂. We note that

( i ^"^H=G+ I — — —
^o Si /

and the coefficient of ^ in the second term is (as noted previously) zero. Thus h is the
coefficient of 1s in C(X, t}, and now we know that

\hW\^\ps+l|^+l\

for all Xe<p. However C is the sum of a power series in ^ and a power series in ^,
each converging for all (X, ^e^x^ and hence A is a rational function having no pole
in ^P. Clearly the expression for G shows that for some integer v^o,

h=ll{M^y

where / is a polynomial. Since M/X assumes unit values for Xe^, we conclude that
IX1^1^)! is bounded by j^1] everywhere in <?, and hence each coefficient of I is so
bounded. Thus

\lW\<\PS+l\
for all XeO. Since M/X assumes unit values at all Xe2\, X^i+^3, the proof of (4.27)
is completed.

To prove the theorem, it is enough (by the criterion of [i], Lemma i, as applied
to an element ofK^CM]) to show that for aeD^, a 4=0, i, a fixed under a power ofr,

pw^+t)=^w^+fP) modp^[[t]],

where T operates only on the coefficients. This reduces to the demonstration that
(for {m,p)=l,N==mps+l-I,^==^j+tPj\j>_o)) the coefficient of t^ in

i i ^-1

So(i - So) u^W2 ~~ ̂ (i - ̂ ^(^(^(an2

is bounded by j^84'1!. Since ^(^,)==i mod ^< the coefficient is not changed if we
multiply by (^(^r))2- Doing this, and using equation (3.16) in the form (a^a^)

r-l

^)KQ n/(a,)=F^,(^)/F,(y mod^TO],j=o'

and using the definition of Fo(a), we conclude that the coefficient of t^ is congruent
modulo p8^1 to its coefficient in

r-l

((^/(a,))F,(y/F,(a))2H(a^).
j=o

Thus aside from a unit, the coefficient is congruent modulo^84-1 to A(a). The theorem
now follows from equation (4.27).
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Since w^ = (a(i — a) (F^a))2)"1^ mod t2 we conclude that exp w^ assumes aH values
in i + ^P as ^ runs through ^5. This shows that Wy^ has ^-adic behavior similar to that
of the logarithm function.

We note that Fo(a)^W plays a role in Tate's model ([2], § 5) for the points near
infinity of a non-supersingular elliptic curve defined over a local field. In the context
of the Legendre normal form given by equation (4.1), if t is a uniformizing parameter
at infinity, say x==ilt2 ( |^ |<i ) then the integral of the first kind may be expressed
locally as afe where

^t)=^t2n+l{-lr (~I)F(^ n. ̂  n, x)/(^+i).

For Xea+^5, a as in the above theorem, ^ 2 = — i , then
^exp(^)/(zTo(aK(X)))

gives an isomorphism (defined over Krr(X)) between the points of (4.1) with non-
integral coordinates and i+^P- The main point in the proof is the fact that this
exponential lies in (On K.TW)[ML a result which follows (as indicated in the above
reference) by the methods o f § i , 2 above.

We conclude this section by noting that no information has been obtained concerning
the solutions of (4.2) near roots of g, i.e. when the reduction is supersingular. Indeed
all solutions are unbounded in that case as will be shown in § 8 c ) below.

§ 5. Uniqueness of Formulae.

Let k==GF[q] and let K be the unramified extension of Q^ with residue class
field k. (We could assume K is any finite extension of Q ,̂ with residue class field k}.
Let G be a hypersurface in affine yz-space of characteristic p defined over k, let G be the
set of all points in 071 whose reduction mod p lies in (3, and let 2) be the complement of (5
in O71.

We say that an Q-valued function H is holomorphic on S) if it is the uniform
limit (on S)) of rational functions whose polar locus (in C^) lies in (5. If in addition
these rational functions may be chosen in K(X) (X==(X^, . . . ,XJ) then we say
that H is holomorphic on D and defined over K. For x=={x^, . . ., A:JetP we define
A:P==(A:f, . . ., A^). Our object is to prove the following theorem due to Katz.

Theorem 5. — Let H be holomorphic on S) and defined over K with the property that
S-1

( . , -\ IlH(^)=i whenever xe7) and x^==x.
V 5 • I 7 t = o

We may then conclude that there exists G holomorphic on S), defined over K and assuming
unit values on 3) such that

H{x)=G(x)IG{^)
everywhere in 2).
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The proof of the theorem depends upon a well known consequence of the Riemann
hypothesis for curves.

Lemma. — Let fek^^y . . ., X^, t] be of degree r in the variable t with no divisor in A;[X],
Suppose that there exists a ^ariski open set U in affine n-space such that for each xeV which
is algebraic over k there exist r distinct points (rational over k{x)} on the hyper surf ace f==o, whose
projection on '^,-space is x. Then the polynomial splits over A:(X) into r distinct factors^ each
linear in t.

Proof. — A trivial computation shows that the number Ng of points of the hyper-
surface f==o rational over GF[^8] is asymptotically

N^r^+^W"^).

On the other hand the estimates of Well and Lang [10] show that
In-^s

N^r'^+O^ 2 / )

where r ' is the number of components irreducible over k. The conclusion is that r==r '«
Thus f splits over k into r distinct factors, none lying in A[X] and hence, in each factor,
t must appear to the degree i.

Proof of theorem. — By hypothesis there exists AeK(X) such that for xe^
h(x)=.H{x) mod p.

For x^ =x^ h^) is the image of h{x) under the Frobenius automorphism ofK(A:) over K
and hence, by (5.1), h{x) is a unit. It is well known (cf. Lemma (1.2) in [12]) that
if a polynomial in tl[X] assumes unit values at a set of representatives in C^ of the algebraic
points of a Zariski open set in characteristic p then the polynomial lies in 0 [X] and has
non-trivial reduction mod p. Thus h must be a ratio h^fh^ of elements of OK^] which
have non-trivial reduction mod p. The same unicity of h{x) for each x^=x, xe7) shows
that if the hypersurface h^==o (resp. /^==o), defined over A, has a component not
contained in (5, then that component must lie in Ag == o (resp. h^) and hence the degrees
of h^ and h^ may be reduced. We may conclude that ^, h^ may be chosen such that
the zero loci of h^ and Ag both lie in ©. Thus h ==A^//^ is well defined and never zero
on the complement of <3.

If ~x is an algebraic point in this complement of © then by (5.1)
N^)/^(^)=I

and hence there exists Tin k{~x) such that
T^-^A^+o,

and since the {q — i) -th roots of unity lie in k, there are q — i distinct points on the hyper-
surface ^(X^'^A^X), rational over k{~x) with projection ~x in X-space. The lemma
therefore shows the existence of ~gek(X.) such that

p-1^.
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Clearly the zero and polar loci of ~g lie in © and we have

i(X^(X)=i(X).

Let g be a lifting of ~g to K(X) obtained by lifting the numerator and denominator.
Thus g maps 2) into the unit group, and for all ;ve2)

W=gWlgW mod p.

Thus we may assume that H(X) = i mod? everywhere on 2). More generally suppose
v>i , Hsi modj^ everywhere on 2), then we may choose AeK(X) such that on 2)

Hssi+j^A mod^+1

and such that h assumes integral values on 2). Thus by the argument used previously,
h==h^h^ AI and Ag lie in OiJX] and Ag+o. Furthermore the argument used before
shows that the reduced hypersurface ^=o lies in G.

If now ^e2), x^^x then by (5.1)

NK(.)/K(I+W))==I modp^1

and hence SK(^K^(A;)=O modp.

Thus S^h(~x)==o and hence there exists Jek{~x) such that
T?-_7^(^).

Furthermore there are clearly q distinct choices for T in k(~x) and hence the lemma may
be applied to the hypersurface

^(X)(^-^)=^(X),

showing that there exists ~gek(X.) such that

g^g-H

and by unique factorization in /;[X], the polar locus of ~g lies in G. Thus g may be lifted
to a polynomial ^ assuming integral values in 2) such that on 2),

i+J^M
Y^^y-i+^Y-^-i+^^H mod^1.

Thus we may reduce to the case H =E= i mod p^1. Thus there exist a sequence go, gi, . ..
of elements of K(X) such that

and such that if we set

go assumes unit values in 2)
gi assumes integral values in 2)

G=g,.Yl^+pig,)

then HM=G(^)/G(^)

everywhere in 2).
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Corollary. — Equation (5 .1 ) is impossible if, on D, H modp may be represented by a non-
constant polynomial hek[X] of degree strictly less than q—i. Indeed, it is impossible if, on D,
H modp may be represented by a rational function which is not a {q—i)-th power modp.

In the applications, we shall encounter the situation in which H is a function of
one variable and locally of the form F(X)/F(XP), where F is a local solution of a linear
differential equation in one variable with rational coefficients, while 2) is the complement
of the union of a finite set of neighborhoods of the form a + ̂ }. If equation (5.1) holds
then we may conclude from the proceeding theorem that F is itself holomorphic on 2).
The following conjectures seem natural.

1. If all the singular points of the differential equation lie in 2) then F must be
a constant.

2. Let us say that an ordinary linear differential equation with coefficients in Q(X)
is rigid if there exists a solution, not in ^i(X), which is an analytic element whose support
has an infinite image (in the residue class field of 0.) under reduction mod ̂ . If the
ceofficients of the differential equation lie in K(X), where K is an algebraic number
field, then for each finite prime p of K there is the notion of p-rigidity. We conjecture
that a given ordinary linear differential equation with coefficients in K(X) can be p-rigid
for not more than a finite set of primes of K.

§ 6. Analytic Theory of Frobenius Mapping.

a) Introduction.

In this section we shall consider a one parameter family defined over an
algebraic number field. We shall show that the j^-adic theory of zeta functions of
hypersurfaces ([4], § 5) may be restated in terms of endomorphisms of solution spaces
of the Fuchs-Picard differential equation (i.e. the equations satisfied by the periods of
the primitive cohomology classes in the middle-dimensional cohomology group IP"1)
and how this may be used to decompose our model for homology into subspaces stable
under our analytic formulation of the Frobenius map. In particular the rational solutions
and also the locally bounded solutions provide examples of such stable subspaces.

b) Frobenius Transformation of Solutions of Fuchs-Picard Di/erential Equation.
We use the notation of ([4], § 5) with some slight variations as will now be noted.

We shall suppose that /(X, X)eK[X, X^, Xg, ...,X^i] (where K is an algebraic
number field) and is homogeneo-us in X. For each rational prime p, let Q. be the
completion of the algebraic closure of the j&-adic rationals Q^, and we suppose that an
imbedding of K in Q has been cliosen and that q is the cardinality of the residue class
field of K for this valuation. We shall use the symbol ̂  (resp. 28^) for the space
denoted by ^/^ (resp. fflSj;) in [4]. Thus ̂  is the finite dimensional K(X)-space
of solutions of

(6.1) D^r=o, z=i,2,...^+i
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modulo those solutions which contain no monomial involving all n-{-i variables. On
the other hand, for ^e^, the specialized form of these partial differential equations
define a vector space over K(^), but we shall understand ̂  to refer to the tensor product
of that space with ^1. (Thus 5^ is an Q(X)-space, while ̂  is an Q-space.)

Since we shall at times be interested in fibers, o =/(^, X), with singular reductions,
we must recall estimates for the representatives of the elements of ̂ . Let

( 8f }n+l

R(X) be the resultant of the polynomials { ^^—} ?
I ^J^i

L^W^^A^-X-^ordA^-bw.+Odogw,)}

b\^) = ord R(<s) - k Min(o, ord ^)

(cf. equation (5 .11)3 [4]). Then for R(^) =t=o, ^ has a set of representatives in L_(^(^)).
Katz [8] has exhibited a natural isomorphism between 2B^ and the primitive

cohomology classes in middle dimension and shown that under this isomorphism, the
differential operator (on 2B^)

a ay
o\= — + TrXn—x ax "ax

is replaced by the operation of differentiating cohomology classes with respect to the
parameter X.

Let 93^ denote the field of germs of functions of X meromorphic at ^, let
T^ , = y_ o exp nX,^ X) -/(X, X))

then the diagram
^®TO, -^ K^m,

8
^ ^

^®an, ̂  ^x0^.
commutes, a\ being the dual of CT^.

Let {SjILi be a basis of 2B^ as vector space over K(X), let {^^==1 be a set of
representatives in K(X)[[X~1]] of the dual basis of ft^. If c^ is the cohomology class
associated by Katz with ^ (z==i , 2, . . ., N), then for a fixed cycle y on tne generic
fiber y(X, X) == o, if we set

(6.2) 3^=(J^, ...J^^)

then Xy satisfies the Fuchs-Picard equation
ax

(6.3) ^=3a
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where B is a matrix with coefficients in K(X). On the other hand if for an element ^
of ^ we write explicitly

^•4) T^r=sx.<,
Z==l

( Q^* \

with each ^ in 9K,, then since -^=oj once again X={^, ..., 3^) satisfies

equation (6.3). This permits us to view ^ as the j&-adic analogue of the space of
cycles of the fiber f(z, X)=o, but we prefer to view the solutions of (6.3) in m, as
this analogue.

It follows from equation (6.4) and our estimates that the solutions of (6.3) converge
for Xe^+<p if

(^•s) |R(^)|=i, M:<i
but in general the solutions converge if

(6-6) Min ord(/(X, X)-f{z, X))>^)

the minimum being over all X such that [X |==i .
For application to zeta functions we must explain the operation of Frobenius on

solutions of (6.3). For this we set

F(^, X)=exp(7tXo/(^, X)-7tX^, X^))

a* = Y ° ————— o $2 T- F(^,X)

and recall that F(^, X) lies in L(^-1^)) where

^)=Minj^—— +qd^ Min(o, ord ^), Vp]

^ ==deg^/
Vp =Inford(a?—fl)

the inf being over all a in K which appear as coefficients of/. Clearly v >i i f^ i s
unramified in K (for the chosen imbedding of K into Q). From this it follows that o^
is a well defined map of S{,p onto ̂  provided

(6-?) ^)>^).

Equation (6.5) defines a quasi-connected domain, which is certainly non-empty
if R has non-trivial reduction mod p. For ^ in this domain, we have the mapping

al:^®9K,->^®9[^

defined by a formula similar to that for oc^. The matrix A^ of this mapping relative
to basis {^^} (resp. {^J) of ̂  (resp. ^) is (cf. equation (5.27), [4]) a (matrix)
uniform analytic function of support given by equation (6.5). To describe the action
of o^ on cycles of the fiber, /(^, X) == o, we must use the isomorphism 9 of 9Jl̂  into 9?l,
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obtained by composition with the q-th power map (i.e., for each function h of X,
((pA)^)^^^)^^^)). The mapping 9 is onto if ^=f=o, oo, as will be assumed. In the
following commutative diagram, the same symbol 9 denotes the mapping of ^®9Jl^
onto ^®9Jl, induced from the mapping of 2R^[[X~1]] onto 9KJ[X-1]] deduced
from the coefficient-wise action of 9:

^ ^

T^,X T^,X

^®m^ wm, ^x0^
"x

The diagram shows that

(6.8) 3£->^^

is a monomorphism of solutions of (6.3) in SJl̂  into solutions in SOlg, provided ^ satisfies
condition (6.7). If neither ^ nor ^ is a singularity of the differential equation then this
mapping is an isomorphism between the solution spaces viewed as vector spaces over 0..

c) Singularities of Fuchs-Picard Differential Equation.
In the application we shall restrict our attention to those p for which the following

hypothesis is satisfied.
Let S'be the set of distinct zeros of R, S=S'u{oo}. For each seS let

\\-s if s e S '
^ ( i /X if s==oo.

Hypothesis. — I. R is not zero mod ^}, its zeros all lie in 0 and no two distinct
zeros lie in the same residue class mod ^3.

II. For each jeS, there exists an N x N matrix Gy with coefficients in Q^ and
an N x N matrix T^ with coefficients in K(j-)[[^]] such that Fg converges for | ^ [< i
and such that t^ Tg is a solution matrix of equation (6.3) in 80^ for o< [ ^(^) | < i.

In the statement of this hypothesis, the symbol t° represents for each ^=|=o, oo
a solution matrix in 9K^ of the differential equation

(6.9) '̂
and hence is unique up to multiplication by constant non-singular N x N matrices.

An explicit choice of t° is given by exp(G'log(^)).
The object of this section is to show that if R is not identically zero (i.e. if the

generic fiber y(X, X)==o is non-singular in characteristic zero) then the above hypothesis
is valid for almost all p.
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It is clear that hypothesis I is valid for almost all p. We shall assume that hypo-
thesis in the following.

If | ^ [< i , ^s+^ft for any seS' then |R(^)|==i and as noted before,
equation (6.3) has a solution matrix which converges in ^4"^P- Hypothesis II is a
weaker form of this situation for neighborhoods of singularities. We note that the
singularities of the differential equation (6.3) lie in S since the zeros of the polynomial Q
(cf. equation (5.7), [4]) are non-essential singularities of (6.3) (cf. Note (iii), § 10, loc. cit.).

The validity of Hypothesis II may be examined by considering just one point
of S. Let jeS, KjL=K(>?) and we shall suppose that s has been translated to the origin
so that s=o and that equation (6.3) has been modified accordingly.

It is known [5] that the singularities of (6.3) are regular (in the sense of Fuchs)
and hence the classical solution matrix (near the origin) has the form

7°r

where G is a constant matrix with coefficients in C and Y has coefficients in C[[X]].
However exp(2TciG) is the monodromy matrix for the transformation of the integral
homology (in the middle dimension) of a generic fiber corresponding to a circuit in
X-space about the origin. It is known [6] that the eigenvalues of this matrix are roots
of unity and hence the eigenvalues of G are rational numbers. Replacing T by HY
and 7° by H'>°H~1 for suitable non-singular constant matrix H, we may suppose that G
is in Jordan normal form,

G^D+N

where D is a diagonal matrix with rational coefficients and JV is a nilpotent matrix which
commutes with D.

As is well known, T satisfies the differential equation

(6.,.) ^+jr-"i

with coefficients in K^(X) and hence the solution T may be chosen with coefficients
in K^[[X]] (instead ofC[[X]]). Since (6.9) is a system ofN2 simultaneous linear diffe-
rential equations, it is known [20] that for almost all p, Y converges for

(6.n) ordX>N2/^-!).

Ifp is prime to the denominators of the entries of the matrix Z), then, replacing q,
if necessary, by a power,

(?-i)veZ

for each eigenvalue v of G. We assert the existence of a non-singular diagonal matrix H
with the rational coefficients and of a diagonal matrix GQ with coefficients in Z such that

(6.12) qG=H-lGH+GQ.
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To prove this we note that JV may be assumed to be the matrix of the transformation T
of a vector space with basis {z^, . . ., Vy\ given by

^z^^+i Z = I . 2, . . . , r — i
Tz^. == o.

Thus if we put ^=^-1^ z = = i , 2, . . ., r
then ^T^=^ ^ = = 1 , 2 , . . . ,r-i

yTy;=o

which shows that qJV==H~lJ\/'H,

where H is the matrix corresponding to the change of basis. By our choice of q, if
we put Go==(^—-i)Z) , then GQ is diagonal with coefficients in Z and

qG== qD + qN= Go +D +H-1JVH.

The assertion (6.12) now follows as D=H~1DH since both D and H are diagonal.
We now show that in general T converges in the open unit disk.
Theorem 6. — For almost all p, Y converges in the open unit disk with center at X == o.

More precisely, this is the case if

(i) The only ^ero of R in the open unit disk is at the origin.
(ii) The denominators of the eigenvalues of G are prime to p.
(iii) The lower bound {equation ( 6 . 1 1 ) ) for the domain of convergence is valid.

(iv) (J^-i)-^^^)-1^-!),

where [L is the order of the ^ero of R at the origin.
(v) The prime p is unramified in K^.

Proof. — Under these hypotheses, equation (6. 7) shows that A^ is a uniform analytic
function of support given by

(6.13) ordX<0&-i)/(j^ji).

For each rational v>o, let U^ be the space of (Q-valued) functions analytic on
the set

{ X e d | o r d X = = v } .

/ P-A
Let t be a rational number in the interval o, ——— and let 7° T. be a solution matrix

V P^ I
of (6.3) with coefficients in 9Jl^ for some ^ such that ord ^ = t. (This means that a
branch ofX^ has been chosen at ^.) Suppose that Y^ has coefficients in U^. Using ̂
to denote the image of 7° under cp, equation (6.8) shows that X^ ̂ (X9)^ is a solution
matrix of (6.3) in 90^, but

WMx^ut l q -
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We now use equation (6. is) to write the solution matrix in 9J^ in the form
^GH^

where ^(X)^0 W)A^

It is clear that T^ satisfies equation (6.10) with G replaced by H~1GH. Thus HY^
satisfies equation (6.10) in its original form. Thus

T : Y,->HY,
is a linear mapping of matrix solutions of (6.10) with coefficients in V^ into matrix
solutions with coefficients in U^. For each integer j^> o, let V .̂ be the space of all
N x N matrices with coefficients in U^y which satisfy (6.10). We may extend T to
a monomorphism of Vj into V-_^ for each j.

Each element of U^ is a formal Laurent series in X with coefficients in 0. and hence
each element ^ of Vj is a formal Laurent series in X with coefficients which are
N x N matrices (with coefficients in Q.) such that ^ formally satisfies (6.10). The set
of all such formal Laurent series solutions constitue a finite dimensional fl-space and we

m

may choose an integer m, such that V,cV for each integer i, V being S V,. Thus V
j = = o

is a finite dimensional space which is stable under the monomorphism T. Thus in
particular for each integer r,

r + m

V+^Vc S V,.
j==r

For each 7]eV, we may uniquely write

^==^+4-7]-

where the coefficients of ^+ lie in Q[[X]] and those of T]" lie in ^"^[[X'"1]]. If 7]eV.
then 7]'1' converges for

ordX>^

and thus we may conclude that for each 7]eV, T^ converges in ^3. By hypothesis
T converges in the disk defined by equation (6.11). If we choose t in the interval
({p -1) -1 N2, Q&pi) -1 {p -1)) then the coefficients of Y lie in U< and FeVo. The theorem
now follows from the fact that Y=Y+.

d) Transformation matrix near singular points.

The matrix A^ depends in a non-trivial way upon the choice of the origin. Infor-
mation about the behavior of A^ near points of S is quite useful. For our present
purposes it will be enough to consider the case in which the singularity is at the origin.
(This involves a slight further loss in generality as it requires that the field K be extended,
as noted in the previous section.)

Naturally the discussion of this section will be based upon the hypotheses I, II
of paragraph c ) . We shall also use the following result, whose proof has been given
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in an earlier article {On p-adic Analysis, Proc. of the Science Conference, Yeshiva
University, 1966).

Lemma (6.1). — LetU be the field of functions meromorphic on an annulus, with center at
the origin. Let v^, . . ., ̂  be elements of Q no two of which differ by a rational integer. Let ^ be
an element of the annulus, let T] be a germ at ^ of log t and for i<r<r let ^ be a germ at ^ of f1.
Then U has a natural imbedding in 9JI, and in this sense the elements {^j} (j^>o; i == i, 2, .. ., r)
are linearly independent over U.

In the following the matrix G=D+JV is used in the same sense as in paragraph c ) .
Lemma (6.2). — There exist constant (NxN) matrices A, 6 such that

(6.14) AJV==qJVA

(6.15) Q^t+m=o

(6.16) qn+lQ=AQAt

and such that in ^B

(6.17) A^TW-WW

where 91 == \~ ̂ A^, a well defined matrix whose coefficients are monomials in X. Furthermore 6
is symmetric (resp. skew symmetric) if n+i is even (resp. TZ+I odd).

Proof. — We know that A^ is analytic in an annulus of outer radius unity with
center at the origin. Let ^ be a point in the annulus. We know that exp(G log(X/^)). T
(resp. exp(Glog(X/^)). Y) is a solution matrix of (6.3) with coefficients in 9)1̂  (resp. 9KJ
and hence equation (6.8) shows the existence of a constant matrix H (depending on ^)
such that in a neighborhood of ^,

H exp(G log(X/^)) r(X) = exp{qG log(X/^)) r(X^.

Thus (6.17) holds with

9l=exp(-yGlog(X^))^exp(Glog(X/^)).

Equation (6.17) shows that 91 is analytic in the annulus. Write this last relation in
the form

exp(qD log(X/^))9l exp(-2) log(X^))==exp(-^log(X/^))^exp(^log(X^)).

Since D is diagonal, log X does not appear on the left side and hence by the preceding
lemma cannot appear on the right side. An easy computation shows that
(6.14)' HN^qNH

and that the right side is just H. The relation may now be written in the form
% - exp(- qD \og(\l€))H exp(£) log(X/^))

and again using Lemma (6.1) and the analyticity of 91, we conclude that
if ^ ( ^ = = 1 , 2 , . . . , N ) is the i-th diagonal element of the matrix D, then —?v;+Vy
is a rational integer, which we will denote by ^ ..
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Let A be the N x N matrix whose (i,j) component is H^/^'7. It is natural to
define ^^A^P to be the N x N matrix whose {i,j) component is obtained from the
corresponding component of A by multiplication by X '̂. This shows that ^^^^A^P
which completes the proof of equation (6.17). Equation (6.14) follows from (6.14)',
the relation A ==^qI)H^~I) and the fact that between D and N commute.

Equation (6.15) is based on ([4], Lemma (6.7)) which shows that the matrix M^
of the K(X)-linear map 0^ of ̂  onto 2B^ can be described locally (at ^) by the mapping

T~ ^~ (M) fT'— i

K^m, -^ ^®m, —'-> as,® an, -^ 2Bx0^
where ©^ is the specialization of ©^ at X==^. With our previous notation, the matrix
of Tg ^ (relative to our chosen basis) is fixed by the condition that it be a solution matrix
of (6.3) which reduces to the identity matrix at X==^. Thus the matrix ofT^ is

(r^r^xp^log^))^)
and equation (6.15) (with Q^T^Q^T^) follows from Lemma (6.1) and the matrix
relation between the rational matrix M^ of ©^ and the product of the three matrices in
the above diagram. The argument also shows that

x-^ex-^
is monomial and that
(6.18) M^= r-^ex-^r)-1.
Equation (6.17) follows by similar arguments using the matrix relation

(6.19) q^M^A^M^

proven in [4] for |R(X) |==i , X[^ i but obviously valid in the annulus in question
by Krasner's uniqueness theorem. This completes the proof of the lemma.

The matrix A seems to have properties of the " specialization " of A^ at X = = o
but this is not quite exact since A^ may very well have a pole at the origin.

The methods could be used to examine the nature of the singularity of A^ at
elements of S'. These are of the form log(i+A(^)) where Aer^r1]. At infinity
the singularity is again a pole.

e) Rational Solutions.

We now consider the rational solutions of (6.3). To examine the question of
stability of these solutions under (6.8) we first consider an apparently larger space.

Let 9t be the space of all functions ^ for which there exists £>o, such that ^
is analytic on the set

(6.20) {X | R(X)[>I-£, |X|<i+s}.

Let V be the space of solutions of (6.3) in 91. Since the coefficients of A^ lie in 9i,
it is clear that V is stable under the mapping of (6.8).
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Under the hypotheses of paragraph c ) we have:
Lemma (6.3). — The space of rational solutions of (6.3) is V {and is thus stable

under (6.8)).
Proof. — Let X be an element of V. By the j&-adic Liouville theorem it is enough

to show that X can be continued to a uniform function on Q with only poles at the
points of S. It follows from equation (6.20) that we may restrict our attention to a
disk, 11, | < i, of center jeS. By hypothesis X is holomorphic in an annulus (of center s)
in this disk. It follows from Hypothesis II and Lemma (6.1) that 3£ is holomorphic
in the punctured disk and has at most a pole at j. This completes the proof of the Lemma.

Let 9t' be the quotient field of 9t.
We now view OL\ as an 91'-linear mapping of ^^®9l' onto ^®9?'. By the

identification,

(6.") ^|a^

the rational solutions of (6.3) correspond to ̂ , a linear subspace (defined over K(X))
of ̂  and we have seen that .^OOSR' is mapped by oc^ onto 5^®SR. It is natural
to ask for the existence of a subspace ̂  of^ (again defined over K(X)) which is comple-
mentary to ̂  and such that o^ maps R^®9?' onto ^'®9l'. To obtain a plausible
candidate for ^//, we recall the mapping ©^ of ̂  onto 2B^ defined ([4], equation (6.8))
and referred to in the previous paragraph. We also recall the pairing <, > of ̂  with
its dual space 2C^. By composition, we obtain a non-degenerate pairing

(6.22) , (^*)^<^©^>

of^ with itself onto K(X). Let 5 '̂ be the annihilator of ̂  under this pairing. It is
clear that this subspace is defined over K(X) and that upon lifting the field of definition
to W we obtain <( stability 5? under a^ as defined above. That ^/ is complementary
to ̂  follows from work of Katz and Deligne. The latter has shown (extending results
of [6]), that the space of invariant cycles have (under intersection pairing) an orthogonal
complement in the space spanned by the vanishing cycles. Since the identification [8]
of 5^ with the space of middle dimensional primitive homology classes identifies ^
with the space of invariant cycles, it is enough to show that the two pairings coincide.
This coincidence has been proven by Katz {On the Intersection Matrix of a Hyper surface,
to appear).

f) Stable roots.

We again let V be the space of rational solutions of (6.3). Since (6.8) is an
automorphism of V, we may consider the corresponding (elementary) spectral theory.

I fX is an eigenvector of the mapping (6.8) then

(6.23) x^=a
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for some s algebraic over K. Relation (6.23) can be specialized at each ^ not in
the residue class of an element of S. In particular if ^==^ then the specialized
value of X is an eigenvector of A^ with eigenvalue s (independent of-s). Thus e / q is a
root of the factor of the zeta function (of the reduction of the fiber j\^ X)=o) corres-
ponding to the middle dimensional cohomology. Such a root may be referred to as a
stable root. Naturally if ^==^. then the corresponding root of the zeta function of the
reduced fiber (which is defined over GF[^8]) is (s/q)8.

Washnitzer has proposed the far more difficult problem of showing that, conversely,
each stable root corresponds to a rational solution of (6.3).

We remark that by means of Reich's trace formula [12] as applied to the
endomorphism , .

^°^x

of 9^3 it is possible to deduce a connection between the endomorphism (6.8) ofV and
the zeta function of the reduction of the ambient space

/(X,X)=o
(X now a space variable).

g ) Bounded solutions.
For each residue class, ^, ofO mod ^}, let V^ be the space of all solutions of (6.3)

bounded on annuli: . , /. . ^ ro<ord(X—^)<&

for b sufficiently close to o, ^ being a fixed lifting of ^ (say Q^) unramified
over Q^,). (It should be understood that \—^ is to be replaced by i /X if^ is the infinite
residue class.) If^ is not the class of any element of S then neither is ?9 and it is clear
that (6.8) maps Vjy into V^ since A^ is bounded on ^ + ^3. This shows that the dimension
of Vg in this case depends only on the orbit of Z under the q-th power map and that
furthermore V^ is mapped onto Vg.

If Z is in the class of an element ofS then A^ is bounded on an annulus of ^ of the
type indicated and hence the stability assertions remain valid.

The elliptic case studied in § 4 below shows that this subspace need not be trivial
and suggests the conjecture:

Vg is determined by the set of all solutions of a system of linear differential equations
(in fewer unknowns than N) with coefficients which are analytic elements with support T)
which contains the lifting of all but a finite set of residue classes of 0..

In the case of curves it is natural (in view of the results of Manin [n]) to ask
whether the dimension of Vg is the same as the stable rank of the Hasse-Witt matrix
of the reduced fiber.

The conjecture also raises questions as to the existence of a preferred basis of V^
which is (< defined on T) 9? and relative to which the mapping of (6.8) has a matrix
whose coefficients are analytic with support 2).
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h) Stability of vanishing cycle.

In the case of a Lefschetz pencil of hypersurfaces of odd dimension, it is known
that at a singular point (say X=o) , equation (6.3) has N — i linearly independent,
locally holomorphic solutions X^, . . ., X^"^, the vanishing cycle, say X^, being
characterized by the existence of a locally non-holomorphic solution of the form

(6.24) ^DlogX+9)

where 9) is locally holomorphic. Under the hypotheses of paragraph c ) , the (c vectors ??

X^, ... . X^"^, 9) are holomorphic in the open unit disk, and it is clear that this charac-
terization of X^ is preserved by the mapping (6.8). This shows the existence of a
constant s such that equation (6.23) holds with X replaced by X^. However there
is no a priori reason to believe that this relation can be continued analytically beyond
the open unit disk. In the following sections (§ 6, i ) , j } ) we give two examples in which
relations of this type can be continued (by project! vization).

Forther examples follow from § 3 and the Euler integral representation

F{a,b,c^)=^{c){^{b)^(c-b))-l^tb-\l-.t)c-b-l(l-t\)-adt.

Indeed if a+b==c (resp. a==b) then the vansihing cycle at X = = i (resp. X=oo) would
be amenable to the theory of § 3.

In the case of a Lefschetz pencil of hypersurfaces of even dimension, the locally
holomorphic solutions again form a subspace of codimension one and the vanishing
cycle is characterized as the unique solution of the form T^/\ where Tis locally uniform.
The stability (for p =t= 2) of the vanishing cycle under (6.8) is again clear.

i ) Elliptic Curves.

In this section we apply the preceding theory to elliptic curves as defined by equa-
tion (4.1) with J & + 2 . A similar theory holds for

(6.25) X^Y^Z^XXYZ^o

(^4=3)5 which would be applicable to the case ^=2. The curves of equation (4.1)
are not in general position, but by means of a suitable rotation this requirement could
be met. We ignore this technical complication as the differential equations are not
affected by the rotation.

[dx. a (dx\\
We choose ——, — —— as a basis for differentials of the second kind. By a

\2Y 8\ \2Y/ / 7

well known computation the corresponding periods (*)==(o^, 0)3) satisfy the differential
equation

(6..6) ^=4° (4^(i-X))-1 \
ax [i _(i-2x)/((i-x)x);'

371



72 B. D W O R K

Near X == o the vanishing cycle is

(6.27) X-(F.F')

where F(X)=(- -^, i, x) , and a second solution is of the form 9)+X log X, where 2)

is holomorphic near zero and can be computed explicitly from equation (4.19). Thus
in the terminology of paragraph c ) ,

G^=(° I}, rJ^}.
\° ° 1 W

The hypotheses of c ) are easily verified for all p^t.
In this paragraph and again in § 8, where extensive computations will appear,

we drop the extraneous factor p which appears in the theory. From equation (6.14)
we find {p=q)

A^' t},
\0 £/

s=t=o, and from equation (6.16), {n+i replaced by n—i==i since a factor p is removed
from A) we find that s=±i. From this we conclude that

3^= a.
Write X in the form F. (i, T)) where Y] is as defined in § 4. Using the notation of that
section we now have

(6-28) (i^y^-^Ki^).
This formula is valid for an annulus about the origin in ^5, but by the analyticity of T]
in the set £) of § 4, we conclude that if ^pa =^ for some aeZ and if ^e2) then the zeta
function of the reduced curve has unit root equal to

t6-^) ^)=^MfW.. ./(^-1).
The value of s may be determined by Manin's congruence,

p-i
T^)=(-I) 2 g^) mod^P

for ^==^ g being defined by equation (4.3). Since g{^) =/(^) modp, it follows that
S=(-i)(P-D/2.

We note the computation of the period of the differential of the first kind for the vanishing
J'V

cycle reduces when X == o to the computation of the residue of „„ at one of the two
-X.Y

points above x=o on the rational curve, Y^X—i. It is difficult to refrain from the
observation that under the p-th power map these points are permuted if p = — i mod 4
and otherwise they are fixed.
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Lemma (3.2) shows that the vanishing cycles at X = i and at X==oo would give
the same formula as (6.29). Indeed, aside from the determination of £, we could have
used (^, u^) for any aeS).

Finally we note that equation (6.29) shows that the root cannot be stable in the
sense of paragraph/;. This follows most easily from the Manin congruence, the degree
ofg and the corollary to Theorem 5.

j ) A surface of degree 4 Q&+2, 3).
For our second example we consider the surface

(^So) X^+X^+X^+X^XX^X^X^o.

The middle Betti number is 22 but one root of the corresponding factor of the zeta
function of the reduction (^=t=2, 3, X4^ i) is known to be the cardinality of the field
of definition of the fiber. The differential equation (6.3) is in this case a system
of 21 simultaneous equations. As basis of 2B^ we take {X^} where u runs over all
elements of Z4. such that

u^ + u^ + 2/3 + u^ == o mod 4

o<^<4, i^^4.

Using ([4], equation (5.17)), we find that (6.3) splits into 16 independent systems of
linear differential equations. These 16 systems are of three distinct types which will
now be described.

jj There are 12 systems consisting of a single first order equation in one
unknown. In the notion of the reference (dropping nX^ factors as superfluous),

(6.31) (i-^K^XiX^XJX-^X^+D.A+D.B^^C+D.D

where ^=(1 ,2 ,2 ,3 ) ,
A^/^X^Xj-^X-
B^-XXfX^

C^-^XfX^X^
D^-XpCjXj

and thus each period, co, of the cohomology class corresponding (under the Katz identi-
fication) to X" is a solution of

re. \ ^ 2XS
(6.32) . = — — — . 0 ) .

d\ i — X4

The same equation is valid for the periods of the classes corresponding to the remaining 11
distinct permutations of (i, 2, 2, 3). Thus the solution matrix splits into a direct sum of
the form

_i
(i-X4)"2^®^
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where T^ is a constant, non-singular, diagonal matrix of rank 12 and T^ is a 9x9 matrix.
j^) By similar computations there are 3 independent systems each consisting of

two simultaneous equations. A typical pair involves ^=(1,1,3,3), v= (3,3,1,1)
(the remaining two being obtained by permutation of variables). The corresponding
differential equation is

(-̂ C;.)
and this system has two independent algebraic solutions

^I+X2)"^!,-!)

^I-X2)4^,!).

(6.34)

There is a corresponding splitting of T^ into a direct sum of three 2 x 2 matrices of
this type and a fourth matrix of rank 3.

j^) The 3x3 matrix just referred to arises from the triplet

(i, i, i, i), (2 ,2 ,2 ,2 ) , (3 ,3>3 .3 ) -

The corresponding differential equation is

/ o o X/^i-^A

(6.35) -^=X -4 o -^^(i-X4) .
\ o -4 GX^i-X4)/

There is a corresponding decomposition of A^ deduced from the above decompo-
sition of the solution matrix and an analysis of AQ (which is relatively simple as
equation (6.30) reduces to a diagonal form when X=o). We have checked ([4], § 4)
that for

u'=pu mod 4
we have

(6.36) a^:=^)C.

In the next section (§ 6, k)) we will indicate a proof of the fact that

<u)=Tlgl(uip——L), ^EE! mod 4
(6.37) l:1 v ^ /

£(^)£(^)=^^^2^^--,-Ij, p=-i mod 4

where for any pair of integers 7, s, (^>o), g,{j) is the Gauss sum (for the field GF[p3])

(6.33) &(j)=-5:r^)
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the sum being over all t such that ^"^i and 6g being the function

(6.39) 6^)=exp(^-7<).

Using the fact that the function,

A(X)=V(i-X)/(i-^)

defined near zero by the condition A(o)=+i, has an analytic continuation and assumes
values at ^==^, ^4=1 which are easily described in terms of Legendre symbols, one
may, by use of the above information, obtain precise formulae for the 18 roots corres-
ponding to the splitting described in j\) and j\) above. All of these roots are of the
form ± q where q is the cardinality of the field of definition of the reduction of the fiber.

Of the three remaining roots (corresponding to equation (6.35)) one may be
determined from the permutation COH-^/G) of the 21 roots. The set of 18 roots (j^)
andj^)) are stable under the permutation and hence the set of the three remaining roots
is also stable. This means that one of these is mapped into itself and hence must be 4: q.
The sign may be determined when X==o by applying equations (6.36), (6.37) to
^ = ( 2 , 2 , 2 , 2 ) and the variation in sign (as X varies) may be obtained from the
Wronskian of (6.35) (cf. [4], § 9). The root is therefore

(6.40) p-^Llt^\\ hw=ph{^

when the fiber is defined over GFQ&] (it being understood that the formula be applied
only to Teichmuller representatives for X and extended to fibers not defined over GFQ&]
by the obvious modification).

If we put 3£ == (Xi, ̂ , Xg) in equation (6.36), then, by an elementary computation,
3£i satisfies the differential equation (^==X4)

«.„) (,,,,_,^^_,^)\(j-^_^,
This is the equation of the generalized hypergeometric function

/I L L f\i i . > .» " \t 1 1 1
'4' 4' 4'

1 3
2' 4

F

and at oo the differential equation in 3£i has the solution ^'"^(i/X4) where

/I L 3 A
(6.42) F(f)=F 4' 2' 4'

\ i, i /
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and a full set of solutions are given by two additional ones, one involving log X and the
other log2 X. The unique solution holomorphic at oo is thus the vanishing cycle,

3£ == (-Xi 5 Xg, 3y

with Xi^X-^i/X4) and by the methods of §3, Wi=9i,Wi=92 are holomorphic
on the set T) defined by

(^s) iF^i/x4)!-!, |x[^i
F^) being the sum of terms in F(^) up to and including the term in ^-1. This gives
the formula

(6.44) ^^/(X4)

for the 20-th root, the last (2i-st) being obtained from this one by the permuta-
tion col->^/(o. Here/is used in the sense of§ 3 as the extension to I) ofF^/X^/F^/X4^)
and it is understood that the formula is valid if X=X^ XeT), the case X^==X being given
by the obvious generalization.

The constant s cannot be obtained by specialization at X = o (since o^I)) but
by the method of paragraph d ) , using the fact that the matrix G for the point at oo is

f ° I °}
0 0 1

[o o ol

we find that s = ± i. We know [4, § 7] that the non-trivial factor of the zeta function
of the reduction of (6.30) has at most one unit root. This root must therefore be given
by equation (6.44). The value of s may now be determined as being +i by means
of Warning's method for obtaining a modulo p estimate for the number of rational points.
Alternately we could have used the (modp) structure sheaf cohomology [15, Theorem 5].

The vanishing cycle at ^ for ^= i is of the form

(6.45) Vx^Tg)

where 9) is locally uniform at ^. If ^eD (as is the case for example if p = 11) then the
vanishing cycle at oo can be c< extended " to the vicinity of ^ by means of a linear first
order differential equation of the type

Xi=Xi7]

(cf. equation (3.9)) where T] is analytic on D. The vanishing cycle at ^ cannot satisfy
this equation and hence (contrary to the case of elliptic curves) there is a possibility
of comparing two distinct vanishing cycles radically. The one-dimensional space
spanned by solution (6.45) is clearly stable under the mapping (6.8) and perhaps the
root described by equation (6.40) may be obtained from this cycle. However the
method of § 3 is not directly applicable to this solution and we do not know whether
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or not 9) is bounded in ^+^, nor do we know, for 9) = (9)i, %, %), whether or not
the ratios ^/IDi? ^s/^i l^ve analytic continuation beyond z+^3.

Finally we note that none of the 21 roots analyzed here by means of the differential
equation is stable in the sense of paragraph/). This is checked directly for the 19 roots
of the form ±^ while for the root given by equation (6.44) (and hence for the product
of q2 with its reciprocal) we use the fact that /(X4) ==Fi(i/X4) modp, and this cannot

be a (^—i)-th power mod p since F^ modp is by § i a polynomial of degree ^ZJ-
l p—3\ ^
Iresp. ——j if p=i mod 4 (resp. j & s s — i mod 4). The assertion thus follows from

the corollary to Theorem 5.

k ) Gauss Sums (appendix).
The object of this appendix is to verify equation (6.37). The method gives similar

results for any number of variables. It is well known that the indicatede igenvalues are
roots of the zeta function. The purpose of this note is to show that the proper connection
has been made between eigenvalue and eigenvector. By the methods of ([4], § 4, c})
the several variable case (diagonal forms) is reduced to an elementary type of L-series.
In this way it is enough to show that in the terminology of ([4], § 4, 6 J), for d\{q—i),
o<j<d, q=qa, we have

(6-46) ^(X^X^.X^+DL^)
r\

where D = X —— + AtX"
oX

(.q-A^=g.(J^j.

a — i
We sketch the proof. For m==j——, let

d
(6-^) ^^(X-^X)),

( 8 \an endomorphism of L(<ffi). The differential operator E = X — — 1ax/
(6.48) D^E+7^X+J-

is readily seen to satisfy the commutation condition

(8-49) o^oD^^.o^.

Thus by the methods of [2], it is natural to consider the factor space 2B = L(^)/D^.L(^),
which is found to have dimension one, being spanned by i mod D^.L(fl%). Thus using 9
in the sense of h{t)v=h{gt), we find as in ([2], § 4) that

(6.50) deHI-^.)1-^!-^
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where X is the unique eigenvalue of the endomorphism of 2B obtained from a by passage
to quotients. On the other hand the simple j^-adic trace formula [16] gives

(e^i) (?-i)Tr^.= 2 e^Qr-—^).
t<f-l=l

Hence we conclude

(6.52) det(I-to^=exp(-S^(^)j

where
m,=m(^-i)/(y-i).

Comparing this with (6.50)5 we have

(e-ss) ^=^A),
a well known formula of Hasse and Davenport. In particular

^^gaW-

However, by definition,

(6.54) ^(i)eX+D,.L(^).

Equation (6.46) follows from this upon replacing X by X^.

§ 7. Deligne's Theorem.

a) Introduction.

The object of the next two sections is to show a close connection between the local
solutions of equation (4.2), in particular the eigenvectors of appropriate powers of the
mapping of equation (6.8), and the modular equation of degree p ([14], p. 237). In
particular the theory of § 4 will be extended to the case of supersingular reduction.

The main impetus for this extension has been the recent results of P. Deligne
concerning the existence of a (< globally holomorphic " solution of the modular equation.
I am indebted to N. Katz for much of the exposition and in particular for the method
of proof of Lemma (7.1).

We recall that in terms of the elliptic modular function j(r) the modular equation
Fp(X, Y) is defined to be the polynomial of minimal degree representing the curve
(defined over C) whose generic point is O*(^T),J(T)). It is known that

F,(x,j(T))=(x-^T))^n7x-^^Y

that Fp(X, Y)eZ[X, Y] and is symmetric in X and Y and that

(7. i) F,(X, Y)=(Y^X)(Y-X^)+^^ Jl̂ vX^,

where ^,p==o and each a^eZ.
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Classically with (7==^, Imr>o, we have

(7.2) J-^S^eZiM,
s=0

OQ == i, ^ = 744, ^ = 196 884, while for j ' =j[p^),

(7.3) j'^q-^^a^8.
s==0

From this we may deduce that for [ j \ > i,

(7.4) r=f+pkU)+p^W,
n== 1

where each B^eZ and where A; is a polynomial of degree p — i (its leading
term is —744yp~ l) with coefficients in Z. Thus equation (7.4) gives a solution of
the equation

(7.5) Fp(XJ)=o

which is holomorphic in the punctured disk, i<[j'[<oo. This implies an identity
in Z((j~'1)) from which we may deduce that (7.4) is a radically holomorphic solution
of (7.5) for \j\>i (with pole of order p at infinity) and that this is the only solution
with this property since the remaining classical solutions are given by

^=^S^Cr> .=o,i,...,^-i
s

where ^ is a primitive R-th root of unity and these are also radically solutions of (7.5)
which are algebraic and not rational over the field of functions meromorphic in the
disk, \j\>i.

It was conjectured by Tate, proven by him for p = 2 and proven generally by
Deligne that the solution (7.4) can be extended j^-adically to a uniform analytic function
on the set

:&3={j|ord(j-P,)<—^, z=i,2,.. . ,r}

where {[B^, ..., (Bj is a set of representatives in an unramified field of the j-invariants
in characteristic p of supersingular elliptic curves. If we use ^ to denote this extended
mapping, then the j&-adic Mittag-Leffler theorem gives

(7.6) X(j)=^(j)+^(j),

where h^^j^+pk, the principal part at infinity described previously, and for
z = = i , 2 , ...,r,

(7.7) h,{j)- SA^(j-p^
n=l
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the principal part of^ at (B,. Furthermore, Deligne showed that for n>^ i, i == i, 2, . . ., r,

ordA(^)^—[—+7^-^-
(7.8) n-p+^ J^+i

ordA^i+So

with SQ==O and that for (B==o (resp. i 728) the symbol n in equation (7.8) may be
replaced by yi (resp. 2%).

We shall give a proof of this result (valid for p =t= 2) which is based on Theorem 4
(§ 4) and shall show that it is impossible for equation (7.8) to be valid with SQ>O it ^-^3
(except for the exceptional (B == o, P == i 728 which do not appear exceptional if the results
are stated in terms of the modulus X).

b) Modular equation for X.
We shall in this section explicitly use the modular equation for j but it will be

useful (since § 4 is based on the modulus X) to recall the corresponding modular equation
for X. There are two methods of proceeding:

(i) Let r=SL(2, Z)/(db/) and let 1̂  be the principal congruence subgroup of
Stufe 2. Then Q,(X(^T), X(r)) is the fixed field under I^n (SI^p-1 while Q/J'Q&T), X(r))
is the fixed field under I^n prp~1 where

^ °).
\° I/

From this the equality of the two fields may be deduced. Thus if for | q \ < i we put
X/=X(/n-), j'==j{p^) then X' is a rational function of j ' and X while conversely f is a
rational function ofX'. Thus the extension of the mapping Xl->X' implies the extension
of the function j\->f and conversely.

(ii) The modular equation relating X and X' may be constructed ab initio
by well-known methods [14]. Similar modular equations are described in detail
(e.g. A/X(r) Iq118 is treated in [21], p. 496). We discuss the modular equation for X briefly.

By standard methods, we compute the disjoint union

r,pr,=JJ^pA,

where ^a^l 1 ^ o<^.a<^.P—I

\° 1 /
I P 2e\

A.= (p-e e if a=R, (s=(-i)^2)
\-T- /

/T^-^^-1

and therefore X |———I together with X(j&r) form a full set of conjugates
\ P I a=0

over C(X(r)). Since each conjugate vanishes as X(r)^o (i.e. T—^'oo) and since X may
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assume all values other than o, i for Imr>o, we conclude that the modular equation
G^(X, X) (satisfied by X(^r)) is of degree p-\-i in X, rational in X with pole only at X== i.
With the aid of the transformations ([14], p. 148)

X(-I/T)=I-X(T)

X(T+I)=-X/(I-X)

X(-T/(T-I))=I/X

it is not difficult to establish that G^eCpC, Y] with symmetry properties

(7.9) G,(X,Y)=G,(Y,X)=G,(I-X,I-Y)==(XY)^1G,(X-1,Y-1).

Furthermore with the aid of equation (4.22)3 we obtain

(7.10) G,(X, Y)=(X^-Y)(X-Y^)+^ S S c^Y\
(Jl==l V=l

where each c^ ^ lies in the ring of rational numbers which are integral at all odd primes
and explicitly

^-(i-^-1)/^
c^iff-1^

It will be apparent that the methods applied below to Fy work equally well for Gp.

c ) Proof of Deligne^s Theorem.
We first restrict our attention to the region

^Jj^ordU^-J^————e}

where e is strictly positive, but small (say e<p~l{p-[-l)~l). Let

^=L-|ord(r-j)<———l

Lemma (7.1). — ^ is a uniform analytic function of support 2)4.
Proof. — We define ^(^^j^Fp^j^GZIj]. Equation (7. i) may be written

F^+^^t^+k+p^+pthU, t)

where ^=j^—J\ heZ,[j,t]. If we now let t==p?,TI^ then a solution of the modular
equation will certainly be given by j^-^-t if T is a zero of the polynomial
(7.11) Hm^i+T+T^p^l^+p^l^hU^TW.

Let Rg be the ring of rational functions ofj whose restrictions to I)g have sup norms strictly
less than unity. We assert
(7.12) H(T)-(i+T)eR,[T].

To verify this we partition 2)g into two sets which are discussed seperately.
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Case 1. — ^eD,n£).

In this case ^ lies in 0 and uniform estimates are obtained from equation (7.11)
using the inequality

(7. i3) (^+i)^Min(ord(W/^+1), ord(/^)),

which is a consequence of the definition of Dg and the upper bound for e.
Case 2. —j^O.
We assert that in this case the coefficients of the left side of equation (7.12) are

bounded from above by \plj\. To prove this we use equation (7.1) to compute H
explicitly and reduce the assertion to the verification that for je0, i^<A we may
conclude that Wj^\ OWW^"8, {Pl^W^-'^PW-1 all lie in (^)O.
This is verified by noting

deg^+p-i
and hence for j^Q

^ord^(^+^-i)ordj
V / * TC/ ) , . 9 i .( ord j^==p" ordj

and using the fact that (pi, v) 4= ( p , p ) , ^ and v not greater than p. This completes the
proof of (7.12).

Clearly T=—i is an approximate root of H and Newton's recursive procedure
may be used to find a precise root which is a limit of rational functions converging uni-
formly in I)g. This solution is meromorphic for j in the complement of 0 and hence
(by the uniqueness of the meromorphic solution at infinity) must coincide with (7.4)
in this region. The solution may trivially be prolonged to a uniform analytic function
of support 1)4. This completes the proof of the lemma.

Before examining the growth conditions we first extend the lemma to regions
of the form ^ + ̂  where j'y=Jo but JQ mod ̂  is not the j invariant of a supersingular
elliptic curve. We now assume that p^2 and using either of the two procedures
outlined before, translate the above lemma into a corresponding statement concerning
the mapping Xt-^X' (which we again denote by ^). It is clear that if X==oc is a modulus
corresponding to a j'o for which j^=jo, then ^ is certainly holomorphic on an annulus

( 7 ' ^ 5 } i — < ? < [ X — a | < i .

We may assume that [a|^i, a fixed under a power of the p-th power map. In the
following statement g refers to equation (4.3).

Lemma (7.2). — ^ is holomorphic on a+^5 if |^(a)|==i.

Proof, — The classical relation for X' in terms of q=e^, gives (in the notation
of equation (4.20))

(7-i6) (X/iG^exp^WM^X'/i^exp^W^))
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and radically this clearly gives the unique solution of

G,fcX)=o

which is holomorphic for [ X | < i . From equation (4.23)3 by differentiation,

C7..7) ^^(x-X-) /F(^)\2

' p d\ X(i-X) [¥{•>.)) '

This relation may be extended by a method of § 4 to the annulus (7.15) on which ^ is
denned, since

F(X')/F(X)=/(X)-1 2: ̂ )(\'-^YIs[
s==0

which is holomorphic in (7.15) if OTd(\/—\p)>{p—l)~l, which, by the proof of
Lemma (7. i) is certainly true if e is small enough. (We are assuming here that^(a) is
a unit.) It follows from Lemma (3.2) that the right side coincides on the annulus
with ^(^/(^aWy^))- Since the annulus lies in the support of ^ we deduce that

f7 18) ^_^^-^^WW^
d\ v X(i-^)(^(X)Fo(a))2 5

(r now referring to the Frobenius automorphism). Let us again define w^ on a 4-^8
by means of equation (4.26) and define W^ on ffp+^ by

(7.19)
\W)=o

w^i-xKF^r^M)2-!.

Equation (7.18) shows that there exists a constant c such that

(7.20) W^X^+j^X)

for all X in the annulus. Put ^ (resp. QJ equal to exp(w^(X)) (resp. exp W^(X)) for
Xeoc+^P (resp. Xea^+^P). Since (F^^aT)1-":=/«), Theorem 4 shows that Q, is a
biholomorphic map of a^+^S onto i+'iP. Equation (7.20) shows that QaM/^aW2'
is constant for X in the annulus. Thus there exists y^+^P such that

Q^^Y?^

everywhere in the annulus, but using Q^1 to represent the inverse (in sense of compo-
sition) of Q^, we have

C7.") ^Q-a^am.

This formula valid in the annulus (7.15) gives an explicit continuation of ^ to the
disk a + ^P. This completes the proof of the lemma.
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d) Canonical lifting and p-adic q theory.

It may be verified by means of equation (7.8) that if ^(a) is a unit, then
)C(X) EE?^ mod j& for all Xea+^P and thus the canonical lifting (1) a,^ of a mod ^B
defined by means of the v-th iterate of /,

^(acan)-^

where a^a, has the property ord(a,^—a)^:i. Thus with w^ defined by
equation (4.26), ord^(a,J;>i and therefore exp ^(a,J is well defined. Thus
we may define ^ , , , , .

^W = exp(^(X)- ̂ (a,J)

for all X in a 4-^. Similarly Q^ may be defined by translating Q^ by Q^Wcan) so

that equation (7.21) assumes the more natural form

(7-") Q^(r)=^(^
an obvious generalization of equation (7.16). We further observe that if 00^== a as
above, then letting ^^(F^a)^-1)2 (which by equation (6.29) is the reciprocal of
the square of the unit root of the zeta function of the reduced elliptic curve defined
over GF[^]) we have
(,.,„ ».W))=?.W"-

?a(aean) == I •

We shall show that these properties together with the fact that ^ ls a one to o11^
biholomorphic map of a + ̂  onto i + ̂  uniquely characterize q^ up to an exponent
which is a unit in Q^,.

John Tate and J.-P. Serre have kindly informed me of an unpublished
theory of liftings of homomorphisms between nonsupersingular elliptic curves (genera-
lizing [19], p. iv-34) which is based on an intrinsic definition of q for liftings of such
curves. It seems quite likely that their definition coincides with ours and that the
unique characterization property mentioned above gives the method of proof of coinci-
dence. An alternate (and perhaps simpler) characterization of ^ is given in a note
following Lemma (8.2) below.

To prove the uniqueness property, let Krp again be the maximal unramified
extension of Q^,, then translating a^n to the point i, the question may be reduced to
the following lemma.

Lemma (7.3). — Let H^, Hg, h be biholomorphic maps of i+^} onto itself which are
defined over Ky and which have the property that for some rational p-adic integer m (w4= i),

A(i)=H,(i)=i
H^^H^)-

(1) J. LUBIN, J.-P. SERRE and J. TATE, Elliptic curves and formal groups. Woods Hole Summer Institute,
1964 (mimeographed notes), and J.-P. SERRE, Groupes />-divisibles (d'apres J. TATE), Seminaire Bourbaki,
n° 318 (1966-1967).
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for z==i , 2, W ̂  .v ZTZ 1+^5. T^TZ ^r<? ̂ ^ a unit b in Q ,̂ .wA that

H^)=H^)6

everywhere in i+^P.
Pn<. — Let ^H^) so that H^^H^H^)). We write

^)-H,(H^)),

and since r^H^^H^A:)), we have h^^H,-1^) and therefore

Thus
^^)w^=H,MW^=H,(AM)=H,(Hrl(r)).

w=w,
for all ^ in i+^p. To simplify still further, we suppose t close to i, make the change
invariable t==exp^ put 7](^)=log S(exp ^) and deduce

W7](^)==7](m^)

for ^ close to zero. Since all these functions are defined over K^, we conclude that
7](^)==^, for some b in Krp. We thus find that for x close to i,

H^)=exp(HogH,M).

Using the fact that t=H^{x) is a holomorphic change of variable in 14-^ and that H^
is a holomorphic map of i+^P onto itself, we see that the formal power series
(i+Y)5^^]]. Since beKy, the criterion [i] shows that

bp log(i +Y) =V log(i +YP) mod^O[[Y]].

By checking the coefficient of Y^, we find that b==y modp8 and hence V==b. By
checking the coefficient ofY, we find that 6e0. Thus b must be an integer in % .
To show that b is a unit, we use the above argument and the fact that

H^^exp^-MogH^)).

This completes the proof of the lemma.

e ) Equation ( 7 . 8 ) ,
We now examine equation (7.8). The more precise statements for j=o,j=i 728

could be obtained by doing the analysis in terms of the modulus X, taking into account
that jo=o corresponds to \==—^,—^1 where ^3 is a primitive 3-rd root of unity

and that locally j^<^—\)3 for X near \, while J'Q==I 728 corresponds to Xo=^, 2, — i
and j—i 728^(X—Xo)2 for X near \. 2

While certain simplifications would ensue from the use of the modulus X, we shall
continue our discussion in terms ofj.
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For | j[>i, equation (7.12) implies that

T- S^
s=0

and ord(6o+i)^-ordj

for all |j'|>i. Thus b^—i and similarly ordb^i for .$\>i. Thus

^)-^^(,+ [̂'.n.
J'-J \ J [ j \ ]

(7-24) X(j)-;^

Lemma (7.4). — Equation (7.8) ^ valid (with SQ==O).
Proof. — Lemma (7.2) shows that ^ has non-trivial principal parts only at infinity

and at liftings of supersingular j- values. It follows from Lemma (7.1) that for j^2 =Jo,

the principal part atjo converges for ord{j—jo)<——. Furthermore equation (7.12)

shows that ord T(j) = o everywhere in 2)4 and hence in 1)4 we have

(7.25) ord(x(j)-7)=ord^.

In particular then for o<ord(j—jo)<pl{p+i), we have

ord(x(j)-^i-ord(j-;e)

and each term in the Laurent series in U—Jo) which represents ^(j)—^ in this annulus
has this bound. Specifically for the principal part, given by equation (7.7) (replacing^
by P^5 we have

ord A^-n ord(j-(B,)^i-ord(j- (B,)

and the assertion of the lemma follows by letting ord(j—^) approach p l { p + i ) from
below.

It is well known that supersingular j invariants (in characteristic^) lie in GF[j&2].
Thus we may, with no loss in generality, assume for z=i , 2, . . ., r, Pf== (B,.

We now examine the possibility that equation (7.8) holds with §o>o (say) for i = i.
In the following, ^ is the polynomial defined in the proof of Lemma (7.1).

Lemma (7.5). — If ordA^i then ^{^)==omodp.
Note. — It follows from the proof that if (B^2 = (B, but (B not a lifting of a super-

singular j invariant, then ^((B) = o mod p.
Proof. — We restrict our attention to the annulus

o<ord(j-(B,)<j&/(^+i).

Suppose the assertion false. Since S; has coefficients in Z this implies that ord ^(p^)==o
and hence ^ assumes unit values in the annulus. Thus by equation (7.25),

ordOcC^-^i-ordC;- (B,).
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Equation (7.8) shows that for ^=2,3 , . . . , r , we have ord h,{j)>i and thus

ord^O')-^--^))^!.
This shows that

(7-26) ord^(j)-i-ord(j-(Bi)

everywhere in the annulus. The contradiction is now easily obtained from conside-
ration of the Newton polygon of h^. Explicitly, choose 8e(o,^/(^+i)) such that

ordA^>i+8.
p

For ord( j—(Bi)=———8, we check thatp+i

ord(A^/(j- m^(i-ordC;- ?,))+§

for n>_ i; the computation for n == i is immediate, and for n>_ 2 the assertion follows
from equation (7.8) (with SQ==O). This estimate contradicts equation (7.26) and this
completes the proof of the lemma.

We now prove a strong converse to the preceding lemma.
Lemma (7.6). — If ^(pi) E=O mod ̂  (and hence modp) then there exists ^[ congruent

to pi modp such that ^ is holomorphic for

o<ord0--^)<j

and if we replace ^ by ^[ in equation (7.7), then/or z==i, equation (7.8) may be replaced by

ordAy>^+3n.
2 2

Proof. — (The following proof does not apply to the case p=2. More
precise statements will be given shortly for p = 2, 3.)

We rewrite the initial step of the proof of Lemma (7.1) in the form

(7.27) ^UJP+t)=t^l+t^+p^+pt2h^ t)
where

^'-J+PJ, J^J^-^^UJ^

and Ao is again an element ofZ[j, t]. Clearly the p2 zeros of ^o lie in distinct residue
classes and are unramified over Q^,. We define (B' to be the zero of^o which is congruent
to ^modp. Repeating the argument of Lemma (7.1), set t=p{^I^T and now
consider the polynomial

(7.28) Ho(T)=I+T+T^l(^)^^+l+(J&/^)(^/^)T2AoO,^^

We again estimate Ho(—i) and H o ( — i ) — i , but now we need only consider j in a
neighborhood of (B^, Pi+^.
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Let G be the ring of rational functions u (ofj) such that for j in the annulus

(7.29) o<ord(7-p')<3/2,

we have
ord^)^Min(2~ord(j~P'),3-2ord(j-P')).

We assert

(7.30) Ho(T)-(i+T)e(5[T].

Since ^ is unramified over Q ,̂ and i;(p')e^5, we have ord ^((B')^ i. Since

w^m+u-wu-y].
we have

(7.31 a) ord S(j)^Min(i, ordO'-fB')),

while for ^e(B'+^P we have
(7.316) ord^O*)=ord(j-P').

Forj in the annulus (7.29) we conclude thatj^/^o lies in 0 and equation (7.30) follows
from (7.28) and (7.31). The approximate solution T= —i of Ho may thus be made
precise by the Newton method if o<ord(^—(B')<3/2. We conclude that for j in the
annulus

ord(x(y)~JP)==ord^/^Min(I,2-ord(7-p/)).

The lemma follows immediately.
By substituting (7.2) and (7.3) in (7.1) and examining the coefficients of i/^2'^"1

and i/^'-^-2 it is found that

^-i=8-3-3i
and that for ^4=2,

^.p-2=4-33-1 823-(^-I)(744)2/2.

This shows that neither

Fp(^ V) -= (^ -JO (^ -f) mod p2

nor
Fp^^so mod^2

can hold unless ^=2,3. However explicit formulae for Fg, Fg are available [21]
and these show that both congruences are valid for ^=2, 3. Thus for these two primes,
the hypothesis of the previous lemma are certainly satisfied. In these two cases the
only supersingular invariants are at jo==o. An examination of the explicit formulae
shows that the unique root p' of ^ m ̂  satisfies

(8 ^==2
1 r\t 1 r

ord P'.
3 ^=3
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and that for ordj>o
(Min(i2,4+2ord^) p=2

ord p^^, \
— ^ Min(3 + ordj, 2+3 o^j) ^ = 3-

The method of the preceding lemma now shows that the support of / is

( i ̂  12 if p == 2
ord(j-(B')< '/ 'u r / ( 7/2 if j&-3

and that for the principal part at JB', equation (7.8) takes the form (for n^i)
ii i^—+-u-n p=2
2 2

ord A^
t + J 7 2 ^3.

§ 8. Cycles of Elliptic Curves (Part BE).

a) Application of Deligne's Theorem.
We are now in a position to extend the results of § 4 to the region of validity of

Deligne's theorem and in particular to obtain considerable information concerning the
local solutions of (4.2).

The main idea of this section is to view ^ : Xl->X' as a lifting to characteristic
zero of the Frobenius and to define a mapping similar to equation (6.8) but using ^
instead of the p-th power map. Our first object is to find the relation between these
two forms of equation (6.8).

It is convenient to restrict our attention to a set 2)g lying in the support of ^.
Ifg denotes the Hasse invariant (as in § 4) let

^ == {x [ e> Max(ord X, ord X-1, ord(i-X), ord ^(X))}.

(Thus in this section, I)g does not have the same meaning as in § 7.) In the following
it will be assumed that e is positive but sufficiently small.

For ^eDg put

(8 .1) F(^, X)==exp(7rXo/(^ X)-7rXoW, X^))

where

(8.2) /(X, X)=X,(X,-X3)(X,-XX3)-XiX3

and ^=x(^)- ^let

(8.3) ^ : ^ T - ^ . 1 0 ^
•r (Z, X)

(recall that in § 6, i) we also dropped the factor p from oc^ and this will be continued in
this section). Then aj is a mapping of S{^ onto ̂  and (cf. § 6, b)) if ^ is used to denote
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the mapping of 90^ onto 9?^ obtained by composition with %, then the following diagram
is commutative. (Here as in § 6, i), <p denotes composition with the p-th power map
i.e. h(\y=h{7f).)

^®9^ -^ ^®9^ -a^ ^(x)^

T^,X T^

^ ^

T^.z^

^ ^

T^,X T^

^®9K^ ^p0^ ^®9JL

Thus if A^ denotes the matrix ofa^, then precisely as § 6,

(8-4) ?:X->(Xo^

is a monomorphism of solutions of (6.26) in ̂  onto solutions in 93 .̂ The only point
to check is the growth conditions for F, which are essentially the same as those for F(^, X)
as may be shown by applying equation (7.8) to determine the growth conditions satisfied
by the ratio F(^X)/F(^,X).

We shall use p to denote the mapping of § 6 (with q =p)

p:x^x^
of solutions of (6.26) in ^p into solutions in 9?l^.

Lemma (8.1). — For e sufficiently small, e>o,

(i) A-^ is a uniform analytic matrix function of support Dg.
(ii) The mapping ^ of (8.4) may be naturally identified with the mapping p for all ^eT)g.

Proof. — The first assertion follows precisely as the proof of the similar property
for A^ using the explicit formula ([4], equation (5.27)) and the analytic properties
of the function /.

For the second assertion, let G be the union of ^5 with its images under the mappings
^\->i—\ Xh->i/X. For ^G the solutions of (6.26) in 931, are in fact holomorphic
in ^+^P and therefore solutions in 9?l̂  may certainly be identified in a natural way
with those in 9Jl̂  (naturally provided -s:eDJ. The assertion follows in this case from
the previously mentioned commutative diagram. For -eeS the same argument applies
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provided log (-s'/^) (resp. log(^'—i)/(^—i), resp. both log^'/^) andV^'/^) is (are)
well defined for ^ (resp. i—^, resp. i/^:) in }̂. This is certainly valid if ^e2)g.

Our main result is the explicit computation of the matrix A^. As in § 4 we use F
fi i

to denote the hypergeometric function F -,-, i , x ( . Let s=(—i)^ 1)/2.
2 2

Theorem (8.1). — For Xe^S, ^ matrix A^ ofS^, relative to the basis used in § 6 i),
is given by

^=\
'F(X)/F(X/) ^FM^^))

(^)F(X)/F(^

^Vb^. — (The condition Xe^? is clearly too conservative. The extension will be
considered after the completion of the proof.)

Proof. — Let us denote the right side of this asserted equality by the symbol L.
Our basis has been chosen so that for ^>ord -e:>o, the solution matrix in 90^ is of the
form

(8.6) exp ^ ^ log(X^) r(X)

where (letting D = X ( i — X ) and using equations (4.19), (4.23))

-FW (DF^—F'W^
F F' )

(8.7) r=\

In an obvious sense, viewing \ as a variable element of 0 close to z, we have the
commutative diagram

T\',\f

The matrix of T^ ^ is

(8.8) (T^r^exp^exp ^ ^log(^) r(X)

since this is the solution matrix which specializes to the identity when X specializes to ^.
Thus

(3.9) (T,, „) = r(X')-1 exp ^ J log(W) r(^).
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Using equation (6.17) and the commutative diagram we obtain

(8.10) ^ = r(X')-1 exp I ̂  l} log^/X^ Sir(X).

We recall that in § 6, z^ we computed(..„, ^4)
where b is a constant whose value will be shown shortly to be log iG1'"^.

Substituting (8.7) in (8.10), using F, W, etc., to denote Fo^, Wo^, etc., and
using H to denote W—j&W+log^/X'), we obtain

(8.12) £J,=(^+(^+H)D(^

where

(3.i3) (Zi
F/F -j&(F'/F)(D/D)+F'/F\

o j&(F/F)(D/D) /

FF' —F'F'\

FF F F ' / *

By means of equation (7.17) it is obvious that Q^==£ and hence

(8.14) d,=

(8.15) sJ,-Z=(6+H)D^.

We must show that the right side is zero. The central point is that equation (7.16)
shows that
(8.16) H=logI6p- l

and hence H + b is a constant. Let 2)'g ==-[Xe2)g | ord g(\) = o}. We have noted in the
proof of Lemma (7.2) that F(X')/F(X) has a holomorphic extension to 2)^ and thus both L
and A-^ are uniform analytic matrix functions of support containing this set. We conclude
that the same holds for the right side of equation (8.15) and hence either H + b == o
or FF also is uniform analytic function with this support. In the second event F2 would
also have support 3^ and this would imply that the right side of equation (6.29) is ± i,
contradicting the Riemann hypothesis for elliptic curves. This implies the vanishing
of H+^ This proves the theorem and also demonstrates
(8.17) b^logie1-10.

Since the support ofF(X)/F(X') certainly contains the set (5 introduced in the proof
of Lemma (8.1), and since the support 2)g of A-^ has non-trivial intersection with the

r^i

quasi-connected set (3, we conclude that both F(X)/F(X') and the coefficients of A^ may
be extended to uniform analytic functions of support containing 2)g u ©. Thus the
conclusion of the theorem is valid for X in this union.
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We shall show (Lemma (8.4) below) that the support contains the support of ^.
We note in passing that the singularities of A-^ are of necessity restricted to neighborhoods
ofo, i, oo and by the methods o f§6^ , (i), the only singularity of A^ is in fact located
at X = i with principal part of the form

^-^log-
TP—i

We have just noted that F(X)/F(X') may be extended to a function^ of support 2)g.
Similarly, for each integer s, we define

/sW=/lW/lM.../l(^-l))
holomorphic on 2)g (where e may have to be reduced in a manner depending on s) and
where X^ is defined inductively by ^(X(S-1))=X(S).

If p=(B^ (B=)=o, i, oo, then p^^^) is an endomorphism of solutions of (6.26)
holomorphic in (B + ^P- We know from § 6 i ) that the eigenvalues of p^ are the
zeros of the zeta function of the reduced elliptic curve (defined over GF[j^]) of
modulus P mod ^5. If q, ^ are the zeros of the zeta function then we may choose
(choice enters because we may have c^==c^) two linearly independent eigenvectors,
(u^u^ ( z = = i , 2 ) and conclude from Theorem (8.1) that for XeS)gn(P+^P)

(8.18) e-u^W)==c^W.

Naturally there is no need to distinguish between solutions u of (4.2) and
solutions (u, u') of (6.26). Thus we may say that p operates on solutions of (4.2).

For possible future use we record the matrix A^ associated with p"
(i.e. p" : {u, u ' ) -> (^(X^), ^'(X^))^):

im fw \
(8 .19) 2 -̂ _ d ^ .

\ ° m-^]

b) Non-super singular reduction.

We now assume that p mod ^5 is a non-supersingular modulus and that there
are v elements in the orbit of P under the p-th power map. Let q be the unit root
and ^=p^lc^ be the non-unit root of the zeta function of the corresponding
elliptic curve. Since f^ assumes only unit values for X in P + ^S, it follows from equa-
tion (8.18) that u^ is the unique bounded solution of (4.2) of support P + ̂  and hence ̂
is unbounded. We assert that i^ has interesting arithmetic properties, namely the
zeros of u^ form the set of all moduli X in ? + ^P corresponding to curves isogeneous to
the canonical lifting.

Lemma (8.2). — The ^ero set of u^ consists of all Xep mod ^3 such that for some s,
x(sv) == Pcan? ^ canonical lifting of p mod ^3 (cf. § 7 d). Thus each ^ero is an algebraic number.
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Proof. — Equation (8.18) shows that for Xep+^5:

(8.^0) ^))=^(X).v / ^ c^ u^

Since (B^n ̂  a fixed point of^ and c^c^ it follows that (B^n ̂  a zero of^. Conversely
if ^ is a zero of^ then the equation shows that for each integer s, ̂ {^ is again a zero
of u^. For given ^ ^ large enough, ^(^)=^ lies in P+^0. This set contains
only a finite number of zeros of u^. Thus there exist s, t, t>o such that ^=^+<.
Hence ^ is a fixed point of ̂  in (B +s?. The Newton polygon of ^v) may be used
to show that this mapping has only one fixed point in (B + ̂ }. Since ^an is such a fixed
point, we conclude that ^=Pcan- This completes the proof of the lemma.

Note. — By suitable normalization, say

^(Pcan)-I, ^(Pca^)=(Pca^(I-Pcan))- l(Fo(P))~2

where Fo((B) is chosen, as was Fo(a) in (4.25), to satisfy FoW^^fi^n), we obtain
exp(^2/^i)=?a as used in equation (7.22). This lemma provides a characterization
of^ which may be simpler than that of (7.23), namely ^ is determined up to a unit
exponent in Q ,̂ by the condition that it map (B + ̂  holomorphically into i + ̂  and
that its value is a p'th power root of unity at the points indicated in the lemma.

Finally we observe that the unit root of the zeta function of the reduced elliptic
curve is .̂ = ̂ (Pcan) •

c) Supersingular Reduction (^4=2,3) .
We suppose that (3 is fixed under an iterate of the p-th power map and that (B

is a zero mod ̂  of the Hasse invariant g, given by equation (4.3). It is well known
(cf. note following Lemma (8.7) below) that (3^== P.

Our main purpose (cf. Lemmas (8.14), (8.15) below) is to investigate the arithmetic
properties of the eigenvectors of p2 as endomorphism of solutions of equation (4.2) of
support p + ̂ 5. Two by-products of this investigation are

(i) the semisimplicity of p2 (proven in Lemma (8.14) and again by a different
method in section 8 d) below);

(ii) more complete information concerning the behavior of 7 in (B^-^
(cf. Theorem (8.2), Lemma (8.11), and § 8 d ) below).

A conceptual proof of (i) has been obtained by Katz, and results of type (ii) have
been obtained by J. Lubin by means of the theory of formal groups. The methods of
both Katz and Lubin have the advantage of being less dependent upon the choice of
model (such as (4.1)).

We shall use the fact that the eigenvalues of p2 (as endomorphism of solutions
of (4.2) of support p+^P) are equal. A proof will be given in § 8, d ) . This result
was brought to our attention by Lubin who showed that the zeta function of a super-
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singular elliptic curve over GF[p2] has equal roots if and only if the points of order two
are rational over GF[j&2].

Thus for the present application there are just two possibilities, either v == i and
the eigenvalues of p are ±V—p, or v=2 and the eigenvalues are equal. Thus the
ratio c of eigenvalues is (—i) \

In the following we shall restrict our attention to the disk JB+^B. It will be
convenient to introduce the notation for disks:

C(^)={x|ord(X-p)>fl}
and for annuli 9I(a, 6) ={\ \ ̂ <ord(X— (B)<&}.

We write the principal part of 7 at [B in the form

(8.21) h{\)= SA^X-p)-
n=l

and recall that for n^_i

ordA^—^+7?-^.
"~p+i p+i

Our first object (Theorem (8.2) below) is to show that ordA^==i. This will
require considerable preparation.

Lemma (8.3). —
,^ord(X-(B) zy^C(i/(^+i))

\^Pl{P+^) zyord(X-(B)=i/(^+i)ord(x(X)-^)

Proof. — In any case

J = i -ord(X- p) if ord A,= i ( / i p \
^>Min(I^ord(X-(B)) ifordA,>i\ [p+i9 p+if9

ordA(X)^:i—ord(X—(B)
ordOc(X)-^-A(X))^i.

For o r d ( X — p ) < i / ( ^ + i ) , we have

ord^- ̂ )==p ord(X- P)<i-ord(X- p),

which proves the first assertion. The second assertion follows from the same argument.
For the third assertion we use the fact that if ord A^ == i then ord A(X) == i — ord(X — (B),
while for the annulus in question:

ord^-jB^MinQ&ord^-p), i+ord(X- P))>i-ord(X- p).

Finally if ordA^>i then by Lemma (7.5):

o r d A ( X ) ^ 2 — o r d ( X — p )

and hence in the indicated annulus, ordA(X)>i. The assertion then follows from the
estimate for ord^—R^). This completes the proof of the lemma.
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This shows that ^s), the j-fold iterate of^ with itself, is holomorphic in the annulus,
/ 1 P \
\°-r~^]'

Lemma (8.4). — The support of ̂  in [B+^5 contains the support 0/7.
Proof. — We know that if M is a solution matrix of (6.26) holomorphic in ^+ ̂

then
M^A^=M,W,

a solution matrix holomorphic in (B + ̂ . The assertion follows by writing A^ in terms
ofAfi(X) and Af(X').

We now obtain approximate estimates for/(X) in P+^P.

d\1

Lemma (8.5). — ord —;> i — 2 ord(X— (3) / p
flx /or Xe9I o,

ord/(X)^ord(X-(B) ) \ P + 1 /

^-i / i p ^
^^ord(X-p) /. ^^(o,^^ord/(X)^———ord(X-(B) /or X e % o , ^ — — — — — , ^ i .

Proo/. — Since (B+o, i, equation (7.17) gives
^/

— 2 ord/i(X)=—i +ord —
ah

while equation (8.21) shows that

ord h' (X) >_ i — 2 ord(X — p)

and the second equation in the proof of Lemma (8.3) gives the same estimate for ord —.
The first two assertions follow directly. This shows that

S — 1

ord/(X)^ 2 ord^-î ").
n=0

The last assertion now follows from Lemma (8.3).
Lemma (8.6). — Each solution of (4.2) holomorphic in [B+^3 becomes unbounded as

ord(X-p) approaches ^.ero.
Proof. — We first consider the situation in which u is a solution of (4.2) which

satisfies the conclusion of the lemma while v is a solution (also holomorphic in P + ^3)
such that for some constant q:

(p'-^^-^O.
We assert that v also satisfies the conclusion of this lemma. Since

^=f.W))-cA^,
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d\^
it is clear that if v remains bounded then f^(\) must be unbounded and hence ——

d\
must approach zero as ord(X—- (B) approaches zero, which could be used to show that X^
is constant, which is impossible.

Thus it is enough to show that eigenvectors of p" satisfy the conclusion of the
lemma. If (u, u ' ) is an eigenvector of p^, then equation (8.18) shows that for 5\>i:

vs
(8.22) ord u{\^) + ord /JX) - - + ord u{\),

and hence by the preceding lemma:
^j fyS^___,

ord u(\)^ord ^(X(8V))--+'——— ord(X- (B),
2 p — I

for ord(X-p) sufficiently close to zero. We now let j->oo, keep \^ fixed so that
ord(X—(B)—^o and observe that u(\) becomes unbounded as asserted.

Lemma (8.7). — ^ cannot have support containing P+^5.
Proof. — Otherwise A(X)==o and hence everywhere in (B+^}:

ord(x(X)-X^)^i.

It would then follow that there exists poe(B+^P such that ^=^. The proof of
Lemma (8.5) would also show that

ord/i(X)^o.

Thus equation (8.18) would give (if {u, u ' ) were eigenvector of p"):

ord^X^-^+ord^),

and hence u(^o)==o, thus showing that up to a constant factor, there can be but one
eigenvector (and hence p" is not semisimple). Thus as in the proof of Lemma (8.6)
we may choose an independent solution v, such that

^)=f.W^)-^W
where q=±^. In particular then, {f^o)—^)v{^)=o while ord/^((Bo)^o which
shows that y(^)==o, which contradicts the independence of u and u. This completes
the proof of the lemma.

Note. — The preceding sequence of lemmas is based to some extent upon (3^= p.
This could be avoided and (3= ̂  deduced from this last lemma and equation (7. lo)
which shows that the singularities of ^ are restricted to the set

X^—XEEomod^ .
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Lemma (8.8). — Specialising \ to [B, the matrix A^ becomes

A 1^ ^\P"
\T3 T4/

(i) This matrix has coefficients in Ky, the unramified extension of K^==Q^ (rr) of
degree v(== i? 2). For j^^5 ^ ^<^

ord Y2== °5 ^d Yi^ i /v
o rdy3==i , ordy^i.

(ii) For v=2, /^ (T ^ the automorphism ofK.^ over K^ and let

A A° -^ip^lp - Yl Y2
\T3 Y4/

TA^TZ ord Yi ̂  i, ord Y2 ̂  ~

ordy^i, ordy^j

^Azfc z/" ord Yi == - ^^^

ordy^^ ordy^j.

7/' ^4p^ ^ semisimple then ord yi = ord j^ i.
Proof. — These results are based on the methods of ([4], § 7). Certain modifi-

cations in notation are present.
a) The matrices of ([4], § 7) have an extraneous factory, which as noted in § 6 i)

is dropped here.
b) For the present application (e.g. equation (8.3) of [4]) the useful basis is

represented by {7^X0X1X2X33 (TrXoXiXgXg)2} while in the reference the Tc-factors are
missing.

c ) The matrix of [4] is replaced by its transpose.
d ) Aside from these minor changes we explain that the estimates of [4] are based

on the splitting function indexed by ^==00 ([2], § 4) while the present article is based
on the s == i splitting function. The relations between the matrices A^\ A^ are given
by equation (3.19) [4] so that for the bases as indicated in item b) above,

41)==(/+r^)400)(/+rp,)-l

where I is the multiplicative identity and Tp is a two by two matrix whose coefficients
p—i i

have ordinals not less than t——————. The statement and proof of the present
p p—i
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lemma are indeed valid only for A^\ However the purpose of the present lemma is
to prove Lemma (8.9) below which involves stability properties under the mapping

(x,y) -^ (^)41'

of vectors satisfying the condition o rdx /v==—-. The proof of that lemma is based
2

upon A^ but we observe that the condition ord(xly)=—1/2 is not affected when (x,y)
is replaced by {x^y){I-{- T) if the coefficients of Thave ordinal greater than i /2. Since
^,>i/2 for j&>3, we need make no further distinction between A^ and A^.

Making the modification in ([4], § 7) indicated by a ) , b ) , c ) above we find

(8.24) ^dyir^o, ordy2^0

^d Y4^ 1 ? OT(^ Ys^ I •

For v == i we use YI + Y4 == o and hence ord yi == ord ̂ ^ i, while p == det A^ which
shows that ord(YlY4~Y2Y3)==I• Thus ord(Y2Y3)==I? which together with the lower
bounds of (8.24) gives the precise values of ord y2 ^d ^dys-

For v = = 2 we use Tr A^A^==±2p and hence the explicit formula for the trace
together with (8.24) show that ord y^ 1/2. Thus ord Y^-^S/2^1 and the precise
values of ordyg, ord Ys may be obtained as in the case ^==1 from the fact that
ord det A^ = i.

The estimates for ord y^ (^i 5 2, 3, 4) follow from the explicit formulae for
the Y»' m terms of the y,. If A^A^ is semisimple then o===Y2==y^Y^+Y2Y? so lhat
ordYi==ordY4^i as asserted. This completes the proof of the lemma.

We recall that if v is a solution of (4.2) at ^p then the solution u at p given
by p(^, y')=(^, u') has initial conditions related to those of v by

(8.25) ^W^^W-W)^'^^
Let R, (resp. RJW^Wi^) (resp. ^([B)/^(p)) . We shall say that v is special if

(8.26) ord R,-- I

and the same holds for the images of {v, v ' ) under powers of p. Two special solutions v^ v^
will be said to be a polarised pair if in addition

(8.27) ord(R^-RJ=^
— i
2

and the same holds for images under powers of p.
Lemma (8.9). — (i) A polarised pair of special solutions exists in all cases,

(ii) If ^ == i then the eigenvectors of p form such a pair.
(iii) If v=2 and A^A^ is semisimple then of course the polarised pair of (i) consists of

eigenvectors of p2 while if A^A^ is not semisimple then the unique eigenvector of p2 is one element
of a polarised pair of special solutions,
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Proof, — The discussion may be simplified by setting R==——— D~1 A.Dv-p
where D •• I °[o v~=~pl
If we write B=\ 1 'I

\^ V

then by an elementary computation, ord b^_ o, ord ^2=0= ord by, ord b^ -. Further-

more the eigenvalues of £ (resp. BB°) are +i; — i (resp. both equal to +i or — i )
if v == i (resp. v == 2) obtained from the roots of the zeta function of the reduced elliptic
curve by dividing by V — p (resp. —p) . With this change in matrix, special solutions
correspond to units, x, such that if B and B° are viewed as fractional linear transformations

(8..8) B:x^-2+^x

b.+b^x

(similarly for B°) then Bx, B° Bx, BB°Bx, etc., are all units. Likewise a polarized pair
of special solutions correspond to a pair of units x, y which satisfy this condition and also
the further condition that the differences between corresponding images of x and y are
also units.

We first consider the case in which ordyi^- (i-e. ord ^>o). If A: is a unit

then Bx == b^{b^x) mod n so that both B and 5° map units onto units. Furthermore
if x and y lie in distinct residue classes mod n then the same holds for Bx (resp. B°x)
and By (resp. B^y). Thus the existence of polarized pairs is clear if the residue class
field has at least two distinct non-zero elements.

If ord Yi == - (i.e. b^ is a unit) then v == 2 and A^A^ is not semisimple. We defer

the proof of (i) for this case until we consider (iii).

To prove (ii) we recall that ordyi>- so that b^ is a non-unit while an

eigenvector (i, x^) of B with eigenvalue ^ is given by x^= — (b^—e^jb^. Thus
x! — X2= (e! — ^2) /^3 == dz 2 /&3 and the assertion is clear.

We now consider part (iii) and hence we suppose that v = = 2 , ^p^4^ is not semi-
simple. If (i , x) is the eigenvector of BB° of eigenvalue ^ ( = = d = i ) then both (i, x)B
and (i, x°) are eigenvectors of B^B. Since B°B is also not semisimple, we have

(8..9) ^=^-b^+b^x

Thus ^3^A:o+^l^o=&4A:+^2- Since b^ is a unit, ord ^>o is impossible, while if ord x<o
then the b^xx0 term is the unique maximal one, which is impossible. Thus .v is a unit,
showing that the eigenvector of p2 is special. To find y such that (i, x) and (i,j0
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correspond to a polarized pair, we may assume that ordyi=-1. Let t be an element
of Kg to be chosen and let (i,j/) be the vector defined by

(i^)BB° ==e{i, jQ+^i, x).

Thus {^y){BBa)m=em(l,y)+mem~lt{I,x)

and letting b^==b^

ym=^yJr^x)|{e+mt),

it is easy to verify that (i,j^) and the eigenvector (i, x) correspond to a polarized pair
of special solutions in is chosen such that j^, By^y^—x and By^—Bx are units for

all integers m^>o. This reduces to the condition that the residue classes of t, - +—
i b, i l ^3
- + -, .——— be non-rational (i.e. not in Z modj&). For j&>3, the residue class field
v ^3 ° 1 I" t)SX

of Kg has enough elements for t to be chosen so as to satisfy this condition. This completes
the proof of the lemma.

If u^, u^ are independent solutions of (4.2) holomorphic in [B+^3 then we may
consider T=^/^, a function meromorphic in P+^3.

Lemma (8.10). — If u^ and i^ satisfy (8.26) then T is holomorphic in c(-+ ——)
and is a one to one map onto v ^~ 1 /

s•=(<|°rd(^)-'H+^+OTd(R•-R•4
The inverse map is also holomorphic.

Proof. — We first note that since ^ and ^ satisfy (8.26) neither vanish at P. The
main point in the proof is that since T is a ratio of solutions of (4.2), it satisfies the
Schwarzian equation (cf. E. Poole, Introduction to the Theory of Linear Differential Equations,
Oxford, 1936, p. 121) ^-^r-i

T 2 \ T /

1 -r l r 1 Iwhere I=-h>+^7—^+4 ^ - X ( I - X ) T ( I - X ) 2 ; •

We write this equation in the form

(S-S0) î, Z2)={g(Zi, Z^), k[Zi, ̂ ))

where ^ == T', ^ = T", g{^, ̂ ) = ̂  k{z^ ^} =2!^ + 3 (^j/^).

401



102 B. D W O R K

Since (B=t=o, i, ordl^o everywhere in [B+<>P• The initial data is

(8.31)
8l=^(P)=T(p)p(P)-^<l(P)\u^ u^ f

'̂"'- '̂-i-^
(to compute Sg use the fact that Z^T' is the Wronskian of (4.2)).

Since ̂  and^g are independent, 8^=4=0 and since u^ satisfies (8.26), it is clear
that |82[>i.

Precisely as in the calculus of limits (cf. [20], § 2):
fn I r\ r\ \ n—1

(8.3.) ^=^+^ .^_ -l^A
d^ ^8^ 8^

and hence for \Zi—^\<^b^, \z^—S^S^\<^b^, (where ^i, ̂  are positive real numbers to
be chosen subsequently), | X | ̂  i, we obtain the estimates

d-z, (M, M^Y-1

< M, Max(8.33) d-^ \ \ °i ^,

where M^ = Sup g, Mg = Sup k, the sup to be computed in the indicated region. Clearly

M^Max(|8^|,^).

Since §1+0, we may choose b^<. §11 so that in the indicated region

kiMU
and hence M^Max( ^ \, M^/|8i|).

We choose ^IVzl and thus M^ISiSgj, M^ | § 1 1 1 8 3 1 2 . Thus Mg/^Saj,
MI/^I^ I ^2 V where

e=\S,\lb,>i.

However e may be made as close to i as desired. Equation (8.33) now takes the form

î ^M^|5,[)»-1

d\"
and hence for X close to p:

B«T'(X)=8i+Si^-P)+^^(X-p)»

where [BJ,<Mi(? 831)""1 for B^2. Since this inequality holds for all c>i, we
may let e->i and deduce for K^2:

(8.34) 1BJ^M,|8,|"-1.
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It is now easy to conclude that

r(x) s, / w a \(--"> ^-=^(x-»(•+.s.(^(s•(l-">j
where C^eO for ^^>i. The lemma now follows from the fact that ord 83=—- and
8,/T((B)=R^-R^. 2

We may now state one of our main conclusions.
Theorem (8.2). — (We assume j&^5.)
In equation (8.21) ord A^ = i.
Proof. — Let z^, ^ be a polarized pair of special solutions of (4.2) in ^+^5 and

let {u^, u\) be the image of {v^ v[) under p ( z ' = = i , 2 ) . Thus if we set To(X)==-2(X),
^2 { P \ vl

T^(X)=—(X) , then by Theorem (8.1), for Xe9I o, ——
^ \ p + i ]

(8.36) T,(X)=To(X').

/I I p \
Now suppose ord A^> i; then, restricting our attention to the annulus %i - + ——, —— ,
we have by Lemma (8.3): \ P P~r /

ord(X'— [B^^ord^— p)

so that the previous lemma, in particular equation (8.35), may be applied to both sides
of (8.36)5 showing the existence (for each X in the annulus) of x ^ y in ^} such that

To(^)(I+(^-^)(X /-PP)(I+^))=T,(p)(I+(R^-RJ(X-(B)(I+^)).

It follows from equation (8.27) that ^(^^/^(p) is a unit B, and hence of the

three quantities, ord(B-i), —-+ord(X'—(B^) , —-+ord(X—(B) , the two minimal

ones must be equal. But as noted above ord(X'—(B^^ord^— p) which shows that

— - + ord(X— P) = ord(B — i), a constant, which is impossible. This proves the theorem.

We note that we have excluded one of the possibilities in Lemma (8.3) and hence
/ T P \for X e 9 I — — , — — - :\p+^p+i)

(8.37) ordOcW-P^i-ord^-p).

We shall refer to this annulus as the critical annulus (about ?) and we shall refer
to the <( closed " disk

(xlord(X-p)^j

as the inner disk (about P).
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Lemma (8. n). — (i) For each positive integer s, the s-fold composition of ^ with itself
is holomorphic in the critical annulus.

(n) X ° X may ^e extended from the critical annulus to a holomorphic function of

support c(^).

(iii) Let u^ be a solution of (4.2) of support [B + ̂ P which is an eigenvector of ̂  and let u^
be an independent eigenvector of ^ (resp. an independent solution of the same support) if ̂  is
semi-simple (resp. not semisimple). Let T==^/^. If v=i then

T(X')=-T(X) for ^L——\

and/or all v
T(X")=T(X) (resp. r(X)+^)

/ i \ / i \
for Xe% o, —— U G —— , t being non-^ero in the non semi-simple case.

I i \
(iv) X"=X for all XeG ——| if and only if p^ is semisimple.\ ) j \p+^J

Proof. — The first assertion follows directly from equation (8.37). For the second
assertion we note that by Lemma (8.9) we may suppose that ^, u^ form a polarized pair
of special solutions of support P+ ^P- For each integer j, let ^ g be the image ofu^ under
p^'^ri^). Thus putting T g = = z / 2 g / ^ g ( T o = = T ) , which is meromorphic in P^+^P, it
follows that for s^ i:

(B.38) ^W=^-iW)
I p \

for Xe9I o, — — , the center being at (3 (resp. ^p) if s is even (resp. odd). In particular
\ P+1/

for ^==2, this gives (for X in the critical annulus)
T,(X)=T(X").

/I I \
However Lemma (8.10) shows that X|->T T^(X) is holomorphic in C | - + — — • Ii

/i i p \ ^ p~li
we denote this function by H then for Xe^tt -+—— , ——\i both H(X) and X" he

{ , , \ V2 P-1 P+1'
in C -+—— while

\2 p - i )
T(H(X))=T(X")

and hence X"==H(X) for all X in the last mentioned annulus. The function H thus
extends ^(2) to the asserted region, which completes the proof of (ii).

V—pu.
Part (iii) follows from (8.38) since for v==i,Ti(X)==——-=—(X)==—T(X), while

-V-pu^
for v==2 , T2==T if p^ is semisimple, and T2===r+^ (^4=o) if p^ is not semisimple.
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For part (iv) we note that if pv is not semisimple then XH-X" has no fixed points
except at the zeros of ̂ , while if p" is semisimple then for v = i, 2, r(X") = r(X) and hence

/i i \
for XeG - + — — 3 Lemma (8.10) shows that X=X'. This equality is extended in

/ i \
this case to C | —— by part (n).

\P+1/
The following lemma is of interest only in connection with the eventual proof

that p^ is semisimple.
Lemma (8.12). — If ̂  is not semisimple, then the eigenvector u^ of ̂  of support ? +^5

cannot have a unique ^ero in the critical annulus.
Proof. — Suppose otherwise and let ^ be the unique zero. Lemma (8.11) shows

that ^"^X^C^) ls a^0 a zero °f ul' Since ^ f also lies in the annulus, the hypothesis
of uniqueness shows that ^'=^. Let ^'==^(^) and consider X" and X as algebraic
functions of X' in a neighborhood of ^/. We know (equation (7.10)) that (X", X')
and (X, X') are zeros of Gp and since X and X" take the same value when X'==^', we may
conclude that X and X" coincide locally provided the root t===^, of the polynomial
G {t, ^') is not a multiple root. Thus it is enough to show that (^, ^/) is not a zero

of^G,(X,Y). However

^G,(X,Y)^-Y mod^O[X,Y]

AI
while both ^ and ^ lie in 0 and | f—^ \ = ——— > \p |. We conclude that the partial

derivative does not vanish. This shows that X" coincides locally with X, which contradicts
part (iii) of the preceding lemma.

We now give a more precise form of Lemma (8.5).
/ p \

Lemma (8.13). — For Xe9I o, —— we have
\ P+1/

d\'
ord — =1—2 ord(X— p)

d\

ord/i(X)==ord(X—j3)

and hence if ord(X, — p) = -^ ord(X — p), x^M == ̂  then

YJ- i _ fy~s^
ord u{\) -=== ord u(\) - - + ——-— ord(X - (3)

if u is an eigenvector of ̂  of support (B + ̂ P*
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Proof. — The proofs of Lemmas (8.5), (8.6) show that it is enough to obtain the
d-k'

precise value of ord-—. This in turn may be reduced to the assertion that
d\

o r d A ' ( X ) = = i — 2 ord(X—(B) and this follows from equation (8.21) and Theorem (8.2).
This completes the proof of the lemma.

Before turning to a closer examination of the zeros of the eigenvectors, we observe
that the Newton polygon o f ^ X ) — ^ as Laurent series in ( X — ( B ) is partially deter-

i
mined by Theorem (8.2). The side of slope — — — — and the line of support (1) of

p . . . . P+I
slope ———— are as indicated in the diagram:

p+i

This diagram shows that if X'ep^+^P then the equation

xW-^'
/ p \

has either p-\-1 or p roots in 91 o, —— . The former occurs if \' lies either in the inner/ \ P+^I i , ̂
disk of center (^ in which case the p +1 roots lie on the circumference of C ———

\ \ P + 1 / ]
or in the critical annulus of center ^p (in which case one root lies in the critical annulus

/i \
and p roots lie on the circumference of G - ord(X'— (B^) . The second case occurs if X'

/ i \ v . . )
does not lie in the disk C | ——) of center ^p and in this case the p roots lie in the circum-

/i \ \
ference of C - ord(X'— ^p . (The roots are distinct by Lemma (8.16), (iii).)

\P I I

(1) This line of support is indeed a side of infinite length (cf. § 8 d ) below).
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We now partition the points of ([3+^)0(^+^3) into equivalence classes, two
elements x,y being said to be equivalent if there exist non-negative integers m, n such that
both

^ z^W^OO;
b) none of the elements in either the sequence {x^W}^,!,...,^ or Ac sequence

{^(jQL-o, i,..., n. except possibly for ^(x) ̂ ^(A lie in the union of the disk C {———}
with the corresponding disk of center (B^ \P~r1/

Each class has a unique c< minimal 5? representative ^ in the union of these two
disks. We partition the classes into 4 types depending upon the location of ^.

I. ^ lies in the critical annulus of center [B.
II. ^ lies in the critical annulus of center (B^.

III. ^ lies in the inner disk of center (B.
IV. ^ lies in the inner disk of center ^p.

Of course if v = i then (B = (^ and then there is no distinction between types I
and II and no distinction between types III and IV.

We are interested in the intersection of each equivalence class with (B + 33. We
classify the elements of each intersection according to their distances from p. The
elements of a given intersection are now arranged by rings, the j-th ring having
N, elements X having a common value D, for ord(X-p). In the following table,
^ refers to the minimal representative of the class. The element ^ itself is not counted
in the table except for the class of type I.

I ] II 1 illType

v

D,

N,
s^

I =11

I

p-^ ord(z-(B)

P8

0

III = IV

i

/r-^+i/^+i)

p^p+i)
i

II

2

/r-2s-iordCe-(BP)

^2S+1

0

III

2

J^+l/^+i)

/>2S-10&+I)
I

IV

2

r^Kf+i}
p^p+i)

0

Lemma (8.14). — Let u be an eigenvector of ̂  of support P+'^P. The ^ero set of u
consists of the intersection of (B + ̂ 3 with either one or two classes. If v == i then the ^ero set
is a single class of type I whose minimal representative is a fixed point of 7. If two classes are
involved then one class if of type I and the other is of type II. In particular this is the case for v == 2
if u is a special solution. Furthermore p2 is semisimple.

Proof. — Let q be the eigenvalue of p'' for u. Let v be the image of u under p
(so the support of v is P^+^P). The proof is based on

^)fiW==^W if Xe%(o,^-
(8.39)

\ P+^

^)fiW=^W if ^^P o,
P '

P+^
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Since u is unbounded, its zero set is non-empty and the above equations show that
this set is the union of the intersection with (B + ̂  of one or more classes.

We observe that if v = = i then by Lemma (8.9) the eigenvectors of p constitute
a polarized pair of special solutions and hence by Lemma (8.10) there are no zeros

/i i \
i + ~f~~] ' This sllows that in this case only classes of type I can occur.
/ i i

in G -+—
\2 p-i
We choose a rational number r, close to but less than p l { p +1), such that u (resp. v)

has no zeros on the circumferences of Gp(r) (resp. G^(r)). In this case u has no zeros
on the circumference of C^28) for any ^o. If M, denotes Infordz/(X) as X runs
over the circumference of this last disk then we know from Lemma (8.13) that as s-^oo:
(8.40) M,=-^+0(i).

We now compute M, in terms of the zero set of u. Let £ be the intersection of a
class with P+^P and let L,(£) be the polynomial

L,((£)(X)=nfi-^

the product being over all te^nC^r/p28) (excluding the minimal representative in the
inner disk if the class is of type III). Finally let M,(£) denote InfL,(£)(X), the inf
again being over all X in the circumference of C^28). Clearly

(8.41) M,=SM,((£)+0(i),

the sum being over £ contained by the zero set of u. It is easy to compute M ((£)•
we list the asymptotic value according to type, recalling that for v = i we need only
consider type I. As in the previous table, ^ refers to the minimal representative of the
class of (£.

Type II III

2

IV

2

]\W)+o(i) 2sord{^— p) - jo rd^—p) -sord^-^)

If £ is of type I or II and lies in the zero set of u and has minimal representative ^,
then the class of ^'=^) must also meet the zero set. Thus if v= i and ^=+=^' then
by equation (8.41), M,+0(i)^-2^(ord(^ (B)+ord(^- (B))=-2^ which contra-

dicts (8.40). Thus ^ must be a fixed point of ^ and hence by (8.37), ord(^—(B)==^.
Thus M^((£)==—^ and no other class can occur. 2

We now suppose v=2. It is clear from the table that if a class of type III
(resp. IV) meets the zero set of u then no other class can do so. If (£ is of type I with
representative ^ and (£' is the intersection of P+^5 with the class of Z'=/(A:) then
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M,(e;)+M,((£')=-^ord(^-p)+ord(^-(BP))+0(I)===-^+0(I). This shows that in
this case no other class can occur.

We now consider the case in which u is special. We have already considered the
case v = = i and hence may suppose v==2 . From Lemma (8.9) we know that u is one
element of a pair of special solutions (if p2 is not semisimple this has been explicitly noted,
while if p2 is semisimple then by Lemma (8.8), ordy^i and the assertion follows
from the proof of Lemma (8.9)) and from Lemma (8.10) we conclude that u has no

/i i \
zero in C - + —— • Equation (8.39) shows that u has no zero in the inverse image

\2 p - l j

/I I \
under ^ of Cpp I- + —— . This shows that the zero set of u is neither of type III nor

of type IV and hence is the union of the intersection of (B + ̂  with one class of type I
and the associated class of type II.

We now show that p^ is semisimple. We may again assume v = 2, that pv is
not semisimple and that u is the unique eigenvector which, as we recall, is special.
We have just seen that the zero set of u involves a class of type I and a class of type II
and hence u has just one zero in the critical annulus. This contradicts Lemma (8.12),
which completes the proof.

Lemma (8.15). — (i) If v = i then the ^eros of the eigenvectors are algebraic numbers. In
I p \

this case / has just two fixed points in 911 o, —— and the class of each fixed point is the j^ero
set of one eigenvector. \ V I

(ii) If v==2 and u is a special solution of (4.2) then u has a unique ^ero in G (———)

which lies on the circumference of the disk G (-).

Proof. — If one element of a class is an algebraic number then all the elements are
algebraic numbers. If v == i the Newton polygon of / shows that ^ has just two fixed

/ p \
points in 91 o, — — . The assertion for v = = i now follows from Lemma (8.14).

\ P+1/
For v=2, since p^ is semisimple, u{=u^) is one element of a polarized pair of

special solutions {^1,^2} which are both eigenvectors. Lemma (8.14) shows that
^(2=1,2) has a unique zero ^ in the critical annulus of center p. If we put
a==Max(ord(^— (B), ord^— (B)) (resp. ^=Min(ord(^— P), ord(^—(B))) then for
XeG(a) we have (normalizing u^ so that ^([B)=i)

(8.42) u,We^-^{l+^-^{p-b))
r ^"i

where b = (i—a') \p. (Equation (8.42) follows from the Newton polygon of ^(X) /(X—^)
(as power series in ( 'A—(B)), which may be determined from the known distribution of
the zeros of ^.)
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For T=M2/ai, we have (for X in the above disk)

T(P)=I

(8.43) ^)ei+ ^_~^~^———+^-mP-b).
I-——— (%-P)(^-P)

\ <1 —— P/

If we compare this with equation (8.35), we conclude that for XeC(a), (R^ — R ^ ) ( i + ^ p )

meets 7 — — ^ 2 ^ 1 ^4-(^~6). Since ord(R^-RJ=-^<-6 it follows that
^2~PA^l—Pj 2 2

(8 44) ^-ord(^-(B)+ord(^-(B)-ord(%-^).

Likewise

(8.45) ^-ord^-p^+ord^-p^-ord^-^).

We assert ord(^—(B)==ord(^—(B). Suppose otherwise, say ord(^— R)>ord(^— JB)

then ord(^—^)==ord(^—p), which shows that ord(^—p)=^. On the other hand

the same inequality implies that ord(^— (B^^ord^— E^) and hence by the same

argument, using (8.45), ord(^—[B^^- which implies that ord(^—P)=^, contra-
dicting the presumed inequality.

Thus ord(^—P)=a=ord(^—p), ord(^—^)^ and hence by equation (8.44),

a>^-. Hence by the same argument, using (8.45) (since

i-^=ord(^-^)=ord(4-(^))

we know that i—a>-. This shows that a=- as asserted. This completes the proof
of the lemma.

We note that for a pair of eigenvectors of p" which are also a polarized pair of
special solutions (this hypothesis must be stated for v = 2 ) , the zeros ^1,^2 are as far

apart as possible, i.e. ord(^—^)==-. This is also true for v = = i but in that case the

modular equation may be used to show that ord(^+^)^>i.
Lemmas (8.2) and (8.15) show that the eigenvectors of ^ have an arithmetic

significance provided the roots of the zeta function of the reduced curve are unequal.
It seems natural to ask whether in the excluded case it is possible to choose particular
solutions of (4.2) in an intrinsic fashion. We observe that certain solutions may be
of particular interest. In the following we suppose v = 2 , the roots are equal.

a) There exists a solution defined uniquely up to a constant factor over Kg by
the condition ^((B)==o. This solution has by Lemma (8.14) a solution set consisting
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of the intersection with (B + ̂  of a- class of type III, the minimal representative being (B
itself. A second solution is obtained by noting that if is a solution of support [B^+^P
and that pz/° has support (B + ^P ^d its zero set involves a class of type IV whose minimal
representative is (B^ Clearly both zero sets consist of algebraic numbers and one zero
set is mapped into the other by an automorphism over K^ which extends cr.

b ) It is not difficult to show the existence of a solution u of (4.2) which is defined
over Kg and has the property that p^/M° is a constant. In the notation of the proof of
Lemma (8.9), this is equivalent to the choice of x in Kg which satisfies equation (8.29).
However we now know that BB° is semisimple and therefore a routine computation
shows that b^fb^==ae'K^, b^==—b^b^~°, and that equation (8.29) is equivalent to the
condition, for A:eKg,

(8.46) ^K^bl+b^==e

where — ep is the value of the two equal roots of zeta function of the reduced elliptic
curve. If x is chosen in this way then x is a unit and the corresponding solution u
of (4.2) with support (B+^P has the property that

(8.47) ^u^kV^pu0

where k is an element of Kg such that ^^^k==e. This condition does not specify k
uniquely but any other choice is of the form kt°~1 where ^eKg. Replacing u by tu,
we may in equation (8.47) replace kta~l by k. The solutions of (4.2) of support (B +^P
and initial data defined over Kg form a two dimensional Kg-space which may be viewed
as a four dimension K^-space. Equation (8.47) (with k fixed) defines a K^-linear
subspace of dimension two. Each non-trivial element of this subspace has unique zero ^

/ i p \
in 91 ———, ———) which lies in Kg and is invariant under (707. Conversely such a

\p+i p + i ]
fixed point ^ defines uniquely (up to a constant multiple in Kg) a solution of (4.2)
defined over Kg and it is clear that by suitable choice of the constant multiple, we obtain
a solution which satisfies (8.47).

Alternately for each ^eKg, let ^ be the minimal representative of the zero set
of the solution, u, of (4.2) which satisfies the initial condition

(8.48) ^(p)/^)^0-1-^)/^^).
Then t\->^^ is a one to one correspondence between Kg/K^ and the elements of
Kgn( (B+^P) which are fixed under ao 7. Thus there exists an infinite set of fixed

points on the circumference of G -). A closer examination of this set of fixed pointsw
may be of interest. Finally we note that since — i has norm i, we may choose a second
solution u of (4.2) of support P+^P such that

^v==—kV—pu0.
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With such a pair of solutions, we obtain -(X)=—(-| (X') for all X e ^ j o , — — ) , which
u \u) \ p+i]

generalizes the relation between X, X' and the ratio of eigenvectors in the case v = i
(cf. Lemma (8.11), (iii)).

d) Non-extension of /.

We recall that our treatment of the supersingular case was based on

(L) The eigenvalues of p2 are equal,

a result for which, as noted previously, we are indebted to Lubin. We sketch a proof
of this fact which is based on a property of ^ which is of independent interest. This
treatment gives another proof of the semisimplicity of p", and hence eliminates the need
of Lemma (8.12).

We use the fact that part (i) of Lemma (8. g) may be proven without the use of (L).
From this we may deduce the validity of parts (i), (ii) of Lemma (8.11), while part (iii)
of that lemma must be replaced by

T(X")==CT(X) (resp. T(X)+^)

if p'' is semisimple (resp. not semisimple), t being non-zero in the non-semisimple case
and c being the ratio of the eigenvalues of p\ If we can show that \"==\ for all X

in G ( — — — ) then certainly p2 is simply a multiplication by a constant.

To show this let 9lo be the ring of all elements of Q,p((B) [[X— [B]] which converge
/ i \

in G ——— and let 91 be the field of quotients of 9lo. The field 91 has an obvious
( 1 P \imbedding in the field of functions meromorphic on 91 ———, ——— and the restriction
[ p + i ' P + i )

of 7 to this annulus is an element of this second field. Using X' to denote this restriction,
we may consider the field generated by X' over 91. We assert that

(8.50) deg9t(X')/9l=^+i.

We have noted that for x fixed in the inner disk (about ^p) the equation ^(Y)=x

has p+i distinct roots, each lying in the circumference of G — — | . This implies
\P+1]

that for x fixed in the inner disk (about (B), the equation (cf. (7.10)) G ( x , Y)==o has

p-\-i roots for Y each lying in the circumference of Cap[——). Let b ==deg9l(X')/9l
and let ^+1'

H(X,Y)=^^X).(Y-p^)^[Y]

be an irreducible polynomial over 91 satisfied by X'. Certainly i^&^^+i. If X is
specialized to any element ^ of the inner disk (about [B) which is not a zero ofAo./^, then
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by the above remarks, H(^ Y), as polynomial in Y- (B^ must have Newton polygon

with only one side and that side has slope ——— Thus with this choice of^:

^•Si) ord^W^———
P+i

However the intersection of Q^((B) with the inner disk about {B is an infinite set and
hence ^ may be chosen in Q^(p). With ^ so chosen, we may conclude that ^)/^(z)
lies in Q^(p). This shows that the left side of (8.51) is a rational integer and hence
b==p+i as asserted.

We now observe that X'- (^ as holomorphic function on U —L— -^—\ mav
[ p + i ' p + i f y

be represented by a Laurent series in X-p with coefficients in Q^(p) and hence the
same holds for X"-p. It follows from Lemma (8.11) (ii) that X"e9^. However
Gy(X, X') == o == Gp(X', X"). The symmetry of Gp shows that X' is a zero of both G (X, Y)
and Gy(X",Y), two monic polynomials in 9l[Y] of degree j&+i . It follows^ from
equation (8.50) that the two polynomials must be identical and in particular by equating
the coefficients of Y, we obtain by equation (7.10):

"^^A^^^^'+^A^1^"
Since X and X" assume values in 0, it is clear that X"==X for all Xec(——| This

\P+^]
completes our treatment of statement (L) (which is of course weaker than the quoted
result of Lubin).

We deduce an interesting consequence. Given s>o, we may choose a field E,
of finite degree over Q^((B) with absolute ramification prime to p+i, such that the

intersection of E with 31 (-—,-A_ _^) is infinite.
\p+i p+i ]

By choosing ^ in this intersection, the proof of equation (8.50) may be extended
so thatSR may be replaced by SR,, the field of functions which are both meromorphic

m 9I [fi+~t5 pJ~^ +£) and defined over %p(P)- It follows that X' cannot be meromorphic

in this annulus for any e>o. (An alternate proof of non-meromorphy follows from the
fact that otherwise with the aid of Lemma (8.11) (ii) we would have ^(2) meromorphic
in P + ^S and hence by part (iv) of that lemma would everywhere coincide with the
identity mapping.)

Let V be the modular correspondence, i.e. the curve defined over Q^by the equation

G,(X,Y)=o.

We determine the singular locus ofV and show that, contrary to what might be expected,
the projections of that locus on the coordinate axes lie in the support of j^.
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Lemma (8.16). — Let S be the set of all points (a^n, a^J, as a mod ̂  runs through
all elements of GF [j^2] for which the Hasse invariant is not ^ero.

(i) The singular locus of V consists of the elements of S and the point at infinity.
(ii) Each element of \ is of the form (X, X') or (X', X).
(iii) TA^ ^roj of ^X'/^X flr^ ^ X==o, i.
(iv) T/^ o/^ o/^ the first derivatives of Gp vanishes at a point of V ^TZ the point lies in S.

Proof. — It follows from equation (7.9) that we may restrict our attention to 0x0.
Let us denote Gp by G and use G^ (?=i , 2) to denote the derivative of G with respect
to the z-th variable. An elementary computation gives

(8.52) G^X, X^G^X', X'^^'/^X-G^X, X^G^X', X'^G^X', X)G2(X'/, X'),

the last equality being a consequence of the symmetry of G.
If a mod ^P lies in GF [p2] but is not a zero of the Hasse invariant then by

equation (8.19) d\"fd\ assumes a non-unit value at X==a^n. Since G^a^n? a^J and
^(^an? ^an) are conjugate over Qy and a^n==o<an5 it follows from equation (8.52)
that G^ and Gg vanish at each point of S, as asserted. The proof of (i) will be completed
subsequently.

The proof of (iii) follows from Lemma (8.13) in the case of supersingular reduction
and from equation (7.17) in the case of non-supersingular reduction if X=t=o, i. The
assertion for X = o follows from equation (4.21) and for X == i by the symmetry, Xh> i — X.

For fixed ^ we consider the equation

(8.53) X(Y)=^.

In all cases we know that this equation has at least p roots while if ord(^ — a) > i l { p +1),
a^^a, a mod ^P supersingular, there are j&+i roots. It follows from (iii) that these
roots are distinct. The roots of (8.53) are necessarily roots of

(8.54) G(^Y)=o

and in the case in which (8.53) has p roots we know that ^ is also a root of (8.54).
If ^ is not a root of (8.53) then this gives p +1 distinct roots of (8.54) which verifies
(ii) in that case and also shows that no singular point of V has ^ as first coordinate.
In the supersingular case, if ord(^—a)^I / (^+ I )5 we know that the p roots of (8.53)
are further from a^ than is ^ and hence (8.54) has p +1 distinct roots. In the non-
supersingular case, if ^ is a root of (8.53) then ^ must be the canonical lifting of an
element ofGF[j&2]. This shows that the singular locus ofVin 0x0 lies in S and hence
completes the proof of (i). If ^ is the first coordinate of an element of S then (8.54)
has a multiple root and hence the p distinct roots of (8.53) give all the roots of (8.54).
This completes the proof of (ii). Finally we note that (iv) follows from (ii), (iii), the
symmetry of G and the relation:

o = Gi(X, X') + Ga(X, X')rfX'/rfX.

This completes the proof of the lemma.
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Correction. — In the statement of Lemma (7 .3)5 the hypothesis (here para-
phrased), " h is a biholomorphic map of i+^P onto itself ?? should be replaced
by the weaker hypothesis, " h is a holomorphic map of i+^P into itself ".
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